aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp
blob: 962cb28b7c2ab9f408c2e8428b395dbac3582775 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of math operations to fast approximations
// that do not rely on any of the library functions.
//
//===----------------------------------------------------------------------===//

#include <climits>
#include <cmath>
#include <cstddef>

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Approximation.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"

using namespace mlir;
using namespace mlir::math;
using namespace mlir::vector;

// Returns vector shape if the type is a vector. Returns an empty shape if it is
// not a vector.
static ArrayRef<int64_t> vectorShape(Type type) {
  auto vectorType = dyn_cast<VectorType>(type);
  return vectorType ? vectorType.getShape() : ArrayRef<int64_t>();
}

static ArrayRef<int64_t> vectorShape(Value value) {
  return vectorShape(value.getType());
}

//----------------------------------------------------------------------------//
// Broadcast scalar types and values into vector types and values.
//----------------------------------------------------------------------------//

// Broadcasts scalar type into vector type (iff shape is non-scalar).
static Type broadcast(Type type, ArrayRef<int64_t> shape) {
  assert(!isa<VectorType>(type) && "must be scalar type");
  return !shape.empty() ? VectorType::get(shape, type) : type;
}

// Broadcasts scalar value into vector (iff shape is non-scalar).
static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
                       ArrayRef<int64_t> shape) {
  assert(!isa<VectorType>(value.getType()) && "must be scalar value");
  auto type = broadcast(value.getType(), shape);
  return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
}

//----------------------------------------------------------------------------//
// Helper function to handle n-D vectors with 1-D operations.
//----------------------------------------------------------------------------//

// Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
// and calls the compute function with 1-D vector operands. Stitches back all
// results into the original n-D vector result.
//
// Examples: vectorWidth = 8
//   - vector<4x8xf32> unrolled 4 times
//   - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
//   - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
//
// Some math approximations rely on ISA-specific operations that only accept
// fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
//
// It is the caller's responsibility to verify that the inner dimension is
// divisible by the vectorWidth, and that all operands have the same vector
// shape.
static Value
handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
                              ValueRange operands, int64_t vectorWidth,
                              llvm::function_ref<Value(ValueRange)> compute) {
  assert(!operands.empty() && "operands must be not empty");
  assert(vectorWidth > 0 && "vector width must be larger than 0");

  VectorType inputType = cast<VectorType>(operands[0].getType());
  ArrayRef<int64_t> inputShape = inputType.getShape();

  // If input shape matches target vector width, we can just call the
  // user-provided compute function with the operands.
  if (inputShape == llvm::ArrayRef(vectorWidth))
    return compute(operands);

  // Check if the inner dimension has to be expanded, or we can directly iterate
  // over the outer dimensions of the vector.
  int64_t innerDim = inputShape.back();
  int64_t expansionDim = innerDim / vectorWidth;
  assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");

  // Maybe expand operands to the higher rank vector shape that we'll use to
  // iterate over and extract one dimensional vectors.
  SmallVector<int64_t> expandedShape(inputShape.begin(), inputShape.end());
  SmallVector<Value> expandedOperands(operands);

  if (expansionDim > 1) {
    // Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
    expandedShape.insert(expandedShape.end() - 1, expansionDim);
    expandedShape.back() = vectorWidth;

    for (unsigned i = 0; i < operands.size(); ++i) {
      auto operand = operands[i];
      auto eltType = cast<VectorType>(operand.getType()).getElementType();
      auto expandedType = VectorType::get(expandedShape, eltType);
      expandedOperands[i] =
          builder.create<vector::ShapeCastOp>(expandedType, operand);
    }
  }

  // Iterate over all outer dimensions of the compute shape vector type.
  auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
  int64_t maxIndex = computeMaxLinearIndex(iterationDims);
  auto strides = computeStrides(iterationDims);

  // Compute results for each one dimensional vector.
  SmallVector<Value> results(maxIndex);

  for (int64_t i = 0; i < maxIndex; ++i) {
    auto offsets = delinearize(i, strides);

    SmallVector<Value> extracted(expandedOperands.size());
    for (const auto &tuple : llvm::enumerate(expandedOperands))
      extracted[tuple.index()] =
          builder.create<vector::ExtractOp>(tuple.value(), offsets);

    results[i] = compute(extracted);
  }

  // Stitch results together into one large vector.
  Type resultEltType = cast<VectorType>(results[0].getType()).getElementType();
  Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
  Value result = builder.create<arith::ConstantOp>(
      resultExpandedType, builder.getZeroAttr(resultExpandedType));

  for (int64_t i = 0; i < maxIndex; ++i)
    result = builder.create<vector::InsertOp>(results[i], result,
                                              delinearize(i, strides));

  // Reshape back to the original vector shape.
  return builder.create<vector::ShapeCastOp>(
      VectorType::get(inputShape, resultEltType), result);
}

//----------------------------------------------------------------------------//
// Helper functions to create constants.
//----------------------------------------------------------------------------//

static Value floatCst(ImplicitLocOpBuilder &builder, float value,
                      Type elementType) {
  assert((elementType.isF16() || elementType.isF32()) &&
         "x must be f16 or f32 type.");
  return builder.create<arith::ConstantOp>(
      builder.getFloatAttr(elementType, value));
}

static Value f32Cst(ImplicitLocOpBuilder &builder, double value) {
  return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
}

static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
  return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
}

static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
  Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
  return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
}

//----------------------------------------------------------------------------//
// Helper functions to build math functions approximations.
//----------------------------------------------------------------------------//

// Return the minimum of the two values or NaN if value is NaN
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) {
  return builder.create<arith::SelectOp>(
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound),
      value, bound);
}

// Return the maximum of the two values or NaN if value is NaN
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) {
  return builder.create<arith::SelectOp>(
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound),
      value, bound);
}

