aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/ArmSME/Transforms/VectorLegalization.cpp
blob: 26dfb38263372b49815e02b68d0a72eb531d18a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
//===- VectorLegalization.cpp - Legalize vectors for lowering to ArmSME ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass legalizes vector operations so they can be lowered to ArmSME.
//
// Note: In the context of this pass 'tile' always refers to an SME tile.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Transforms/Passes.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/OneToNFuncConversions.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Transforms/OneToNTypeConversion.h"

#define DEBUG_TYPE "arm-sme-vector-legalization"

namespace mlir::arm_sme {
#define GEN_PASS_DEF_VECTORLEGALIZATION
#include "mlir/Dialect/ArmSME/Transforms/Passes.h.inc"
} // namespace mlir::arm_sme

using namespace mlir;
using namespace mlir::arm_sme;

namespace {

//===----------------------------------------------------------------------===//
// Decomposition of vector operations larger than an SME tile
//===----------------------------------------------------------------------===//

// Common match failure reasons.
static constexpr StringLiteral kMatchFailureNotSMETileTypeMultiple(
    "op vector size is not multiple of SME tiles");
static constexpr StringLiteral kMatchFailureUnsupportedMaskOp(
    "op mask is unsupported for legalization/decomposition");
static constexpr StringLiteral
    kMatchFailureNonPermutationMap("op affine map is not a permutation");

/// An SMESubTile represents a single SME-sized sub-tile from decomposing a
/// larger vector type. The (`row`, `col`) are the position of the tile in the
/// original vector type. For example for an [8]x[8] tile with four [4]x[4]
/// sub-tiles, we would have:
///
///           8 x vscale
/// ┌─────────────┬─────────────┐
/// │(0,0)        │(0,4)        │
/// │             │             │
/// ├─────────────┼─────────────┤ 8 x vscale
/// │(4,0)        │(4,4)        │
/// │             │             │
/// └─────────────┴─────────────┘
struct SMESubTile {
  // Note: The units of (row, col) are vscale (as SME tiles are scalable).
  int row{0};
  int col{0};
  // The SME tile type.
  VectorType type;
};

/// Adds a constant elementwise scalable offset to `indices` (which are of equal
/// length). For example, in the 2D case this would return:
// { indices[0] + offset[0] * vscale, indices[1] + offset[1] *  vscale }
SmallVector<Value, 2> addConstantScalableOffset(OpBuilder &builder,
                                                Location loc,
                                                ValueRange indices,
                                                ArrayRef<int> scalableOffsets) {
  auto vscale = builder.create<vector::VectorScaleOp>(loc);
  return llvm::map_to_vector(
      llvm::zip_equal(indices, scalableOffsets), [&](auto pair) -> Value {
        auto [index, base] = pair;
        auto offset = builder.create<arith::MulIOp>(
            loc, builder.create<arith::ConstantIndexOp>(loc, base), vscale);
        return builder.create<arith::AddIOp>(loc, index, offset);
      });
}

/// Adjusts `indices` (e.g. from a load/store) for a larger vector type to
/// indices for one of the SME sub-tiles it will decompose into.
///
/// For example, if you were to decompose an 8x8 load into four 4x4 tiles, the
/// indices for each tile would need to be adjusted as follows:
///
/// initial indices = [a,b], inital size = 8x8, target size = 4x4
/// ┌─────────────┬─────────────┐
/// │[a,b]        │[a,b+4]      │
/// │             │             │
/// ├─────────────┼─────────────┤
/// │[a+4,b]      │[a+4,b+4]    │
/// │             │             │
/// └─────────────┴─────────────┘
SmallVector<Value, 2> getSMESubTileIndices(OpBuilder &builder, Location loc,
                                           ValueRange indices,
                                           SMESubTile smeTile) {
  return addConstantScalableOffset(builder, loc, indices,
                                   {smeTile.row, smeTile.col});
}

/// Returns true if `mask` is generated by an operation that can be decomposed
/// for SME. Currently, that is just no mask, or vector.create_mask.
/// TODO: Add support for vector.constant_mask once required for SME.
bool isSupportedMaskOp(Value mask) {
  return !mask || mask.getDefiningOp<vector::CreateMaskOp>();
}

