aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/VectorToArmSME/VectorToArmSME.cpp
blob: ee52b9ef6a6f6b5de1feaac4ce0bca9e5567b376 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
//===- VectorToArmSME.cpp - Conversion from Vector to the ArmSME dialect --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/VectorToArmSME/VectorToArmSME.h"

#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/ArmSVE/IR/ArmSVEDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/Support/Casting.h"

using namespace mlir;

namespace {

/// Conversion pattern for vector.transfer_read.
///
/// ---
///
/// Example 1: op with identity permutation map to horizontal
///            arm_sme.tile_load:
///
///   vector.transfer_read ...  permutation_map: (d0, d1) -> (d0, d1)
///
/// is converted to:
///
///   arm_sme.tile_load ...
///
/// ---
///
/// Example 2: op with transpose permutation map to vertical arm_sme.tile_load
///            (in-flight transpose):
///
///   vector.transfer_read ...  permutation_map: (d0, d1) -> (d1, d0)
///
/// is converted to:
///
///   arm_sme.tile_load ... layout<vertical>
struct TransferReadToArmSMELowering
    : public OpRewritePattern<vector::TransferReadOp> {
  using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
                                PatternRewriter &rewriter) const final {
    // The permutation map must have two results.
    if (transferReadOp.getTransferRank() != 2)
      return rewriter.notifyMatchFailure(transferReadOp,
                                         "not a 2 result permutation map");

    auto vectorType = transferReadOp.getVectorType();
    if (!arm_sme::isValidSMETileVectorType(vectorType))
      return rewriter.notifyMatchFailure(transferReadOp,
                                         "not a valid vector type for SME");

    if (!llvm::isa<MemRefType>(transferReadOp.getSource().getType()))
      return rewriter.notifyMatchFailure(transferReadOp, "not a memref source");

    // Out-of-bounds dims are not supported.
    if (transferReadOp.hasOutOfBoundsDim())
      return rewriter.notifyMatchFailure(transferReadOp,
                                         "not inbounds transfer read");

    AffineMap map = transferReadOp.getPermutationMap();
    if (!map.isPermutation())
      return rewriter.notifyMatchFailure(transferReadOp,
                                         "unsupported permutation map");

    // Note: For 2D vector types the only non-identity permutation is a simple
    // transpose [1, 0].
    bool transposed = !map.isIdentity();
    arm_sme::TileSliceLayout layout =
        transposed ? arm_sme::TileSliceLayout::Vertical
                   : arm_sme::TileSliceLayout::Horizontal;

    // Padding isn't optional for transfer_read, but is only used in the case
    // of out-of-bounds accesses (not supported here) and/or masking. Mask is
    // optional, if it's not present don't pass padding.
    auto mask = transferReadOp.getMask();
    auto padding = mask ? transferReadOp.getPadding() : nullptr;
    rewriter.replaceOpWithNewOp<arm_sme::TileLoadOp>(
        transferReadOp, vectorType, transferReadOp.getSource(),
        transferReadOp.getIndices(), padding, mask, layout);

    return success();
  }
};

/// Conversion pattern for vector.transfer_write.
///
/// ---
///
/// Example 1: op with identity permutation map to horizontal
///            arm_sme.tile_store:
///
///   vector.transfer_write %vector, %source[%c0, %c0]
///     {in_bounds = [true, true]} : vector<[16]x[16]xi8>, memref<?x?xi8>
///
/// is converted to:
///
///   arm_sme.tile_store %vector, %source[%c0, %c0] : memref<?x?xi8>,
///                                                   vector<[16]x[16]xi8>
/// ---
///
/// Example 2: op with transpose permutation map to vertical arm_sme.tile_store
///            (in-flight transpose):
///
///   vector.transfer_write %vector, %source[%c0, %c0]
///     {permutation_map = affine_map<(d0, d1) -> (d1, d0)>,
///      in_bounds = [true, true]} : vector<[16]x[16]xi8>, memref<?x?xi8>
///
/// is converted to:
///
///   arm_sme.tile_store %vector, %source[%c0, %c0] layout<vertical>
///     : memref<?x?xi8>, vector<[16]x[16]xi8>
struct TransferWriteToArmSMELowering
    : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
                                PatternRewriter &rewriter) const final {
    auto vType = writeOp.getVectorType();
    if (!arm_sme::isValidSMETileVectorType(vType))
      return failure();

    if (!llvm::isa<MemRefType>(writeOp.getSource().getType()))
      return failure();

