aboutsummaryrefslogtreecommitdiff
path: root/mlir/include/mlir/Dialect/SparseTensor/IR/Enums.h
blob: 1c81d80ea7ec4eaefd40ec6ad0eb06e2a2454bdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
//===- Enums.h - Enums for the SparseTensor dialect -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Typedefs and enums shared between MLIR code for manipulating the
// IR, and the lightweight runtime support library for sparse tensor
// manipulations.  That is, all the enums are used to define the API
// of the runtime library and hence are also needed when generating
// calls into the runtime library.  Moveover, the `LevelType` enum
// is also used as the internal IR encoding of dimension level types,
// to avoid code duplication (e.g., for the predicates).
//
// This file also defines x-macros <https://en.wikipedia.org/wiki/X_Macro>
// so that we can generate variations of the public functions for each
// supported primary- and/or overhead-type.
//
// Because this file defines a library which is a dependency of the
// runtime library itself, this file must not depend on any MLIR internals
// (e.g., operators, attributes, ArrayRefs, etc) lest the runtime library
// inherit those dependencies.
//
//===----------------------------------------------------------------------===//

#ifndef MLIR_DIALECT_SPARSETENSOR_IR_ENUMS_H
#define MLIR_DIALECT_SPARSETENSOR_IR_ENUMS_H

// NOTE: Client code will need to include "mlir/ExecutionEngine/Float16bits.h"
// if they want to use the `MLIR_SPARSETENSOR_FOREVERY_V` macro.

#include <cassert>
#include <cinttypes>
#include <complex>
#include <optional>
#include <vector>

namespace mlir {
namespace sparse_tensor {

/// This type is used in the public API at all places where MLIR expects
/// values with the built-in type "index".  For now, we simply assume that
/// type is 64-bit, but targets with different "index" bitwidths should
/// link with an alternatively built runtime support library.
using index_type = uint64_t;

/// Encoding of overhead types (both position overhead and coordinate
/// overhead), for "overloading" @newSparseTensor.
enum class OverheadType : uint32_t {
  kIndex = 0,
  kU64 = 1,
  kU32 = 2,
  kU16 = 3,
  kU8 = 4
};

// This x-macro calls its argument on every overhead type which has
// fixed-width.  It excludes `index_type` because that type is often
// handled specially (e.g., by translating it into the architecture-dependent
// equivalent fixed-width overhead type).
#define MLIR_SPARSETENSOR_FOREVERY_FIXED_O(DO)                                 \
  DO(64, uint64_t)                                                             \
  DO(32, uint32_t)                                                             \
  DO(16, uint16_t)                                                             \
  DO(8, uint8_t)

// This x-macro calls its argument on every overhead type, including
// `index_type`.
#define MLIR_SPARSETENSOR_FOREVERY_O(DO)                                       \
  MLIR_SPARSETENSOR_FOREVERY_FIXED_O(DO)                                       \
  DO(0, index_type)

// These are not just shorthands but indicate the particular
// implementation used (e.g., as opposed to C99's `complex double`,
// or MLIR's `ComplexType`).
using complex64 = std::complex<double>;
using complex32 = std::complex<float>;

/// Encoding of the elemental type, for "overloading" @newSparseTensor.
enum class PrimaryType : uint32_t {
  kF64 = 1,
  kF32 = 2,
  kF16 = 3,
  kBF16 = 4,
  kI64 = 5,
  kI32 = 6,
  kI16 = 7,
  kI8 = 8,
  kC64 = 9,
  kC32 = 10
};

// This x-macro includes all `V` types.
#define MLIR_SPARSETENSOR_FOREVERY_V(DO)                                       \
  DO(F64, double)                                                              \
  DO(F32, float)                                                               \
  DO(F16, f16)                                                                 \
  DO(BF16, bf16)                                                               \
  DO(I64, int64_t)                                                             \
  DO(I32, int32_t)                                                             \
  DO(I16, int16_t)                                                             \
  DO(I8, int8_t)                                                               \
  DO(C64, complex64)                                                           \
  DO(C32, complex32)