// Return the clamped value or NaN if value is NaN
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
                   Value upperBound) {
  return max(builder, min(builder, value, upperBound), lowerBound);
}

// Decomposes given floating point value `arg` into a normalized fraction and
// an integral power of two (see std::frexp). Returned values have float type.
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
                                     bool isPositive = false) {
  assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
  ArrayRef<int64_t> shape = vectorShape(arg);

  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  auto i32 = builder.getIntegerType(32);
  auto i32Vec = broadcast(i32, shape);
  auto f32Vec = broadcast(builder.getF32Type(), shape);

  Value cst126f = f32Cst(builder, 126.0f);
  Value cstHalf = f32Cst(builder, 0.5f);
  Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);

  // Bitcast to i32 for bitwise operations.
  Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
  Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
  Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);

  // Compute normalized fraction.
  Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
  Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
  Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);

  // Compute exponent.
  Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg);
  Value biasedExponentBits = builder.create<arith::ShRUIOp>(
      builder.create<arith::BitcastOp>(i32Vec, arg0),
      bcast(i32Cst(builder, 23)));
  Value biasedExponent =
      builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
  Value exponent =
      builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));

  return {normalizedFraction, exponent};
}

// Computes exp2 for an i32 argument.
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
  assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
  ArrayRef<int64_t> shape = vectorShape(arg);

  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  auto f32Vec = broadcast(builder.getF32Type(), shape);
  // The exponent of f32 located at 23-bit.
  auto exponetBitLocation = bcast(i32Cst(builder, 23));
  // Set the exponent bias to zero.
  auto bias = bcast(i32Cst(builder, 127));

  Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
  Value exp2ValueInt =
      builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
  Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);

  return exp2ValueF32;
}

namespace {
Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
                                llvm::ArrayRef<Value> coeffs, Value x) {
  Type elementType = getElementTypeOrSelf(x);
  assert((elementType.isF32() || elementType.isF16()) &&
         "x must be f32 or f16 type");
  ArrayRef<int64_t> shape = vectorShape(x);

  if (coeffs.empty())
    return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);

  if (coeffs.size() == 1)
    return coeffs[0];

  Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
                                          coeffs[coeffs.size() - 2]);
  for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
    res = builder.create<math::FmaOp>(x, res, coeffs[i]);
  }
  return res;
}
} // namespace

//----------------------------------------------------------------------------//
// Helper function/pattern to insert casts for reusing F32 bit expansion.
//----------------------------------------------------------------------------//

template <typename T>
LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
  // Conservatively only allow where the operand and result types are exactly 1.
  Type origType = op->getResultTypes().front();
  for (Type t : llvm::drop_begin(op->getResultTypes()))
    if (origType != t)
      return rewriter.notifyMatchFailure(op, "required all types to match");
  for (Type t : op->getOperandTypes())
    if (origType != t)
      return rewriter.notifyMatchFailure(op, "required all types to match");

  // Skip if already F32  or larger than 32 bits.
  if (getElementTypeOrSelf(origType).isF32() ||
      getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
    return failure();

  // Create F32 equivalent type.
  Type newType;
  if (auto shaped = dyn_cast<ShapedType>(origType)) {
    newType = shaped.clone(rewriter.getF32Type());
  } else if (isa<FloatType>(origType)) {
    newType = rewriter.getF32Type();
  } else {
    return rewriter.notifyMatchFailure(op,
                                       "unable to find F32 equivalent type");
  }

  Location loc = op->getLoc();
  SmallVector<Value> operands;
  for (auto operand : op->getOperands())
    operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
  auto result =
      rewriter.create<T>(loc, TypeRange{newType}, operands, op->getAttrs());
  rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
  return success();
}

namespace {
// Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
// op.
// TODO: Consider revising to avoid adding multiple casts for a subgraph that is
// all in lower precision. Currently this is only fallback support and performs
// simplistic casting.
template <typename T>
struct ReuseF32Expansion : public OpRewritePattern<T> {
public:
  using OpRewritePattern<T>::OpRewritePattern;
  LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
    static_assert(
        T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
        "requires same operands and result types");
    return insertCasts<T>(op, rewriter);
  }
};
} // namespace

//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//

namespace {
struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::AtanOp op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
AtanApproximation::matchAndRewrite(math::AtanOp op,
                                   PatternRewriter &rewriter) const {
  auto operand = op.getOperand();
  if (!getElementTypeOrSelf(operand).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  Value abs = builder.create<math::AbsFOp>(operand);

  auto one = broadcast(builder, f32Cst(builder, 1.0), shape);

  // When 0.66 < x <= 2.41 we do (x-1) / (x+1):
  auto twoThirds = broadcast(builder, f32Cst(builder, 0.66), shape);
  Value cmp2 =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, twoThirds);
  Value addone = builder.create<arith::AddFOp>(abs, one);
  Value subone = builder.create<arith::SubFOp>(abs, one);
  Value xnum = builder.create<arith::SelectOp>(cmp2, subone, abs);
  Value xden = builder.create<arith::SelectOp>(cmp2, addone, one);

  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  // Break into the <= 0.66 or > 2.41 we do x or 1/x:
  auto tan3pio8 = bcast(f32Cst(builder, 2.41421356237309504880));
  Value cmp1 =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, tan3pio8);
  xnum = builder.create<arith::SelectOp>(cmp1, one, xnum);
  xden = builder.create<arith::SelectOp>(cmp1, abs, xden);

  Value x = builder.create<arith::DivFOp>(xnum, xden);
  Value xx = builder.create<arith::MulFOp>(x, x);