    // Out-of-bounds dims are not supported.
    if (writeOp.hasOutOfBoundsDim())
      return rewriter.notifyMatchFailure(writeOp,
                                         "not inbounds transfer write");

    AffineMap map = writeOp.getPermutationMap();
    if (!map.isPermutation())
      return rewriter.notifyMatchFailure(writeOp,
                                         "unsupported permutation map");

    // Note: For 2D vector types the only non-identity permutation is a simple
    // transpose [1, 0].
    bool transposed = !map.isIdentity();
    arm_sme::TileSliceLayout layout =
        transposed ? arm_sme::TileSliceLayout::Vertical
                   : arm_sme::TileSliceLayout::Horizontal;

    rewriter.replaceOpWithNewOp<arm_sme::TileStoreOp>(
        writeOp, writeOp.getVector(), writeOp.getSource(), writeOp.getIndices(),
        writeOp.getMask(), layout);
    return success();
  }
};

/// Conversion pattern for vector.load.
struct VectorLoadToArmSMELowering : public OpRewritePattern<vector::LoadOp> {
  using OpRewritePattern<vector::LoadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::LoadOp load,
                                PatternRewriter &rewriter) const override {
    if (!arm_sme::isValidSMETileVectorType(load.getVectorType()))
      return failure();

    rewriter.replaceOpWithNewOp<arm_sme::TileLoadOp>(
        load, load.getVectorType(), load.getBase(), load.getIndices());

    return success();
  }
};

/// Conversion pattern for vector.store.
struct VectorStoreToArmSMELowering : public OpRewritePattern<vector::StoreOp> {
  using OpRewritePattern<vector::StoreOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::StoreOp store,
                                PatternRewriter &rewriter) const override {
    if (!arm_sme::isValidSMETileVectorType(store.getVectorType()))
      return failure();

    rewriter.replaceOpWithNewOp<arm_sme::TileStoreOp>(
        store, store.getValueToStore(), store.getBase(), store.getIndices());

    return success();
  }
};

/// Conversion pattern for vector.broadcast.
///
/// Example:
///
///   %broadcast_to_tile = vector.broadcast %src : i32 to vector<[4]x[4]xi32>
///
/// is converted to:
///
///   %broadcast_to_1d = vector.broadcast %src : i32 to vector<[4]xi32>
///   %broadcast_to_tile = scf.for %tile_slice_index = %c0 to %num_tile_slices
///       step %c1 iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>)
///   {
///     %tile_update = arm_sme.move_vector_to_tile_slice
///        %broadcast_to_1d, %iter_tile, %tile_slice_index :
///        vector<[4]xi32> into vector<[4]x[4]xi32>
///     scf.yield %tile_update : vector<[4]x[4]xi32>
///   }
///
/// Supports scalar, 0-d vector, and 1-d vector broadcasts.
struct BroadcastOpToArmSMELowering
    : public OpRewritePattern<vector::BroadcastOp> {
  using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::BroadcastOp broadcastOp,
                                PatternRewriter &rewriter) const final {
    auto tileType = broadcastOp.getResultVectorType();
    if (!tileType || !arm_sme::isValidSMETileVectorType(tileType))
      return failure();

    auto loc = broadcastOp.getLoc();

    auto srcType = broadcastOp.getSourceType();
    auto srcVectorType = dyn_cast<VectorType>(srcType);