/// Extracts a mask for an SME sub-tile from the mask of a larger vector type.
Value extractSMEMask(OpBuilder &builder, Location loc, Value mask,
                     SMESubTile smeTile) {
  assert(isSupportedMaskOp(mask));
  if (!mask)
    return Value{};
  auto createMask = mask.getDefiningOp<vector::CreateMaskOp>();
  // The operands of `vector.create_mask` (from a 2D perspective) are the
  // coordinates where the mask ends. So we subtract where this tile starts,
  // from the mask operands to get the parameters for this sub-tile.
  auto smeTileMaskDims = addConstantScalableOffset(
      builder, loc, createMask.getOperands(), {-smeTile.row, -smeTile.col});
  auto smeTileCreateMask = builder.create<vector::CreateMaskOp>(
      loc, smeTile.type.clone(builder.getI1Type()), smeTileMaskDims);
  return smeTileCreateMask.getResult();
}

/// Constructs an iterator that returns each SME tile (with coordinates)
/// contained within a VectorType. For example, if decomposing an [8]x[8] into
/// [4]x[4] tiles, the iterator would yield the tiles: (0, 0), (0, 4), (4, 0),
/// (4, 4).
auto decomposeToSMETiles(OpBuilder &builder, VectorType type,
                         VectorType smeTileType,
                         bool transposeIndices = false) {
  assert(isMultipleOfSMETileVectorType(type) &&
         "`type` not multiple of SME tiles");
  return llvm::map_range(
      StaticTileOffsetRange(type.getShape(), {smeTileType.getDimSize(0),
                                              smeTileType.getDimSize(1)}),
      [=](auto indices) {
        int row = int(indices[0]);
        int col = int(indices[1]);
        if (transposeIndices)
          std::swap(row, col);
        return SMESubTile{row, col, smeTileType};
      });
}

/// Returns the number of SME tiles that fit into the (2D-scalable) vector type
/// `type`.
int getNumberOfSMETilesForVectorType(VectorType type) {
  assert(isMultipleOfSMETileVectorType(type) &&
         "`type` not multiple of SME tiles");
  int64_t vectorRows = type.getDimSize(0);
  int64_t vectorCols = type.getDimSize(1);
  auto elementType = type.getElementType();
  unsigned minNumElts = getSMETileSliceMinNumElts(elementType);
  return (vectorRows * vectorCols) / (minNumElts * minNumElts);
}

/// Legalize `vector.outerproduct` operations to fit within SME tiles by
/// decomposing them into tile-sized operations.
struct LegalizeVectorOuterProductOpsByDecomposition
    : public OneToNOpConversionPattern<vector::OuterProductOp> {
  using OneToNOpConversionPattern::OneToNOpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::OuterProductOp outerProductOp, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    auto vectorType = outerProductOp.getResultVectorType();
    if (!isMultipleOfSMETileVectorType(vectorType))
      return rewriter.notifyMatchFailure(outerProductOp,
                                         kMatchFailureNotSMETileTypeMultiple);

    Value mask;
    Operation *rootOp = outerProductOp;
    auto loc = outerProductOp.getLoc();
    if (outerProductOp.isMasked()) {
      auto maskOp = outerProductOp.getMaskingOp();
      mask = maskOp.getMask();
      rootOp = maskOp;
    }

    if (!isSupportedMaskOp(mask))
      return rewriter.notifyMatchFailure(outerProductOp,
                                         kMatchFailureUnsupportedMaskOp);

    ValueRange accSMETiles = adaptor.getAcc();
    auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
    VectorType sliceType = VectorType::Builder(smeTileType).dropDim(0);