// This x-macro includes all `V` types and supports variadic arguments.
#define MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, ...)                              \
  DO(F64, double, __VA_ARGS__)                                                 \
  DO(F32, float, __VA_ARGS__)                                                  \
  DO(F16, f16, __VA_ARGS__)                                                    \
  DO(BF16, bf16, __VA_ARGS__)                                                  \
  DO(I64, int64_t, __VA_ARGS__)                                                \
  DO(I32, int32_t, __VA_ARGS__)                                                \
  DO(I16, int16_t, __VA_ARGS__)                                                \
  DO(I8, int8_t, __VA_ARGS__)                                                  \
  DO(C64, complex64, __VA_ARGS__)                                              \
  DO(C32, complex32, __VA_ARGS__)

// This x-macro calls its argument on every pair of overhead and `V` types.
#define MLIR_SPARSETENSOR_FOREVERY_V_O(DO)                                     \
  MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, 64, uint64_t)                           \
  MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, 32, uint32_t)                           \
  MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, 16, uint16_t)                           \
  MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, 8, uint8_t)                             \
  MLIR_SPARSETENSOR_FOREVERY_V_VAR(DO, 0, index_type)

constexpr bool isFloatingPrimaryType(PrimaryType valTy) {
  return PrimaryType::kF64 <= valTy && valTy <= PrimaryType::kBF16;
}

constexpr bool isIntegralPrimaryType(PrimaryType valTy) {
  return PrimaryType::kI64 <= valTy && valTy <= PrimaryType::kI8;
}

constexpr bool isRealPrimaryType(PrimaryType valTy) {
  return PrimaryType::kF64 <= valTy && valTy <= PrimaryType::kI8;
}

constexpr bool isComplexPrimaryType(PrimaryType valTy) {
  return PrimaryType::kC64 <= valTy && valTy <= PrimaryType::kC32;
}

/// The actions performed by @newSparseTensor.
enum class Action : uint32_t {
  kEmpty = 0,
  kFromReader = 1,
  kPack = 2,
  kSortCOOInPlace = 3,
};

/// This enum defines all supported storage format without the level properties.
enum class LevelFormat : uint64_t {
  Undef = 0x00000000,
  Dense = 0x00010000,
  Compressed = 0x00020000,
  Singleton = 0x00040000,
  LooseCompressed = 0x00080000,
  NOutOfM = 0x00100000,
};

template <LevelFormat... targets>
constexpr bool isAnyOfFmt(LevelFormat fmt) {
  return (... || (targets == fmt));
}

/// Returns string representation of the given level format.
constexpr const char *toFormatString(LevelFormat lvlFmt) {
  switch (lvlFmt) {
  case LevelFormat::Undef:
    return "undef";
  case LevelFormat::Dense:
    return "dense";
  case LevelFormat::Compressed:
    return "compressed";
  case LevelFormat::Singleton:
    return "singleton";
  case LevelFormat::LooseCompressed:
    return "loose_compressed";
  case LevelFormat::NOutOfM:
    return "structured";
  }
  return "";
}

/// This enum defines all the nondefault properties for storage formats.
enum class LevelPropNonDefault : uint64_t {
  Nonunique = 0x0001,  // 0b001
  Nonordered = 0x0002, // 0b010
  SoA = 0x0004,        // 0b100
};

/// Returns string representation of the given level properties.
constexpr const char *toPropString(LevelPropNonDefault lvlProp) {
  switch (lvlProp) {
  case LevelPropNonDefault::Nonunique:
    return "nonunique";
  case LevelPropNonDefault::Nonordered:
    return "nonordered";
  case LevelPropNonDefault::SoA:
    return "soa";
  }
  return "";
}