    Value broadcastOp1D;
    if (srcType.isIntOrFloat() ||
        (srcVectorType && (srcVectorType.getRank() == 0))) {
      // Broadcast scalar or 0-d vector to 1-d vector.
      VectorType tileSliceType = VectorType::Builder(tileType).dropDim(0);
      broadcastOp1D = rewriter.create<vector::BroadcastOp>(
          loc, tileSliceType, broadcastOp.getSource());
    } else if (srcVectorType && (srcVectorType.getRank() == 1))
      // Value to broadcast is already a 1-d vector, nothing to do.
      broadcastOp1D = broadcastOp.getSource();
    else
      return failure();

    auto initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);

    auto makeLoopBody = [&](OpBuilder &b, Location loc, Value tileSliceIndex,
                            Value currentTile) {
      // Create 'arm_sme.move_vector_to_tile_slice' to broadcast the value
      // to each tile slice.
      auto nextTile = b.create<arm_sme::MoveVectorToTileSliceOp>(
          loc, tileType, broadcastOp1D, currentTile, tileSliceIndex);
      return nextTile.getResult();
    };

    // Create a loop over ZA tile slices.
    auto forOp =
        createLoopOverTileSlices(rewriter, loc, initTile, makeLoopBody);

    rewriter.replaceOp(broadcastOp, forOp.getResult(0));

    return success();
  }
};

/// Conversion pattern for vector.splat.
///
/// Example:
///
///   %splat_to_tile = vector.splat %src : i32 to vector<[4]x[4]xi32>
///
/// is converted to:
///
///   %broadcast_to_1d = vector.broadcast %src : i32 to vector<[4]xi32>
///   %broadcast_to_tile = scf.for %tile_slice_index = %c0 to %num_tile_slices
///       step %c1 iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>)
///   {
///     %tile_update = arm_sme.move_vector_to_tile_slice
///        %broadcast_to_1d, %iter_tile, %tile_slice_index :
///        vector<[4]xi32> into vector<[4]x[4]xi32>
///     scf.yield %tile_update : vector<[4]x[4]xi32>
///   }
///
/// This is identical to vector.broadcast of a scalar.
struct SplatOpToArmSMELowering : public OpRewritePattern<vector::SplatOp> {
  using OpRewritePattern<vector::SplatOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::SplatOp splatOp,
                                PatternRewriter &rewriter) const final {
    auto tileType = splatOp.getResult().getType();
    if (!tileType || !arm_sme::isValidSMETileVectorType(tileType))
      return failure();

    auto loc = splatOp.getLoc();
    auto srcType = splatOp.getOperand().getType();

    assert(srcType.isIntOrFloat() && "Invalid source type for vector.splat");
    // Avoid unused-variable warning when building without assertions.
    (void)srcType;

    // First, broadcast the scalar to a 1-d vector.
    VectorType tileSliceType = VectorType::Builder(tileType).dropDim(0);
    Value broadcastOp1D = rewriter.create<vector::BroadcastOp>(
        loc, tileSliceType, splatOp.getInput());

    auto initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);

    auto makeLoopBody = [&](OpBuilder &b, Location loc, Value tileSliceIndex,
                            Value currentTile) {
      auto nextTile = b.create<arm_sme::MoveVectorToTileSliceOp>(
          loc, tileType, broadcastOp1D, currentTile, tileSliceIndex);
      return nextTile.getResult();
    };

    // Next, create a loop over ZA tile slices and "move" the generated 1-d
    // vector to each slice.
    auto forOp =
        createLoopOverTileSlices(rewriter, loc, initTile, makeLoopBody);

    rewriter.replaceOp(splatOp, forOp.getResult(0));

    return success();
  }
};