  // Perform the Taylor series approximation for atan over the range
  // [0.0, 0.66].
  auto p0 = bcast(f32Cst(builder, -8.750608600031904122785e-01));
  auto p1 = bcast(f32Cst(builder, -1.615753718733365076637e+01));
  auto p2 = bcast(f32Cst(builder, -7.500855792314704667340e+01));
  auto p3 = bcast(f32Cst(builder, -1.228866684490136173410e+02));
  auto p4 = bcast(f32Cst(builder, -6.485021904942025371773e+01));
  auto q0 = bcast(f32Cst(builder, +2.485846490142306297962e+01));
  auto q1 = bcast(f32Cst(builder, +1.650270098316988542046e+02));
  auto q2 = bcast(f32Cst(builder, +4.328810604912902668951e+02));
  auto q3 = bcast(f32Cst(builder, +4.853903996359136964868e+02));
  auto q4 = bcast(f32Cst(builder, +1.945506571482613964425e+02));

  // Apply the polynomial approximation for the numerator:
  Value n = p0;
  n = builder.create<math::FmaOp>(xx, n, p1);
  n = builder.create<math::FmaOp>(xx, n, p2);
  n = builder.create<math::FmaOp>(xx, n, p3);
  n = builder.create<math::FmaOp>(xx, n, p4);
  n = builder.create<arith::MulFOp>(n, xx);

  // Apply the polynomial approximation for the denominator:
  Value d = q0;
  d = builder.create<math::FmaOp>(xx, d, q1);
  d = builder.create<math::FmaOp>(xx, d, q2);
  d = builder.create<math::FmaOp>(xx, d, q3);
  d = builder.create<math::FmaOp>(xx, d, q4);

  // Compute approximation of theta:
  Value ans0 = builder.create<arith::DivFOp>(n, d);
  ans0 = builder.create<math::FmaOp>(ans0, x, x);

  // Correct for the input mapping's angles:
  Value mpi4 = bcast(f32Cst(builder, llvm::numbers::pi / 4));
  Value ans2 = builder.create<arith::AddFOp>(mpi4, ans0);
  Value ans = builder.create<arith::SelectOp>(cmp2, ans2, ans0);

  Value mpi2 = bcast(f32Cst(builder, llvm::numbers::pi / 2));
  Value ans1 = builder.create<arith::SubFOp>(mpi2, ans0);
  ans = builder.create<arith::SelectOp>(cmp1, ans1, ans);

  // Correct for signing of the input.
  rewriter.replaceOpWithNewOp<math::CopySignOp>(op, ans, operand);
  return success();
}

//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//

namespace {
struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::Atan2Op op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
Atan2Approximation::matchAndRewrite(math::Atan2Op op,
                                    PatternRewriter &rewriter) const {
  auto y = op.getOperand(0);
  auto x = op.getOperand(1);
  if (!getElementTypeOrSelf(x).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  ArrayRef<int64_t> shape = vectorShape(op.getResult());

  // Compute atan in the valid range.
  auto div = builder.create<arith::DivFOp>(y, x);
  auto atan = builder.create<math::AtanOp>(div);

  // Determine what the atan would be for a 180 degree rotation.
  auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
  auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
  auto addPi = builder.create<arith::AddFOp>(atan, pi);
  auto subPi = builder.create<arith::SubFOp>(atan, pi);
  auto atanGt =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
  auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);

  // Determine whether to directly use atan or use the 180 degree flip
  auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
  Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);

  // Handle x = 0, y > 0
  Value xZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
  Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
  Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
  auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
  result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);

  // Handle x = 0, y < 0
  Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
  Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
  auto negativeHalfPiPi =
      broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
  result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
                                           result);

  // Handle x = 0, y = 0;
  Value yZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
  Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
  Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
  result = builder.create<arith::SelectOp>(isNan, cstNan, result);

  rewriter.replaceOp(op, result);
  return success();
}

//----------------------------------------------------------------------------//
// TanhOp approximation.
//----------------------------------------------------------------------------//

namespace {
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::TanhOp op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
TanhApproximation::matchAndRewrite(math::TanhOp op,
                                   PatternRewriter &rewriter) const {
  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  // Clamp operand into [plusClamp, minusClamp] range.
  Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
  Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
  Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);

  // Mask for tiny values that are approximated with `operand`.
  Value tiny = bcast(f32Cst(builder, 0.0004f));
  Value tinyMask = builder.create<arith::CmpFOp>(
      arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()),
      tiny);

  // The monomial coefficients of the numerator polynomial (odd).
  Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
  Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
  Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
  Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
  Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
  Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
  Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));

  // The monomial coefficients of the denominator polynomial (even).
  Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
  Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
  Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
  Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));

  // Since the polynomials are odd/even, we need x^2.
  Value x2 = builder.create<arith::MulFOp>(x, x);

  // Evaluate the numerator polynomial p.
  Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
  p = builder.create<math::FmaOp>(x2, p, alpha9);
  p = builder.create<math::FmaOp>(x2, p, alpha7);
  p = builder.create<math::FmaOp>(x2, p, alpha5);
  p = builder.create<math::FmaOp>(x2, p, alpha3);
  p = builder.create<math::FmaOp>(x2, p, alpha1);
  p = builder.create<arith::MulFOp>(x, p);

  // Evaluate the denominator polynomial q.
  Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
  q = builder.create<math::FmaOp>(x2, q, beta2);
  q = builder.create<math::FmaOp>(x2, q, beta0);

  // Divide the numerator by the denominator.
  Value res = builder.create<arith::SelectOp>(
      tinyMask, x, builder.create<arith::DivFOp>(p, q));

  rewriter.replaceOp(op, res);

  return success();
}

#define LN2_VALUE                                                              \
  0.693147180559945309417232121458176568075500134360255254120680009493393621L
#define LOG2E_VALUE                                                            \
  1.442695040888963407359924681001892137426645954152985934135449406931109219L