    SmallVector<Value> resultSMETiles;
    for (auto [index, smeTile] : llvm::enumerate(
             decomposeToSMETiles(rewriter, vectorType, smeTileType))) {

      auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
      auto lhs = rewriter.create<vector::ScalableExtractOp>(
          loc, sliceType, outerProductOp.getLhs(), smeTile.row);
      auto rhs = rewriter.create<vector::ScalableExtractOp>(
          loc, sliceType, outerProductOp.getRhs(), smeTile.col);
      auto smeOuterProduct = rewriter.create<vector::OuterProductOp>(
          loc, smeTileType, lhs, rhs,
          !accSMETiles.empty() ? accSMETiles[index] : Value{},
          outerProductOp.getKind());

      auto maskedOuterProduct =
          vector::maskOperation(rewriter, smeOuterProduct, smeMask);
      resultSMETiles.push_back(maskedOuterProduct->getResult(0));
    }

    rewriter.replaceOp(rootOp, resultSMETiles, adaptor.getResultMapping());
    return success();
  }
};

// Workaround for `vector.mask`. We want to match on `vector.outerproduct` (to
// get the help of the type conversion), but doing so results in the type
// conversion adding target materializations in the `vector.mask` region
// (invalid). This pattern matches on `vector.mask` then calls into the
// `vector.outerproduct` pattern to work around this issue.
struct LegalizeMaskedVectorOuterProductOpsByDecomposition
    : public OneToNOpConversionPattern<vector::MaskOp> {
  using OneToNOpConversionPattern::OneToNOpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    if (auto outerProductOp =
            llvm::dyn_cast<vector::OuterProductOp>(maskOp.getMaskableOp())) {
      LegalizeVectorOuterProductOpsByDecomposition pattern(*getTypeConverter(),
                                                           getContext());
      return static_cast<RewritePattern &>(pattern).matchAndRewrite(
          outerProductOp, rewriter);
    }
    return failure();
  }
};

/// Legalize `vector.transfer_read` operations to fit within SME tiles by
/// decomposing them into tile-sized operations.
struct LegalizeTransferReadOpsByDecomposition
    : public OneToNOpConversionPattern<vector::TransferReadOp> {
  using OneToNOpConversionPattern::OneToNOpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::TransferReadOp readOp, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    auto vectorType = readOp.getVectorType();
    if (!isMultipleOfSMETileVectorType(vectorType))
      return rewriter.notifyMatchFailure(readOp,
                                         kMatchFailureNotSMETileTypeMultiple);

    auto mask = readOp.getMask();
    if (!isSupportedMaskOp(mask))
      return rewriter.notifyMatchFailure(readOp,
                                         kMatchFailureUnsupportedMaskOp);

    auto permutationMap = readOp.getPermutationMap();
    if (!permutationMap.isPermutation())
      return rewriter.notifyMatchFailure(readOp,
                                         kMatchFailureNonPermutationMap);

    // Note: For 2D vector types the only non-identity permutation is a simple
    // tranpose [1, 0].
    bool transposed = !permutationMap.isIdentity();

    auto loc = readOp.getLoc();
    auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());

    SmallVector<Value> resultSMETiles;
    for (SMESubTile smeTile :
         decomposeToSMETiles(rewriter, vectorType, smeTileType, transposed)) {
      auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
      auto smeRead = rewriter.create<vector::TransferReadOp>(
          loc, smeTileType, readOp.getSource(),
          getSMESubTileIndices(rewriter, loc, readOp.getIndices(), smeTile),
          readOp.getPermutationMapAttr(), readOp.getPadding(), smeMask,
          readOp.getInBoundsAttr());
      resultSMETiles.push_back(smeRead);
    }

    rewriter.replaceOp(readOp, resultSMETiles, adaptor.getResultMapping());
    return success();
  }
};

/// Legalize `vector.transfer_write` operations to fit within SME tiles by
/// decomposing them into tile-sized operations.
struct LegalizeTransferWriteOpsByDecomposition
    : public OneToNOpConversionPattern<vector::TransferWriteOp> {
  using OneToNOpConversionPattern::OneToNOpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::TransferWriteOp writeOp, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    auto vectorType = writeOp.getVectorType();
    if (!isMultipleOfSMETileVectorType(vectorType))
      return rewriter.notifyMatchFailure(writeOp,
                                         kMatchFailureNotSMETileTypeMultiple);

    auto mask = writeOp.getMask();
    if (!isSupportedMaskOp(mask))
      return rewriter.notifyMatchFailure(writeOp,
                                         kMatchFailureUnsupportedMaskOp);

    auto permutationMap = writeOp.getPermutationMap();
    if (!permutationMap.isPermutation())
      return rewriter.notifyMatchFailure(writeOp,
                                         kMatchFailureNonPermutationMap);