/// Conversion pattern for vector.transpose.
///
/// Stores the input tile to memory and reloads vertically.
///
/// Example:
///
///   %transposed_src = vector.transpose %src, [1, 0]
///     : vector<[4]x[4]xi32> to vector<[4]x[4]xi32>
///
/// is converted to:
///
///   %alloca = memref.alloca(%svl_s, %svl_s) : memref<?x?xi32>
///   %arm_sme.tile_store %src, <hor>, %alloca[%c0, %c0]
///     : memref<?x?xi32>, vector<[4]x[4]xi32>
///   %transposed_src = arm_sme.tile_load %alloca[%c0, %c0]
///     layout<vertical> : memref<?x?xi32>, vector<[4]x[4]xi32>
///
/// NOTE: Tranposing via memory is obviously expensive, the current intention
/// is to avoid the transpose if possible, this is therefore intended as a
/// fallback and to provide base support for Vector ops. If it turns out
/// transposes can't be avoided then this should be replaced with a more optimal
/// implementation, perhaps with tile <-> vector (MOVA) ops.
struct TransposeOpToArmSMELowering
    : public OpRewritePattern<vector::TransposeOp> {
  using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
                                PatternRewriter &rewriter) const final {
    auto tileType = transposeOp.getResultVectorType();
    if (!tileType || !arm_sme::isValidSMETileVectorType(tileType))
      return failure();

    // Bail unless this is a true 2-D matrix transpose.
    ArrayRef<int64_t> permutation = transposeOp.getPermutation();
    if (permutation[0] != 1 || permutation[1] != 0)
      return failure();

    auto loc = transposeOp.getLoc();
    Value input = transposeOp.getVector();

    if (auto xferOp = input.getDefiningOp<vector::TransferReadOp>();
        xferOp && xferOp->hasOneUse()) {
      // Fold transpose into transfer_read to enable in-flight transpose when
      // converting to arm_sme.tile_load.
      rewriter.modifyOpInPlace(xferOp, [&]() {
        xferOp->setAttr(xferOp.getPermutationMapAttrName(),
                        AffineMapAttr::get(AffineMap::getPermutationMap(
                            permutation, transposeOp.getContext())));
      });
      rewriter.replaceOp(transposeOp, xferOp);
      return success();
    }

    // Allocate buffer to store input tile to.
    Value vscale =
        rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
    Value minTileSlices = rewriter.create<arith::ConstantOp>(
        loc, rewriter.getIndexAttr(tileType.getDimSize(0)));
    Value c0 =
        rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
    Value numTileSlices =
        rewriter.create<arith::MulIOp>(loc, vscale, minTileSlices);
    auto bufferType =
        MemRefType::get({ShapedType::kDynamic, ShapedType::kDynamic},
                        tileType.getElementType());
    auto buffer = rewriter.create<memref::AllocaOp>(
        loc, bufferType, ValueRange{numTileSlices, numTileSlices});

    // Store input tile.
    auto tileStoreOp = rewriter.create<arm_sme::TileStoreOp>(
        loc, input, buffer, ValueRange{c0, c0});

    // Reload input tile vertically.
    rewriter.replaceOpWithNewOp<arm_sme::TileLoadOp>(
        transposeOp, tileType, tileStoreOp.getBase(), tileStoreOp.getIndices(),
        arm_sme::TileSliceLayout::Vertical);

    return success();
  }
};

/// Conversion pattern for vector.outerproduct.
///
/// If the vector.outerproduct is masked (and the mask is from a
/// vector.create_mask), then the mask is decomposed into two 1-D masks for the
/// operands.
///
/// Example:
///
///   %mask = vector.create_mask %dimA, %dimB : vector<[4]x[4]xi1>
///   %result = vector.mask %mask {
///                vector.outerproduct %vecA, %vecB
///                 : vector<[4]xf32>, vector<[4]xf32>
///             } : vector<[4]x[4]xi1> -> vector<[4]x[4]xf32>
///
/// is converted to:
///
///    %maskA = vector.create_mask %dimA : vector<[4]xi1>
///    %maskB = vector.create_mask %dimB : vector<[4]xi1>
///    %result = arm_sme.outerproduct %vecA, %vecB masks(%maskA, %maskB)
///                : vector<[4]xf32>, vector<[4]xf32>
///
/// Unmasked outerproducts can be directly replaced with the arm_sme op.
///
/// Example:
///
///   %result = vector.outerproduct %vecA, %vecB
///              : vector<[4]xf32>, vector<[4]xf32>
///
/// is converted to:
///
///   %result = arm_sme.outerproduct %vecA, %vecB
///              : vector<[4]xf32>, vector<[4]xf32>
///
struct VectorOuterProductToArmSMELowering
    : public OpRewritePattern<vector::OuterProductOp> {

  using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::OuterProductOp outerProductOp,
                                PatternRewriter &rewriter) const override {