//----------------------------------------------------------------------------//
// LogOp and Log2Op approximation.
//----------------------------------------------------------------------------//

namespace {
template <typename Op>
struct LogApproximationBase : public OpRewritePattern<Op> {
  using OpRewritePattern<Op>::OpRewritePattern;

  /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
  LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
                                   bool base2) const;
};
} // namespace

// This approximation comes from Julien Pommier's SSE math library.
// Link: http://gruntthepeon.free.fr/ssemath
template <typename Op>
LogicalResult
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
                                             bool base2) const {
  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  Value cstZero = bcast(f32Cst(builder, 0.0f));
  Value cstOne = bcast(f32Cst(builder, 1.0f));
  Value cstNegHalf = bcast(f32Cst(builder, -0.5f));

  // The smallest non denormalized float number.
  Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
  Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
  Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
  Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));

  // Polynomial coefficients.
  Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
  Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
  Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
  Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
  Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
  Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
  Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
  Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
  Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
  Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));

  Value x = op.getOperand();

  // Truncate input values to the minimum positive normal.
  x = max(builder, x, cstMinNormPos);

  // Extract significant in the range [0.5,1) and exponent.
  std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
  x = pair.first;
  Value e = pair.second;

  // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
  // by -1.0. The values are then centered around 0, which improves the
  // stability of the polynomial evaluation:
  //
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
                                             cstCephesSQRTHF);
  Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);

  x = builder.create<arith::SubFOp>(x, cstOne);
  e = builder.create<arith::SubFOp>(
      e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
  x = builder.create<arith::AddFOp>(x, tmp);

  Value x2 = builder.create<arith::MulFOp>(x, x);
  Value x3 = builder.create<arith::MulFOp>(x2, x);

  // Evaluate the polynomial approximant of degree 8 in three parts.
  Value y0, y1, y2;
  y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
  y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
  y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
  y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
  y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
  y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
  y0 = builder.create<math::FmaOp>(y0, x3, y1);
  y0 = builder.create<math::FmaOp>(y0, x3, y2);
  y0 = builder.create<arith::MulFOp>(y0, x3);

  y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
  x = builder.create<arith::AddFOp>(x, y0);

  if (base2) {
    Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
    x = builder.create<math::FmaOp>(x, cstLog2e, e);
  } else {
    Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
    x = builder.create<math::FmaOp>(e, cstLn2, x);
  }

  Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
                                                    op.getOperand(), cstZero);
  Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
                                                 op.getOperand(), cstZero);
  Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
                                                   op.getOperand(), cstPosInf);

  // Filter out invalid values:
  //  • x == 0     -> -INF
  //  • x < 0      ->  NAN
  //  • x == +INF  -> +INF
  Value aproximation = builder.create<arith::SelectOp>(
      zeroMask, cstMinusInf,
      builder.create<arith::SelectOp>(
          invalidMask, cstNan,
          builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));

  rewriter.replaceOp(op, aproximation);

  return success();
}

namespace {
struct LogApproximation : public LogApproximationBase<math::LogOp> {
  using LogApproximationBase::LogApproximationBase;

  LogicalResult matchAndRewrite(math::LogOp op,
                                PatternRewriter &rewriter) const final {
    return logMatchAndRewrite(op, rewriter, /*base2=*/false);
  }
};
} // namespace

namespace {
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
  using LogApproximationBase::LogApproximationBase;

  LogicalResult matchAndRewrite(math::Log2Op op,
                                PatternRewriter &rewriter) const final {
    return logMatchAndRewrite(op, rewriter, /*base2=*/true);
  }
};
} // namespace

//----------------------------------------------------------------------------//
// Log1p approximation.
//----------------------------------------------------------------------------//

namespace {
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::Log1pOp op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

// Approximate log(1+x).
LogicalResult
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
                                    PatternRewriter &rewriter) const {
  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  // Approximate log(1+x) using the following, due to W. Kahan:
  //   u = x + 1.0;
  //   if (u == 1.0 || u == inf) return x;
  //   return x * log(u) / (u - 1.0);
  //          ^^^^^^^^^^^^^^^^^^^^^^
  //             "logLarge" below.
  Value cstOne = bcast(f32Cst(builder, 1.0f));
  Value x = op.getOperand();
  Value u = builder.create<arith::AddFOp>(x, cstOne);
  Value uSmall =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
  Value logU = builder.create<math::LogOp>(u);
  Value uInf =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
  Value logLarge = builder.create<arith::MulFOp>(
      x, builder.create<arith::DivFOp>(
             logU, builder.create<arith::SubFOp>(u, cstOne)));
  Value approximation = builder.create<arith::SelectOp>(
      builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
  rewriter.replaceOp(op, approximation);
  return success();
}

//----------------------------------------------------------------------------//
// Erf approximation.
//----------------------------------------------------------------------------//

// Approximates erf(x) with
// a - P(x)/Q(x)
// where P and Q are polynomials of degree 4.
// Different coefficients are chosen based on the value of x.
// The approximation error is ~2.5e-07.
// Boost's minimax tool that utilizes the Remez method was used to find the
// coefficients.
LogicalResult
ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
                                            PatternRewriter &rewriter) const {
  Value operand = op.getOperand();
  Type elementType = getElementTypeOrSelf(operand);

  if (!(elementType.isF32() || elementType.isF16()))
    return rewriter.notifyMatchFailure(op,
                                       "only f32 and f16 type is supported.");
  ArrayRef<int64_t> shape = vectorShape(operand);

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  const int intervalsCount = 3;
  const int polyDegree = 4;