/// This enum defines all the sparse representations supportable by
/// the SparseTensor dialect. We use a lightweight encoding to encode
/// the "format" per se (dense, compressed, singleton, loose_compressed,
/// n-out-of-m), the "properties" (ordered, unique) as well as n and m when
/// the format is NOutOfM.
/// The encoding is chosen for performance of the runtime library, and thus may
/// change in future versions; consequently, client code should use the
/// predicate functions defined below, rather than relying on knowledge
/// about the particular binary encoding.
///
/// The `Undef` "format" is a special value used internally for cases
/// where we need to store an undefined or indeterminate `LevelType`.
/// It should not be used externally, since it does not indicate an
/// actual/representable format.

struct LevelType {
public:
  /// Check that the `LevelType` contains a valid (possibly undefined) value.
  static constexpr bool isValidLvlBits(uint64_t lvlBits) {
    auto fmt = static_cast<LevelFormat>(lvlBits & 0xffff0000);
    const uint64_t propertyBits = lvlBits & 0xffff;
    // If undefined/dense/NOutOfM, then must be unique and ordered.
    // Otherwise, the format must be one of the known ones.
    return (isAnyOfFmt<LevelFormat::Undef, LevelFormat::Dense,
                       LevelFormat::NOutOfM>(fmt))
               ? (propertyBits == 0)
               : (isAnyOfFmt<LevelFormat::Compressed, LevelFormat::Singleton,
                             LevelFormat::LooseCompressed>(fmt));
  }

  /// Convert a LevelFormat to its corresponding LevelType with the given
  /// properties. Returns std::nullopt when the properties are not applicable
  /// for the input level format.
  static std::optional<LevelType>
  buildLvlType(LevelFormat lf,
               const std::vector<LevelPropNonDefault> &properties,
               uint64_t n = 0, uint64_t m = 0) {
    assert((n & 0xff) == n && (m & 0xff) == m);
    uint64_t newN = n << 32;
    uint64_t newM = m << 40;
    uint64_t ltBits = static_cast<uint64_t>(lf) | newN | newM;
    for (auto p : properties)
      ltBits |= static_cast<uint64_t>(p);

    return isValidLvlBits(ltBits) ? std::optional(LevelType(ltBits))
                                  : std::nullopt;
  }
  static std::optional<LevelType> buildLvlType(LevelFormat lf, bool ordered,
                                               bool unique, uint64_t n = 0,
                                               uint64_t m = 0) {
    std::vector<LevelPropNonDefault> properties;
    if (!ordered)
      properties.push_back(LevelPropNonDefault::Nonordered);
    if (!unique)
      properties.push_back(LevelPropNonDefault::Nonunique);
    return buildLvlType(lf, properties, n, m);
  }

  /// Explicit conversion from uint64_t.
  constexpr explicit LevelType(uint64_t bits) : lvlBits(bits) {
    assert(isValidLvlBits(bits));
  };

  /// Constructs a LevelType with the given format using all default properties.
  /*implicit*/ LevelType(LevelFormat f) : lvlBits(static_cast<uint64_t>(f)) {
    assert(isValidLvlBits(lvlBits) && !isa<LevelFormat::NOutOfM>());
  };

  /// Converts to uint64_t
  explicit operator uint64_t() const { return lvlBits; }

  bool operator==(const LevelType lhs) const {
    return static_cast<uint64_t>(lhs) == lvlBits;
  }
  bool operator!=(const LevelType lhs) const { return !(*this == lhs); }

  LevelType stripStorageIrrelevantProperties() const {
    // Properties other than `SoA` do not change the storage scheme of the
    // sparse tensor.
    constexpr uint64_t mask =
        0xffff & ~static_cast<uint64_t>(LevelPropNonDefault::SoA);
    return LevelType(lvlBits & ~mask);
  }

  /// Get N of NOutOfM level type.
  constexpr uint64_t getN() const {
    assert(isa<LevelFormat::NOutOfM>());
    return (lvlBits >> 32) & 0xff;
  }