    // We don't yet support lowering AXPY operations to SME. These could be
    // lowered by masking out all but the first element of the LHS.
    if (!isa<VectorType>(outerProductOp.getOperandTypeRHS()))
      return rewriter.notifyMatchFailure(outerProductOp,
                                         "AXPY operations not supported");

    if (!arm_sme::isValidSMETileVectorType(
            outerProductOp.getResultVectorType()))
      return rewriter.notifyMatchFailure(
          outerProductOp, "outer product does not fit into SME tile");

    auto kind = outerProductOp.getKind();
    if (kind != vector::CombiningKind::ADD)
      return rewriter.notifyMatchFailure(
          outerProductOp,
          "unsupported kind (lowering to SME only supports ADD at the moment)");

    Value lhsMask = {};
    Value rhsMask = {};
    Operation *rootOp = outerProductOp;
    auto loc = outerProductOp.getLoc();
    if (outerProductOp.isMasked()) {
      auto maskOp = outerProductOp.getMaskingOp();
      rewriter.setInsertionPoint(maskOp);
      rootOp = maskOp;
      auto operandMasks = decomposeResultMask(loc, maskOp.getMask(), rewriter);
      if (failed(operandMasks))
        return failure();
      std::tie(lhsMask, rhsMask) = *operandMasks;
    }

    rewriter.replaceOpWithNewOp<arm_sme::OuterProductOp>(
        rootOp, outerProductOp.getResultVectorType(), outerProductOp.getLhs(),
        outerProductOp.getRhs(), lhsMask, rhsMask, outerProductOp.getAcc());

    return success();
  }

  static FailureOr<std::pair<Value, Value>>
  decomposeResultMask(Location loc, Value mask, PatternRewriter &rewriter) {
    // Attempt to extract masks from vector.create_mask.
    // TODO: Add support for other mask sources.
    auto createMaskOp = mask.getDefiningOp<vector::CreateMaskOp>();
    if (!createMaskOp)
      return failure();

    auto maskType = createMaskOp.getVectorType();
    Value lhsMaskDim = createMaskOp.getOperand(0);
    Value rhsMaskDim = createMaskOp.getOperand(1);

    VectorType operandMaskType = VectorType::Builder(maskType).dropDim(0);
    Value lhsMask =
        rewriter.create<vector::CreateMaskOp>(loc, operandMaskType, lhsMaskDim);
    Value rhsMask =
        rewriter.create<vector::CreateMaskOp>(loc, operandMaskType, rhsMaskDim);

    return std::make_pair(lhsMask, rhsMask);
  }
};

/// Lower `vector.extract` using `arm_sme.move_tile_slice_to_vector`.
///
/// Example:
/// ```
/// %el = vector.extract %tile[%row, %col]: i32 from vector<[4]x[4]xi32>
/// ```
/// Becomes:
/// ```
/// %slice = arm_sme.move_tile_slice_to_vector %tile[%row]
///            : vector<[4]xi32> from vector<[4]x[4]xi32>
/// %el = vector.extract %slice[%col] : i32 from vector<[4]xi32>
/// ```
struct VectorExtractToArmSMELowering
    : public OpRewritePattern<vector::ExtractOp> {
  using OpRewritePattern<vector::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
                                PatternRewriter &rewriter) const override {
    VectorType sourceType = extractOp.getSourceVectorType();
    if (!arm_sme::isValidSMETileVectorType(sourceType))
      return failure();

    auto loc = extractOp.getLoc();
    auto position = extractOp.getMixedPosition();