  Value zero = bcast(floatCst(builder, 0, elementType));
  Value one = bcast(floatCst(builder, 1, elementType));
  Value pp[intervalsCount][polyDegree + 1];
  pp[0][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
  pp[0][1] = bcast(floatCst(builder, +1.12837916222975858e+00f, elementType));
  pp[0][2] = bcast(floatCst(builder, -5.23018562988006470e-01f, elementType));
  pp[0][3] = bcast(floatCst(builder, +2.09741709609267072e-01f, elementType));
  pp[0][4] = bcast(floatCst(builder, +2.58146801602987875e-02f, elementType));
  pp[1][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
  pp[1][1] = bcast(floatCst(builder, +1.12750687816789140e+00f, elementType));
  pp[1][2] = bcast(floatCst(builder, -3.64721408487825775e-01f, elementType));
  pp[1][3] = bcast(floatCst(builder, +1.18407396425136952e-01f, elementType));
  pp[1][4] = bcast(floatCst(builder, +3.70645533056476558e-02f, elementType));
  pp[2][0] = bcast(floatCst(builder, -3.30093071049483172e-03f, elementType));
  pp[2][1] = bcast(floatCst(builder, +3.51961938357697011e-03f, elementType));
  pp[2][2] = bcast(floatCst(builder, -1.41373622814988039e-03f, elementType));
  pp[2][3] = bcast(floatCst(builder, +2.53447094961941348e-04f, elementType));
  pp[2][4] = bcast(floatCst(builder, -1.71048029455037401e-05f, elementType));

  Value qq[intervalsCount][polyDegree + 1];
  qq[0][0] = bcast(floatCst(builder, +1.000000000000000000e+00f, elementType));
  qq[0][1] = bcast(floatCst(builder, -4.635138185962547255e-01f, elementType));
  qq[0][2] = bcast(floatCst(builder, +5.192301327279782447e-01f, elementType));
  qq[0][3] = bcast(floatCst(builder, -1.318089722204810087e-01f, elementType));
  qq[0][4] = bcast(floatCst(builder, +7.397964654672315005e-02f, elementType));
  qq[1][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
  qq[1][1] = bcast(floatCst(builder, -3.27607011824493086e-01f, elementType));
  qq[1][2] = bcast(floatCst(builder, +4.48369090658821977e-01f, elementType));
  qq[1][3] = bcast(floatCst(builder, -8.83462621207857930e-02f, elementType));
  qq[1][4] = bcast(floatCst(builder, +5.72442770283176093e-02f, elementType));
  qq[2][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
  qq[2][1] = bcast(floatCst(builder, -2.06069165953913769e+00f, elementType));
  qq[2][2] = bcast(floatCst(builder, +1.62705939945477759e+00f, elementType));
  qq[2][3] = bcast(floatCst(builder, -5.83389859211130017e-01f, elementType));
  qq[2][4] = bcast(floatCst(builder, +8.21908939856640930e-02f, elementType));

  Value offsets[intervalsCount];
  offsets[0] = bcast(floatCst(builder, 0.0f, elementType));
  offsets[1] = bcast(floatCst(builder, 0.0f, elementType));
  offsets[2] = bcast(floatCst(builder, 1.0f, elementType));

  Value bounds[intervalsCount];
  bounds[0] = bcast(floatCst(builder, 0.8f, elementType));
  bounds[1] = bcast(floatCst(builder, 2.0f, elementType));
  bounds[2] = bcast(floatCst(builder, 3.75f, elementType));

  Value isNegativeArg =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
  Value negArg = builder.create<arith::NegFOp>(operand);
  Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand);

  Value offset = offsets[0];
  Value p[polyDegree + 1];
  Value q[polyDegree + 1];
  for (int i = 0; i <= polyDegree; ++i) {
    p[i] = pp[0][i];
    q[i] = qq[0][i];
  }

  // TODO: maybe use vector stacking to reduce the number of selects.
  Value isLessThanBound[intervalsCount];
  for (int j = 0; j < intervalsCount - 1; ++j) {
    isLessThanBound[j] =
        builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
    for (int i = 0; i <= polyDegree; ++i) {
      p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
                                             pp[j + 1][i]);
      q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
                                             qq[j + 1][i]);
    }
    offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
                                             offsets[j + 1]);
  }
  isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
      arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);

  Value pPoly = makePolynomialCalculation(builder, p, x);
  Value qPoly = makePolynomialCalculation(builder, q, x);
  Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
  Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
  formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
                                            formula, one);

  // erf is odd function: erf(x) = -erf(-x).
  Value negFormula = builder.create<arith::NegFOp>(formula);
  Value res =
      builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);

  rewriter.replaceOp(op, res);

  return success();
}

//----------------------------------------------------------------------------//
// Exp approximation.
//----------------------------------------------------------------------------//

namespace {

Value clampWithNormals(ImplicitLocOpBuilder &builder,
                       const llvm::ArrayRef<int64_t> shape, Value value,
                       float lowerBound, float upperBound) {
  assert(!std::isnan(lowerBound));
  assert(!std::isnan(upperBound));

  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  auto selectCmp = [&builder](auto pred, Value value, Value bound) {
    return builder.create<arith::SelectOp>(
        builder.create<arith::CmpFOp>(pred, value, bound), value, bound);
  };

  // Note: prefer UGE/ULE vs. UGT/ULT, since they generate vmaxps/vminps vs.
  // vcmpleps+vmovaps on x86_64. The latter outcome is also obtained with
  // arith::{Max,Min}FOp.
  value = selectCmp(arith::CmpFPredicate::UGE, value,
                    bcast(f32Cst(builder, lowerBound)));
  value = selectCmp(arith::CmpFPredicate::ULE, value,
                    bcast(f32Cst(builder, upperBound)));
  return value;
}

struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::ExpOp op,
                                PatternRewriter &rewriter) const final;
};