    // Note: For 2D vector types the only non-identity permutation is a simple
    // tranpose [1, 0].
    bool transposed = !permutationMap.isIdentity();

    auto loc = writeOp.getLoc();
    auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
    auto inputSMETiles = adaptor.getVector();

    Value destTensorOrMemref = writeOp.getSource();
    for (auto [index, smeTile] : llvm::enumerate(decomposeToSMETiles(
             rewriter, vectorType, smeTileType, transposed))) {
      auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
      auto smeWrite = rewriter.create<vector::TransferWriteOp>(
          loc, inputSMETiles[index], destTensorOrMemref,
          getSMESubTileIndices(rewriter, loc, writeOp.getIndices(), smeTile),
          writeOp.getPermutationMapAttr(), smeMask, writeOp.getInBoundsAttr());
      if (writeOp.hasPureTensorSemantics())
        destTensorOrMemref = smeWrite.getResult();
    }

    if (writeOp.hasPureTensorSemantics())
      rewriter.replaceOp(writeOp, destTensorOrMemref);
    else
      rewriter.eraseOp(writeOp);

    return success();
  }
};

//===----------------------------------------------------------------------===//
// ArmSME-specific fixup canonicalizations/folds
//===----------------------------------------------------------------------===//

/// Folds an extract from a 3D `vector.create_mask` (which is a vector of
/// SME-like masks), into a compare and a 2D `vector.create_mask`. This is
/// necessary for the mask to be lowered to ArmSME.
///
/// Example:
///
///  BEFORE:
///  ```mlir
///  %mask = vector.create_mask %nonConstantDim, %a, %b : vector<4x[4]x[4]xi1>
///  %subMask = vector.extract %mask[2]
///          : vector<[4]x[4]xi1> from vector<4x[4]x[4]xi1>
///  ```
///
///  AFTER:
///  ```mlir
///  %extractionInTrueRegion = arith.cmpi slt, %c2, %nonConstantDim : index
///  %newMaskFrontDim = arith.select %extractionInTrueRegion, %a, %c0 : index
///  %subMask = vector.create_mask %newMaskFrontDim, %b : vector<[4]x[4]xi1>
///  ```
struct FoldExtractFromVectorOfSMELikeCreateMasks
    : public OpRewritePattern<vector::ExtractOp> {
  using OpRewritePattern<vector::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
                                PatternRewriter &rewriter) const override {
    auto loc = extractOp.getLoc();
    auto createMaskOp =
        extractOp.getVector().getDefiningOp<vector::CreateMaskOp>();
    if (!createMaskOp)
      return rewriter.notifyMatchFailure(
          extractOp, "extract not from vector.create_mask op");

    VectorType extractedMaskType =
        llvm::dyn_cast<VectorType>(extractOp.getResult().getType());
    if (!extractedMaskType)
      return rewriter.notifyMatchFailure(extractOp,
                                         "extracted type is not a vector type");

    auto numScalable = llvm::count(extractedMaskType.getScalableDims(), true);
    if (numScalable != 2)
      return rewriter.notifyMatchFailure(
          extractOp, "expected extracted type to be an SME-like mask");

    // TODO: Support multiple extraction indices.
    if (extractOp.getStaticPosition().size() != 1)
      return rewriter.notifyMatchFailure(
          extractOp, "only a single extraction index is supported");

    auto frontMaskDim = createMaskOp.getOperand(0);
    if (frontMaskDim.getDefiningOp<arith::ConstantOp>())
      return rewriter.notifyMatchFailure(
          extractOp,
          "constant vector.create_masks dims should be folded elsewhere");

    auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    auto extractionIndex = getValueOrCreateConstantIndexOp(
        rewriter, loc, extractOp.getMixedPosition()[0]);
    auto extractionInTrueRegion = rewriter.create<arith::CmpIOp>(
        loc, rewriter.getI1Type(), arith::CmpIPredicate::slt, extractionIndex,
        frontMaskDim);
    auto newMaskFrontDim = rewriter.create<arith::SelectOp>(
        loc, extractionInTrueRegion, createMaskOp.getOperand(1), zero);

    rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
        extractOp, extractedMaskType,
        ValueRange{newMaskFrontDim, createMaskOp.getOperand(2)});
    return success();
  }
};