    Value sourceVector = extractOp.getVector();

    // Extract entire vector. Should be handled by folder, but just to be safe.
    if (position.empty()) {
      rewriter.replaceOp(extractOp, sourceVector);
      return success();
    }

    Value sliceIndex = vector::getAsValues(rewriter, loc, position[0]).front();
    auto moveTileSliceToVector =
        rewriter.create<arm_sme::MoveTileSliceToVectorOp>(loc, sourceVector,
                                                          sliceIndex);

    if (position.size() == 1) {
      // Single index case: Extracts a 1D slice.
      rewriter.replaceOp(extractOp, moveTileSliceToVector);
      return success();
    }

    // Two indices case: Extracts a single element.
    assert(position.size() == 2);
    rewriter.replaceOpWithNewOp<vector::ExtractOp>(
        extractOp, moveTileSliceToVector, position[1]);

    return success();
  }
};

/// Lower `vector.insert` using `arm_sme.move_vector_to_tile_slice` and
/// `arm_sme.move_tile_slice_to_vector`.
///
/// Example:
/// ```
/// %new_tile = vector.insert %el, %tile[%row, %col]
///                     : i32 into vector<[4]x[4]xi32>
/// ```
/// Becomes:
/// ```
/// %slice = arm_sme.move_tile_slice_to_vector %tile[%row]
///            : vector<[4]xi32> from vector<[4]x[4]xi32>
/// %new_slice = vector.insert %el, %slice[%col] : i32 into vector<[4]xi32>
/// %new_tile = arm_sme.move_vector_to_tile_slice %new_slice, %tile, %row
///               : vector<[4]xi32> into vector<[4]x[4]xi32>
/// ```
struct VectorInsertToArmSMELowering
    : public OpRewritePattern<vector::InsertOp> {
  using OpRewritePattern<vector::InsertOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::InsertOp insertOp,
                                PatternRewriter &rewriter) const override {
    VectorType resultType = insertOp.getResult().getType();

    if (!arm_sme::isValidSMETileVectorType(resultType))
      return failure();

    auto loc = insertOp.getLoc();
    auto position = insertOp.getMixedPosition();

    Value source = insertOp.getSource();

    // Overwrite entire vector with value. Should be handled by folder, but
    // just to be safe.
    if (position.empty()) {
      rewriter.replaceOp(insertOp, source);
      return success();
    }

    Value tileSlice = source;
    Value sliceIndex = vector::getAsValues(rewriter, loc, position[0]).front();
    if (position.size() == 2) {
      // Two indices case: Insert single element into tile.
      // We need to first extract the existing slice and update the element.
      tileSlice = rewriter.create<arm_sme::MoveTileSliceToVectorOp>(
          loc, insertOp.getDest(), sliceIndex);
      tileSlice = rewriter.create<vector::InsertOp>(loc, source, tileSlice,
                                                    position[1]);
    }

    // Insert the slice into the destination tile.
    rewriter.replaceOpWithNewOp<arm_sme::MoveVectorToTileSliceOp>(
        insertOp, tileSlice, insertOp.getDest(), sliceIndex);
    return success();
  }
};

/// Lowers `vector.print` of a tile into a loop over the rows of the tile,
/// extracting them via `arm_sme.move_tile_slice_to_vector`, then printing with
/// a 1D `vector.print`.
///
///  BEFORE:
///  ```mlir
///  vector.print %tile : vector<[4]x[4]xf32>
///  ```
///  AFTER:
///  ```mlir
///  %c0 = arith.constant 0 : index
///  %c1 = arith.constant 1 : index
///  %c4 = arith.constant 4 : index
///  %vscale = vector.vscale
///  %svl_s = arith.muli %c4, %vscale : index
///  scf.for %i = %c0 to %svl_s step %c1 {
///    %tile_slice = arm_sme.move_tile_slice_to_vector %tile[%i]
///                     : vector<[4]xf32> from vector<[4]x[4]xf32>
///    vector.print %tile_slice : vector<[4]xf32>
///  }
///  ```
struct VectorPrintToArmSMELowering : public OpRewritePattern<vector::PrintOp> {
  using OpRewritePattern<vector::PrintOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::PrintOp printOp,
                                PatternRewriter &rewriter) const override {
    if (!printOp.getSource())
      return failure();