  /// Get M of NOutOfM level type.
  constexpr uint64_t getM() const {
    assert(isa<LevelFormat::NOutOfM>());
    return (lvlBits >> 40) & 0xff;
  }

  /// Get the `LevelFormat` of the `LevelType`.
  constexpr LevelFormat getLvlFmt() const {
    return static_cast<LevelFormat>(lvlBits & 0xffff0000);
  }

  /// Check if the `LevelType` is in the `LevelFormat`.
  template <LevelFormat... fmt>
  constexpr bool isa() const {
    return (... || (getLvlFmt() == fmt)) || false;
  }

  /// Check if the `LevelType` has the properties
  template <LevelPropNonDefault p>
  constexpr bool isa() const {
    return lvlBits & static_cast<uint64_t>(p);
  }

  /// Check if the `LevelType` needs positions array.
  constexpr bool isWithPosLT() const {
    return isa<LevelFormat::Compressed>() ||
           isa<LevelFormat::LooseCompressed>();
  }

  /// Check if the `LevelType` needs coordinates array.
  constexpr bool isWithCrdLT() const {
    // All sparse levels has coordinate array.
    return !isa<LevelFormat::Dense>();
  }

  std::string toMLIRString() const {
    std::string lvlStr = toFormatString(getLvlFmt());
    std::string propStr = "";
    if (isa<LevelPropNonDefault::Nonunique>())
      propStr += toPropString(LevelPropNonDefault::Nonunique);

    if (isa<LevelPropNonDefault::Nonordered>()) {
      if (!propStr.empty())
        propStr += ", ";
      propStr += toPropString(LevelPropNonDefault::Nonordered);
    }
    if (isa<LevelPropNonDefault::SoA>()) {
      if (!propStr.empty())
        propStr += ", ";
      propStr += toPropString(LevelPropNonDefault::SoA);
    }
    if (!propStr.empty())
      lvlStr += ("(" + propStr + ")");
    return lvlStr;
  }

private:
  /// Bit manipulations for LevelType:
  ///
  /// | 8-bit n | 8-bit m | 16-bit LevelFormat | 16-bit LevelProperty |
  ///
  uint64_t lvlBits;
};

// For backward-compatibility. TODO: remove below after fully migration.
constexpr uint64_t nToBits(uint64_t n) { return n << 32; }
constexpr uint64_t mToBits(uint64_t m) { return m << 40; }

inline std::optional<LevelType>
buildLevelType(LevelFormat lf,
               const std::vector<LevelPropNonDefault> &properties,
               uint64_t n = 0, uint64_t m = 0) {
  return LevelType::buildLvlType(lf, properties, n, m);
}
inline std::optional<LevelType> buildLevelType(LevelFormat lf, bool ordered,
                                               bool unique, uint64_t n = 0,
                                               uint64_t m = 0) {
  return LevelType::buildLvlType(lf, ordered, unique, n, m);
}
inline bool isUndefLT(LevelType lt) { return lt.isa<LevelFormat::Undef>(); }
inline bool isDenseLT(LevelType lt) { return lt.isa<LevelFormat::Dense>(); }
inline bool isCompressedLT(LevelType lt) {
  return lt.isa<LevelFormat::Compressed>();
}
inline bool isLooseCompressedLT(LevelType lt) {
  return lt.isa<LevelFormat::LooseCompressed>();
}
inline bool isSingletonLT(LevelType lt) {
  return lt.isa<LevelFormat::Singleton>();
}
inline bool isNOutOfMLT(LevelType lt) { return lt.isa<LevelFormat::NOutOfM>(); }
inline bool isOrderedLT(LevelType lt) {
  return !lt.isa<LevelPropNonDefault::Nonordered>();
}
inline bool isUniqueLT(LevelType lt) {
  return !lt.isa<LevelPropNonDefault::Nonunique>();
}
inline bool isWithCrdLT(LevelType lt) { return lt.isWithCrdLT(); }
inline bool isWithPosLT(LevelType lt) { return lt.isWithPosLT(); }
inline bool isValidLT(LevelType lt) {
  return LevelType::isValidLvlBits(static_cast<uint64_t>(lt));
}
inline std::optional<LevelFormat> getLevelFormat(LevelType lt) {
  LevelFormat fmt = lt.getLvlFmt();
  if (fmt == LevelFormat::Undef)
    return std::nullopt;
  return fmt;
}
inline uint64_t getN(LevelType lt) { return lt.getN(); }
inline uint64_t getM(LevelType lt) { return lt.getM(); }
inline bool isValidNOutOfMLT(LevelType lt, uint64_t n, uint64_t m) {
  return isNOutOfMLT(lt) && lt.getN() == n && lt.getM() == m;
}
inline std::string toMLIRString(LevelType lt) { return lt.toMLIRString(); }