/// Lifts an illegal vector.transpose and vector.transfer_read to a
/// memref.subview + memref.transpose, followed by a legal read.
///
/// 'Illegal' here means a leading scalable dimension and a fixed trailing
/// dimension, which has no valid lowering.
///
/// The memref.transpose is metadata-only transpose that produces a strided
/// memref, which eventually becomes a loop reading individual elements.
///
/// Example:
///
///  BEFORE:
///  ```mlir
///  %illegalRead = vector.transfer_read %memref[%a, %b]
///                  : memref<?x?xf32>, vector<[8]x4xf32>
///  %legalType = vector.transpose %illegalRead, [1, 0]
///                  : vector<[8]x4xf32> to vector<4x[8]xf32>
///  ```
///
///  AFTER:
///  ```mlir
///  %readSubview = memref.subview %memref[%a, %b] [%c8_vscale, %c4] [%c1, %c1]
///                  : memref<?x?xf32> to memref<?x?xf32>
///  %transpose = memref.transpose %readSubview (d0, d1) -> (d1, d0)
///                  : memref<?x?xf32> to memref<?x?xf32>
///  %legalType = vector.transfer_read %transpose[%c0, %c0]
///                  : memref<?x?xf32>, vector<4x[8]xf32>
///  ```
struct LiftIllegalVectorTransposeToMemory
    : public OpRewritePattern<vector::TransposeOp> {
  using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;

  static bool isIllegalVectorType(VectorType vType) {
    bool seenFixedDim = false;
    for (bool scalableFlag : llvm::reverse(vType.getScalableDims())) {
      seenFixedDim |= !scalableFlag;
      if (seenFixedDim && scalableFlag)
        return true;
    }
    return false;
  }

  static Value getExtensionSource(Operation *op) {
    if (isa<arith::ExtSIOp, arith::ExtUIOp, arith::ExtFOp>(op))
      return op->getOperand(0);
    return {};
  }

  LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
                                PatternRewriter &rewriter) const override {
    auto sourceType = transposeOp.getSourceVectorType();
    auto resultType = transposeOp.getResultVectorType();
    if (!isIllegalVectorType(sourceType) || isIllegalVectorType(resultType))
      return rewriter.notifyMatchFailure(
          transposeOp, "expected transpose from illegal type to legal type");

    // Look through extend for transfer_read.
    Value maybeRead = transposeOp.getVector();
    auto *transposeSourceOp = maybeRead.getDefiningOp();
    Operation *extendOp = nullptr;
    if (Value extendSource = getExtensionSource(transposeSourceOp)) {
      maybeRead = extendSource;
      extendOp = transposeSourceOp;
    }

    auto illegalRead = maybeRead.getDefiningOp<vector::TransferReadOp>();
    if (!illegalRead)
      return rewriter.notifyMatchFailure(
          transposeOp,
          "expected source to be (possibly extended) transfer_read");

    if (!illegalRead.getPermutationMap().isIdentity())
      return rewriter.notifyMatchFailure(
          illegalRead, "expected read to have identity permutation map");

    auto loc = transposeOp.getLoc();
    auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);

    // Create a subview that matches the size of the illegal read vector type.
    auto readType = illegalRead.getVectorType();
    auto readSizes = llvm::map_to_vector(
        llvm::zip_equal(readType.getShape(), readType.getScalableDims()),
        [&](auto dim) -> Value {
          auto [size, isScalable] = dim;
          auto dimSize = rewriter.create<arith::ConstantIndexOp>(loc, size);
          if (!isScalable)
            return dimSize;
          auto vscale = rewriter.create<vector::VectorScaleOp>(loc);
          return rewriter.create<arith::MulIOp>(loc, vscale, dimSize);
        });
    SmallVector<Value> strides(readType.getRank(), Value(one));
    auto readSubview = rewriter.create<memref::SubViewOp>(
        loc, illegalRead.getSource(), illegalRead.getIndices(), readSizes,
        strides);