    VectorType vectorType = dyn_cast<VectorType>(printOp.getPrintType());
    if (!vectorType || !arm_sme::isValidSMETileVectorType(vectorType))
      return failure();

    auto loc = printOp.getLoc();

    // Create a loop over the rows of the tile.
    auto vscale = rewriter.create<vector::VectorScaleOp>(loc);
    auto minTileRows =
        rewriter.create<arith::ConstantIndexOp>(loc, vectorType.getDimSize(0));
    auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    auto upperBound = rewriter.create<arith::MulIOp>(loc, minTileRows, vscale);
    auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
    auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step);
    {
      // Loop body.
      rewriter.setInsertionPointToStart(forOp.getBody());
      // Extract the current row from the tile.
      Value rowIndex = forOp.getInductionVar();
      auto tileSlice = rewriter.create<arm_sme::MoveTileSliceToVectorOp>(
          loc, printOp.getSource(), rowIndex);
      // Print the row with a 1D vector.print.
      rewriter.create<vector::PrintOp>(loc, tileSlice,
                                       printOp.getPunctuation());
    }

    rewriter.eraseOp(printOp);
    return success();
  }
};

/// Folds a MoveTileSliceToVectorOp + TransferWriteOp to a StoreTileSliceOp.
///
///  BEFORE:
///  ```mlir
///  %slice = arm_sme.move_tile_slice_to_vector %tile[%index]
///             : vector<[4]xf32> from vector<[4]x[4]xf32>
///  vector.transfer_write %slice, %memref[%i, %j], %mask {in_bounds = [true]}
///             : vector<[4]xf32>, memref<?x?xf32>
///  ```
///  AFTER:
///  ```mlir
///  arm_sme.store_tile_slice %tile, %index, %mask, %memref[%i, %j]
///             : memref<?x?xf32>, vector<[4]xi1>, vector<[4]x[4]xf32>
///  ```
struct FoldTransferWriteOfExtractTileSlice
    : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
                                PatternRewriter &rewriter) const final {
    if (!isa<MemRefType>(writeOp.getSource().getType()))
      return rewriter.notifyMatchFailure(writeOp, "destination not a memref");

    if (writeOp.hasOutOfBoundsDim())
      return rewriter.notifyMatchFailure(writeOp,
                                         "not inbounds transfer write");

    auto moveTileSlice =
        writeOp.getVector().getDefiningOp<arm_sme::MoveTileSliceToVectorOp>();
    if (!moveTileSlice)
      return rewriter.notifyMatchFailure(
          writeOp, "vector to store not from MoveTileSliceToVectorOp");

    AffineMap map = writeOp.getPermutationMap();
    if (!map.isMinorIdentity())
      return rewriter.notifyMatchFailure(writeOp,
                                         "unsupported permutation map");

    Value mask = writeOp.getMask();
    if (!mask) {
      auto maskType = writeOp.getVectorType().clone(rewriter.getI1Type());
      mask = rewriter.create<arith::ConstantOp>(
          writeOp.getLoc(), maskType, DenseElementsAttr::get(maskType, true));
    }

    rewriter.replaceOpWithNewOp<arm_sme::StoreTileSliceOp>(
        writeOp, moveTileSlice.getTile(), moveTileSlice.getTileSliceIndex(),
        mask, writeOp.getSource(), writeOp.getIndices(),
        moveTileSlice.getLayout());
    return success();
  }
};