/// Bit manipulations for affine encoding.
///
/// Note that because the indices in the mappings refer to dimensions
/// and levels (and *not* the sizes of these dimensions and levels), the
/// 64-bit encoding gives ample room for a compact encoding of affine
/// operations in the higher bits. Pure permutations still allow for
/// 60-bit indices. But non-permutations reserve 20-bits for the
/// potential three components (index i, constant, index ii).
///
/// The compact encoding is as follows:
///
///  0xffffffffffffffff
/// |0000      |                        60-bit idx| e.g. i
/// |0001 floor|           20-bit const|20-bit idx| e.g. i floor c
/// |0010 mod  |           20-bit const|20-bit idx| e.g. i mod c
/// |0011 mul  |20-bit idx|20-bit const|20-bit idx| e.g. i + c * ii
///
/// This encoding provides sufficient generality for currently supported
/// sparse tensor types. To generalize this more, we will need to provide
/// a broader encoding scheme for affine functions. Also, the library
/// encoding may be replaced with pure "direct-IR" code in the future.
///
constexpr uint64_t encodeDim(uint64_t i, uint64_t cf, uint64_t cm) {
  if (cf != 0) {
    assert(cf <= 0xfffffu && cm == 0 && i <= 0xfffffu);
    return (static_cast<uint64_t>(0x01u) << 60) | (cf << 20) | i;
  }
  if (cm != 0) {
    assert(cm <= 0xfffffu && i <= 0xfffffu);
    return (static_cast<uint64_t>(0x02u) << 60) | (cm << 20) | i;
  }
  assert(i <= 0x0fffffffffffffffu);
  return i;
}
constexpr uint64_t encodeLvl(uint64_t i, uint64_t c, uint64_t ii) {
  if (c != 0) {
    assert(c <= 0xfffffu && ii <= 0xfffffu && i <= 0xfffffu);
    return (static_cast<uint64_t>(0x03u) << 60) | (c << 20) | (ii << 40) | i;
  }
  assert(i <= 0x0fffffffffffffffu);
  return i;
}
constexpr bool isEncodedFloor(uint64_t v) { return (v >> 60) == 0x01u; }
constexpr bool isEncodedMod(uint64_t v) { return (v >> 60) == 0x02u; }
constexpr bool isEncodedMul(uint64_t v) { return (v >> 60) == 0x03u; }
constexpr uint64_t decodeIndex(uint64_t v) { return v & 0xfffffu; }
constexpr uint64_t decodeConst(uint64_t v) { return (v >> 20) & 0xfffffu; }
constexpr uint64_t decodeMulc(uint64_t v) { return (v >> 20) & 0xfffffu; }
constexpr uint64_t decodeMuli(uint64_t v) { return (v >> 40) & 0xfffffu; }

} // namespace sparse_tensor
} // namespace mlir

#endif // MLIR_DIALECT_SPARSETENSOR_IR_ENUMS_H