LogicalResult
ExpApproximation::matchAndRewrite(math::ExpOp op,
                                  PatternRewriter &rewriter) const {
  auto shape = vectorShape(op.getOperand().getType());
  auto elementTy = getElementTypeOrSelf(op.getType());
  if (!elementTy.isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);

  auto add = [&](Value a, Value b) -> Value {
    return builder.create<arith::AddFOp>(a, b);
  };
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };
  auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
  auto fmla = [&](Value a, Value b, Value c) {
    return builder.create<math::FmaOp>(a, b, c);
  };
  auto mul = [&](Value a, Value b) -> Value {
    return builder.create<arith::MulFOp>(a, b);
  };

  // Polynomial approximation from Cephes.
  //
  // To compute e^x, we re-express it as
  //
  //   e^x = e^(a + b)
  //       = e^(a + n log(2))
  //       = e^a * 2^n.
  //
  // We choose n = round(x / log(2)), restricting the value of `a` to
  // (-log(2)/2, log(2)/2).  We then use a polynomial to compute e^a. The
  // relative error between our approximation and the true value of e^a is less
  // than 2^-22.5 for all values of `a` within this range.

  // Restrict input to a small range, including some values that evaluate to
  // +/- inf.  Note that for our lower bound, we choose log(2^-126) instead of
  // log(F32_EPSILON). We do so because this routine always flushes denormal
  // floating points to 0. Therefore, we only need to worry about exponentiating
  // up to the smallest representable non-denormal floating point, which is
  // 2^-126.

  // Constants.
  Value cstHalf = bcast(f32Cst(builder, 0.5f));
  Value cstOne = bcast(f32Cst(builder, 1.0f));

  // 1/log(2)
  Value cstLog2ef = bcast(f32Cst(builder, 1.44269504088896341f));

  Value cstExpC1 = bcast(f32Cst(builder, -0.693359375f));
  Value cstExpC2 = bcast(f32Cst(builder, 2.12194440e-4f));
  Value cstExpP0 = bcast(f32Cst(builder, 1.9875691500E-4f));
  Value cstExpP1 = bcast(f32Cst(builder, 1.3981999507E-3f));
  Value cstExpP2 = bcast(f32Cst(builder, 8.3334519073E-3f));
  Value cstExpP3 = bcast(f32Cst(builder, 4.1665795894E-2f));
  Value cstExpP4 = bcast(f32Cst(builder, 1.6666665459E-1f));
  Value cstExpP5 = bcast(f32Cst(builder, 5.0000001201E-1f));

  // Our computations below aren't particularly sensitive to the exact choices
  // here, so we choose values a bit larger/smaller than
  //
  //   log(F32_MAX) = 88.723...
  //   log(2^-126) = -87.337...
  Value x = op.getOperand();
  x = clampWithNormals(builder, shape, x, -87.8f, 88.8f);
  Value n = floor(fmla(x, cstLog2ef, cstHalf));

  // When we eventually do the multiplication in e^a * 2^n, we need to handle
  // the case when n > 127, the max fp32 exponent (so 2^n == inf) but e^a < 1
  // (so e^a * 2^n != inf).  There's a similar problem for n < -126, the
  // smallest fp32 exponent.
  //
  // A straightforward solution would be to detect n out of range and split it
  // up, doing
  //
  //   e^a * 2^n = e^a * 2^(n1 + n2)
  //             = (2^n1 * e^a) * 2^n2.
  //
  // But it turns out this approach is quite slow, probably because it
  // manipulates subnormal values.
  //
  // The approach we use instead is to clamp n to [-127, 127]. Let n' be the
  // value of n clamped to [-127, 127]. In the case where n' = 127, `a` can grow
  // up to as large as 88.8 - 127 * log(2) which is about 0.7703. Even though
  // this value of `a` is outside our previously specified range, e^a will still
  // only have a relative error of approximately 2^-16 at worse. In practice
  // this seems to work well enough; it passes our exhaustive tests, breaking
  // only one result, and by one ulp (we return exp(88.7228394) = max-float but
  // we should return inf).
  //
  // In the case where n' = -127, the original input value of x is so small that
  // e^x, our final answer, is less than 2^-126. Since 2^-126 is the smallest
  // normal floating point, and since we flush denormals, we simply return 0. We
  // do this in a branchless way by observing that our code for constructing 2^n
  // produces 0 if n = -127.
  //
  // The proof that n' = -127 implies e^x < 2^-126 is as follows:
  //
  //    n' = -127 implies n <= -127
  //              implies round(x / log(2)) <= -127
  //              implies x/log(2) < -126.5
  //              implies x < -126.5 * log(2)
  //              implies e^x < e^(-126.5 * log(2))
  //              implies e^x < 2^-126.5 < 2^-126
  //
  //    This proves that n' = -127 implies e^x < 2^-126.
  n = clampWithNormals(builder, shape, n, -127.0f, 127.0f);

  // Computes x = x - n' * log(2), the value for `a`
  x = fmla(cstExpC1, n, x);
  x = fmla(cstExpC2, n, x);

  // Polynomial to compute z = e^a, accurate for a in (-0.5, 0.5).
  Value z = fmla(x, cstExpP0, cstExpP1);
  z = fmla(z, x, cstExpP2);
  z = fmla(z, x, cstExpP3);
  z = fmla(z, x, cstExpP4);
  z = fmla(z, x, cstExpP5);
  z = fmla(z, mul(x, x), x);
  z = add(cstOne, z);

  // Convert n' to an i32.  This is safe because we clamped it above.
  auto i32Vec = broadcast(builder.getI32Type(), shape);
  Value nI32 = builder.create<arith::FPToSIOp>(i32Vec, n);

  // Creates the value 2^n' if -126 <= n' <= 127 and 0 if n' = -127.
  Value pow2 = exp2I32(builder, nI32);