/// Lower a `vector.extract` from a 2-D scalable `vector.create_mask` to
/// `arm_sve.psel`. Note: While psel is under ArmSVE it requires SME (or
/// SVE 2.1), so this is currently the most logical place for this lowering.
///
/// Example:
/// ```mlir
/// %mask = vector.create_mask %a, %b : vector<[4]x[8]xi1>
/// %slice = vector.extract %mask[%index]
///            : vector<[8]xi1> from vector<[4]x[8]xi1>
/// ```
/// Becomes:
/// ```
/// %mask_rows = vector.create_mask %a : vector<[4]xi1>
/// %mask_cols = vector.create_mask %b : vector<[8]xi1>
/// %slice = arm_sve.psel %mask_cols, %mask_rows[%index]
///            : vector<[8]xi1>, vector<[4]xi1>
/// ```
struct ExtractFromCreateMaskToPselLowering
    : public OpRewritePattern<vector::ExtractOp> {
  using OpRewritePattern<vector::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
                                PatternRewriter &rewriter) const override {
    if (extractOp.getNumIndices() != 1)
      return rewriter.notifyMatchFailure(extractOp, "not single extract index");

    auto resultType = extractOp.getResult().getType();
    auto resultVectorType = dyn_cast<VectorType>(resultType);
    if (!resultVectorType)
      return rewriter.notifyMatchFailure(extractOp, "result not VectorType");

    auto createMaskOp =
        extractOp.getVector().getDefiningOp<vector::CreateMaskOp>();
    if (!createMaskOp)
      return rewriter.notifyMatchFailure(extractOp, "source not CreateMaskOp");

    auto maskType = createMaskOp.getVectorType();
    if (maskType.getRank() != 2 || !maskType.allDimsScalable())
      return rewriter.notifyMatchFailure(createMaskOp, "not 2-D scalable mask");

    auto isSVEPredicateSize = [](int64_t size) {
      return size > 0 && size <= 16 && llvm::isPowerOf2_32(uint32_t(size));
    };

    auto rowsBaseSize = maskType.getDimSize(0);
    auto colsBaseSize = maskType.getDimSize(1);
    if (!isSVEPredicateSize(rowsBaseSize) || !isSVEPredicateSize(colsBaseSize))
      return rewriter.notifyMatchFailure(
          createMaskOp, "mask dimensions not SVE predicate-sized");

    auto loc = extractOp.getLoc();
    VectorType rowMaskType = VectorType::Builder(maskType).dropDim(1);
    VectorType colMaskType = VectorType::Builder(maskType).dropDim(0);

    // Create the two 1-D masks at the location of the 2-D create_mask (which is
    // usually outside a loop). This prevents the need for later hoisting.
    rewriter.setInsertionPoint(createMaskOp);
    auto rowMask = rewriter.create<vector::CreateMaskOp>(
        loc, rowMaskType, createMaskOp.getOperand(0));
    auto colMask = rewriter.create<vector::CreateMaskOp>(
        loc, colMaskType, createMaskOp.getOperand(1));

    rewriter.setInsertionPoint(extractOp);
    auto position =
        vector::getAsValues(rewriter, loc, extractOp.getMixedPosition());
    rewriter.replaceOpWithNewOp<arm_sve::PselOp>(extractOp, colMask, rowMask,
                                                 position[0]);
    return success();
  }
};

} // namespace

void mlir::populateVectorToArmSMEPatterns(RewritePatternSet &patterns,
                                          MLIRContext &ctx) {
  patterns.add<BroadcastOpToArmSMELowering, SplatOpToArmSMELowering,
               TransferReadToArmSMELowering, TransferWriteToArmSMELowering,
               TransposeOpToArmSMELowering, VectorLoadToArmSMELowering,
               VectorStoreToArmSMELowering, VectorOuterProductToArmSMELowering,
               VectorExtractToArmSMELowering, VectorInsertToArmSMELowering,
               VectorPrintToArmSMELowering, FoldTransferWriteOfExtractTileSlice,
               ExtractFromCreateMaskToPselLowering>(&ctx);
}