    // Apply the transpose to all values/attributes of the transfer_read:
    // - The mask
    Value mask = illegalRead.getMask();
    if (mask) {
      // Note: The transpose for the mask should fold into the
      // vector.create_mask/constant_mask op, which will then become legal.
      mask = rewriter.create<vector::TransposeOp>(loc, mask,
                                                  transposeOp.getPermutation());
    }
    // - The source memref
    mlir::AffineMap transposeMap = AffineMap::getPermutationMap(
        transposeOp.getPermutation(), getContext());
    auto transposedSubview = rewriter.create<memref::TransposeOp>(
        loc, readSubview, AffineMapAttr::get(transposeMap));
    ArrayAttr inBoundsAttr = illegalRead.getInBoundsAttr();
    // - The `in_bounds` attribute
    if (inBoundsAttr) {
      SmallVector<Attribute> inBoundsValues(inBoundsAttr.begin(),
                                            inBoundsAttr.end());
      applyPermutationToVector(inBoundsValues, transposeOp.getPermutation());
      inBoundsAttr = rewriter.getArrayAttr(inBoundsValues);
    }

    VectorType legalReadType = resultType.clone(readType.getElementType());
    // Note: The indices are all zero as the subview is already offset.
    SmallVector<Value> readIndices(illegalRead.getIndices().size(), zero);
    auto legalRead = rewriter.create<vector::TransferReadOp>(
        loc, legalReadType, transposedSubview, readIndices,
        illegalRead.getPermutationMapAttr(), illegalRead.getPadding(), mask,
        inBoundsAttr);

    // Replace the transpose with the new read, extending the result if
    // necessary.
    rewriter.replaceOp(transposeOp, [&]() -> Operation * {
      if (extendOp)
        return rewriter.create(loc, extendOp->getName().getIdentifier(),
                               Value(legalRead), resultType);
      return legalRead;
    }());

    return success();
  }
};

struct VectorLegalizationPass
    : public arm_sme::impl::VectorLegalizationBase<VectorLegalizationPass> {
  void runOnOperation() override {
    auto *context = &getContext();
    OneToNTypeConverter converter;
    RewritePatternSet patterns(context);
    converter.addConversion([](Type type) { return type; });
    converter.addConversion(
        [](VectorType vectorType,
           SmallVectorImpl<Type> &types) -> std::optional<LogicalResult> {
          if (!isMultipleOfSMETileVectorType(vectorType))
            return std::nullopt;
          auto smeTileCount = getNumberOfSMETilesForVectorType(vectorType);
          auto smeTileType =
              getSMETileTypeForElement(vectorType.getElementType());
          types = SmallVector<Type>(smeTileCount, smeTileType);
          return success();
        });

    patterns.add<FoldExtractFromVectorOfSMELikeCreateMasks,
                 LiftIllegalVectorTransposeToMemory>(context);
    // Note: High benefit to ensure masked outer products are lowered first.
    patterns.add<LegalizeMaskedVectorOuterProductOpsByDecomposition>(
        converter, context, 1024);
    patterns.add<LegalizeVectorOuterProductOpsByDecomposition,
                 LegalizeTransferReadOpsByDecomposition,
                 LegalizeTransferWriteOpsByDecomposition>(converter, context);
    populateFuncTypeConversionPatterns(converter, patterns);
    scf::populateSCFStructuralOneToNTypeConversions(converter, patterns);

    if (failed(applyPartialOneToNConversion(getOperation(), converter,
                                            std::move(patterns))))
      return signalPassFailure();
  }
};

} // namespace

std::unique_ptr<Pass> mlir::arm_sme::createVectorLegalizationPass() {
  return std::make_unique<VectorLegalizationPass>();
}