  // Return z * 2^n' if -126 <= n' <= 127 and 0 if n = -127.
  Value ret = mul(z, pow2);

  rewriter.replaceOp(op, ret);
  return mlir::success();
}

} // namespace

//----------------------------------------------------------------------------//
// ExpM1 approximation.
//----------------------------------------------------------------------------//

namespace {

struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::ExpM1Op op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
                                    PatternRewriter &rewriter) const {
  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  // expm1(x) = exp(x) - 1 = u - 1.
  // We have to handle it carefully when x is near 0, i.e. u ~= 1,
  // and when the input is ~= -inf, i.e. u - 1 ~= -1.
  Value cstOne = bcast(f32Cst(builder, 1.0f));
  Value cstNegOne = bcast(f32Cst(builder, -1.0f));
  Value x = op.getOperand();
  Value u = builder.create<math::ExpOp>(x);
  Value uEqOneOrNaN =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne);
  Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
  Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
      arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
  // logU = log(u) ~= x
  Value logU = builder.create<math::LogOp>(u);

  // Detect exp(x) = +inf; written this way to avoid having to form +inf.
  Value isInf =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);

  // (u - 1) * (x / ~x)
  Value expm1 = builder.create<arith::MulFOp>(
      uMinusOne, builder.create<arith::DivFOp>(x, logU));
  expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
  Value approximation = builder.create<arith::SelectOp>(
      uEqOneOrNaN, x,
      builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
  rewriter.replaceOp(op, approximation);
  return success();
}

//----------------------------------------------------------------------------//
// Sin and Cos approximation.
//----------------------------------------------------------------------------//

namespace {

template <bool isSine, typename OpTy>
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
public:
  using OpRewritePattern<OpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
};
} // namespace

#define TWO_OVER_PI                                                            \
  0.6366197723675813430755350534900574481378385829618257949906693762L
#define PI_OVER_2                                                              \
  1.5707963267948966192313216916397514420985846996875529104874722961L

// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
template <bool isSine, typename OpTy>
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
    OpTy op, PatternRewriter &rewriter) const {
  static_assert(
      llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
      "SinAndCosApproximation pattern expects math::SinOp or math::CosOp");

  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };
  auto mul = [&](Value a, Value b) -> Value {
    return builder.create<arith::MulFOp>(a, b);
  };
  auto sub = [&](Value a, Value b) -> Value {
    return builder.create<arith::SubFOp>(a, b);
  };
  auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };

  auto i32Vec = broadcast(builder.getI32Type(), shape);
  auto fPToSingedInteger = [&](Value a) -> Value {
    return builder.create<arith::FPToSIOp>(i32Vec, a);
  };

  auto modulo4 = [&](Value a) -> Value {
    return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
  };

  auto isEqualTo = [&](Value a, Value b) -> Value {
    return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
  };

  auto isGreaterThan = [&](Value a, Value b) -> Value {
    return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
  };

  auto select = [&](Value cond, Value t, Value f) -> Value {
    return builder.create<arith::SelectOp>(cond, t, f);
  };

  auto fmla = [&](Value a, Value b, Value c) {
    return builder.create<math::FmaOp>(a, b, c);
  };

  auto bitwiseOr = [&](Value a, Value b) {
    return builder.create<arith::OrIOp>(a, b);
  };

  Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
  Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));

  Value x = op.getOperand();

  Value k = floor(mul(x, twoOverPi));

  Value y = sub(x, mul(k, piOverTwo));

  Value cstOne = bcast(f32Cst(builder, 1.0));
  Value cstNegativeOne = bcast(f32Cst(builder, -1.0));

  Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
  Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
  Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
  Value cstSC8 =
      bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
  Value cstSC10 =
      bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));

  Value cstCC2 = bcast(f32Cst(builder, -0.5f));
  Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
  Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
  Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
  Value cstCC10 =
      bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));

  Value kMod4 = modulo4(fPToSingedInteger(k));

  Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
  Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
  Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
  Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));

  Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
  Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
                               : bitwiseOr(kR1, kR2);

  Value y2 = mul(y, y);

  Value base = select(sinuseCos, cstOne, y);
  Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
  Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
  Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
  Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
  Value cstC10 = select(sinuseCos, cstCC10, cstSC10);

  Value v1 = fmla(y2, cstC10, cstC8);
  Value v2 = fmla(y2, v1, cstC6);
  Value v3 = fmla(y2, v2, cstC4);
  Value v4 = fmla(y2, v3, cstC2);
  Value v5 = fmla(y2, v4, cstOne);
  Value v6 = mul(base, v5);

  Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);

  rewriter.replaceOp(op, approximation);

  return success();
}

//----------------------------------------------------------------------------//
// Cbrt approximation.
//----------------------------------------------------------------------------//

namespace {
struct CbrtApproximation : public OpRewritePattern<math::CbrtOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::CbrtOp op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

// Estimation of cube-root using an algorithm defined in
// Hacker's Delight 2nd Edition.
LogicalResult
CbrtApproximation::matchAndRewrite(math::CbrtOp op,
                                   PatternRewriter &rewriter) const {
  auto operand = op.getOperand();
  if (!getElementTypeOrSelf(operand).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  ArrayRef<int64_t> shape = vectorShape(operand);

  Type floatTy = getElementTypeOrSelf(operand.getType());
  Type intTy = b.getIntegerType(floatTy.getIntOrFloatBitWidth());

  // Convert to vector types if necessary.
  floatTy = broadcast(floatTy, shape);
  intTy = broadcast(intTy, shape);

  auto bconst = [&](TypedAttr attr) -> Value {
    Value value = b.create<arith::ConstantOp>(attr);
    return broadcast(b, value, shape);
  };

  // Declare the initial values:
  Value intTwo = bconst(b.getI32IntegerAttr(2));
  Value intFour = bconst(b.getI32IntegerAttr(4));
  Value intEight = bconst(b.getI32IntegerAttr(8));
  Value intMagic = bconst(b.getI32IntegerAttr(0x2a5137a0));
  Value fpThird = bconst(b.getF32FloatAttr(0.33333333f));
  Value fpTwo = bconst(b.getF32FloatAttr(2.0f));
  Value fpZero = bconst(b.getF32FloatAttr(0.0f));

  // Compute an approximation of one third:
  // union {int ix; float x;};
  // x = x0;
  // ix = ix/4 + ix/16;
  Value absValue = b.create<math::AbsFOp>(operand);
  Value intValue = b.create<arith::BitcastOp>(intTy, absValue);
  Value divideBy4 = b.create<arith::ShRSIOp>(intValue, intTwo);
  Value divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
  intValue = b.create<arith::AddIOp>(divideBy4, divideBy16);

  // ix = ix + ix/16;
  divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
  intValue = b.create<arith::AddIOp>(intValue, divideBy16);

  // ix = ix + ix/256;
  Value divideBy256 = b.create<arith::ShRSIOp>(intValue, intEight);
  intValue = b.create<arith::AddIOp>(intValue, divideBy256);

  // ix = 0x2a5137a0 + ix;
  intValue = b.create<arith::AddIOp>(intValue, intMagic);

  // Perform one newtons step:
  // x = 0.33333333f*(2.0f*x + x0/(x*x));
  Value floatValue = b.create<arith::BitcastOp>(floatTy, intValue);
  Value squared = b.create<arith::MulFOp>(floatValue, floatValue);
  Value mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
  Value divSquared = b.create<arith::DivFOp>(absValue, squared);
  floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
  floatValue = b.create<arith::MulFOp>(floatValue, fpThird);

  // x = 0.33333333f*(2.0f*x + x0/(x*x));
  squared = b.create<arith::MulFOp>(floatValue, floatValue);
  mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
  divSquared = b.create<arith::DivFOp>(absValue, squared);
  floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
  floatValue = b.create<arith::MulFOp>(floatValue, fpThird);

  // Check for zero and restore sign.
  Value isZero =
      b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absValue, fpZero);
  floatValue = b.create<arith::SelectOp>(isZero, fpZero, floatValue);
  floatValue = b.create<math::CopySignOp>(floatValue, operand);

  rewriter.replaceOp(op, floatValue);
  return success();
}

//----------------------------------------------------------------------------//
// Rsqrt approximation.
//----------------------------------------------------------------------------//

namespace {
struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(math::RsqrtOp op,
                                PatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
                                    PatternRewriter &rewriter) const {
  if (!getElementTypeOrSelf(op.getOperand()).isF32())
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ArrayRef<int64_t> shape = vectorShape(op.getOperand());

  // Only support already-vectorized rsqrt's.
  if (shape.empty() || shape.back() % 8 != 0)
    return rewriter.notifyMatchFailure(op, "unsupported operand type");

  ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
  auto bcast = [&](Value value) -> Value {
    return broadcast(builder, value, shape);
  };

  Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
  Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
  Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
  Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));

  Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);

  // Select only the inverse sqrt of positive normals (denormals are
  // flushed to zero).
  Value ltMinMask = builder.create<arith::CmpFOp>(
      arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
  Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
                                                op.getOperand(), cstPosInf);
  Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);

  // Compute an approximate result.
  Value yApprox = handleMultidimensionalVectors(
      builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
        return builder.create<x86vector::RsqrtOp>(operands);
      });

  // Do a single step of Newton-Raphson iteration to improve the approximation.
  // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
  // It is essential to evaluate the inner term like this because forming
  // y_n^2 may over- or underflow.
  Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
  Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
  Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);

  // Select the result of the Newton-Raphson step for positive normal arguments.
  // For other arguments, choose the output of the intrinsic. This will
  // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
  // x is zero or a positive denormalized float (equivalent to flushing positive
  // denormalized inputs to zero).
  Value res =
      builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
  rewriter.replaceOp(op, res);

  return success();
}

//----------------------------------------------------------------------------//

void mlir::populatePolynomialApproximateTanhPattern(
    RewritePatternSet &patterns) {
  patterns.add<TanhApproximation>(patterns.getContext());
}

void mlir::populatePolynomialApproximateErfPattern(
    RewritePatternSet &patterns) {
  patterns.add<ErfPolynomialApproximation>(patterns.getContext());
}

void mlir::populateMathPolynomialApproximationPatterns(
    RewritePatternSet &patterns,
    const MathPolynomialApproximationOptions &options) {
  // Patterns for leveraging existing f32 lowerings on other data types.
  patterns
      .add<ReuseF32Expansion<math::AtanOp>, ReuseF32Expansion<math::Atan2Op>,
           ReuseF32Expansion<math::TanhOp>, ReuseF32Expansion<math::LogOp>,
           ReuseF32Expansion<math::Log2Op>, ReuseF32Expansion<math::Log1pOp>,
           ReuseF32Expansion<math::ErfOp>, ReuseF32Expansion<math::ExpOp>,
           ReuseF32Expansion<math::ExpM1Op>, ReuseF32Expansion<math::CbrtOp>,
           ReuseF32Expansion<math::SinOp>, ReuseF32Expansion<math::CosOp>>(
          patterns.getContext());

  patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
               LogApproximation, Log2Approximation, Log1pApproximation,
               ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
               CbrtApproximation, SinAndCosApproximation<true, math::SinOp>,
               SinAndCosApproximation<false, math::CosOp>>(
      patterns.getContext());
  if (options.enableAvx2) {
    patterns.add<RsqrtApproximation, ReuseF32Expansion<math::RsqrtOp>>(
        patterns.getContext());
  }
}