aboutsummaryrefslogtreecommitdiff
path: root/llvm/utils/TableGen/jupyter/sql_query_backend.md
blob: fda1b56c99839d8f1583a5a9855d22367abf1541 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# Writing a TableGen Backend in Python

This tutorial is going to walk through creating a TableGen backend using Python.

We are using Python to better fit into a notebook, but backends in LLVM are written in C++. The principles you learn here will still apply and you could port this tutorial to any language that has a JSON parser.

This is the process in LLVM, using a C++ backend:
```
TableGen source -> llvm-tblgen -> backend (within llvm-tblgen) -> results
```
This is what we will be doing:
```
TableGen source -> llvm-tblgen -> JSON -> Python -> results
```

The backend here is ported from one of several in "SQLGen" which was written by Min-Yih Hsu.
* SQLGen C++ sources - https://github.com/mshockwave/SQLGen
* LLVM dev presentation - https://www.youtube.com/watch?v=UP-LBRbvI_U

I encourage you to use those resources to supplement this notebook.

## Compiling TableGen

Unlike the other tutorial notebooks we are not using the TableGen kernel. This is an iPython notebook and we're going to run `llvm-tblgen` as a subprocess.

First let's find it, in the same way the TableGen kernel does.


```python
import os
import shutil

def find_tblgen():
    path = os.environ.get("LLVM_TBLGEN_EXECUTABLE")
    if path is not None and os.path.isfile(path) and os.access(path, os.X_OK):
        return path
    else:
        path = shutil.which("llvm-tblgen")
        if path is None:
            raise OSError("llvm-tblgen not found")
        return path
    
_ = find_tblgen()
```

If the above cell raises an exception, either put `llvm-tblgen` on your `PATH` or point to it using the `LLVM_TBLGEN_EXECUTABLE` environment variable. Alternatively, edit the code to use whatever path you want.

Then we need to compile some TableGen by passing it to `llvm-tblgen`'s stdin. We will be using the option `--dump-json` and returning the JSON as a Python dictionary if the compilation succeeds. If it fails, we raise an exception.


```python
import subprocess
import tempfile
import json

def run_tblgen(src):
    # Passing to stdin requires a file like object.
    with tempfile.TemporaryFile("w+") as f:
        f.write(src)
        f.seek(0)
        got = subprocess.run(
            [find_tblgen(), "--dump-json"],
            stdin=f,
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            universal_newlines=True,
        )
    
    if got.stderr:
        raise RuntimeError("llvm-tblgen failed with stderr: " + got.stderr)
    
    return json.loads(got.stdout)
    
print(json.dumps(run_tblgen("class Foo {}"), indent=4))
```

    {
        "!instanceof": {
            "Foo": []
        },
        "!tablegen_json_version": 1
    }


## Structure of a SQL Query

This backend is going to generate SQL queries. The general form of a SQL query is:
```
SELECT <some field names> FROM <table name>
 WHERE <conditions>
 ORDER BY <field tags>;
```

## SQL Query TableGen


```python
query_tblgen = """\
def all;
def fields;
def none;

def eq;
def ne;
def gt;
def ge;
def and;
def or;
"""
```

Normally you'd write this to a `.td` file but here we have it in a Python string to fit into this notebook. We will add to this string to produce the final source.

This section defines some constants. First are the fields we want to get back from the query:
* `all` - Return all fields.
* `fields` - Means that we will provide a list of fields we are interested in.

The second set are the logical operators for what will become the `WHERE` clause (called `condition` in the TableGen). These are string versions of various symbols. For example `ne` means `!=`, which in SQL is `<>`.

Finally `none` is used to mean there is no condition to the query (no `WHERE`).


```python
query_tblgen += """\
class Query <string table, dag query_fields = (all), dag condition = (none)> {
  string TableName = table;
  dag Fields = query_fields;
  dag WhereClause = condition;
  list<string> OrderedBy = [];
}
"""
```

Then the Query class. Its arguments are:
* `table` - The name of the table to query (`FROM <table>`).
* `query_fields` - The fields you want returned (`SELECT <fields>`).
    * Defaults to `all` meaning return all fields.
* `condition` - Logic to select entries (`WHERE <conditions>`).
    * Defaults to `none` meaning there is no condition, or in other words select all entries in the table.

## Using The Query Class


```python
full_tblgen = query_tblgen + """\
def : Query<"Customer">;

def : Query<"Orders", (fields "Person", "Amount")>;

def : Query<"Customer", (fields "Affiliation"),
            (eq "Name", "Mary Blackburn":$str)>;

def : Query<"Orders", (fields "ProductName"),
            (gt "Amount", 8)>;

def : Query<"Orders", (fields "ProductName":$name, "Person"),
            (and (gt "Amount", 8), (ne "Person", 1))> {
  let OrderedBy = ["$name"];
}
"""
```

Now we can define some queries. Let's go go over the last one in detail.

```
def : Query<"Orders", (fields "ProductName":$name, "Person"),
            (and (gt "Amount", 8), (ne "Person", 1))> {
  let OrderedBy = ["$name"];
}
```

* It will run on a table called `Orders`.
* We want to see the fields `ProductName` and `Person`.
* We have tagged `ProductName` with `$name`.
* The condition is that `Amount` must be greater than `8` and
  `Person` must not be equal to `1`.
* The results of this query should be ordered by the field
  tagged `$name`, which is `ProductName`.
  
The condition being of DAG type (Directed Acyclic Graph) allows us to describe nested conditions. You might write this condition in Python as:
```
if (Amount > 8) and (Person != 1):
```
Putting that into a graph form:
```
        |------|and|------|
        |                 |
| Amount > 8 |       | Person != 1 |
```
Which is what we're describing with the DAG in TableGen.

## The JSON format


```python
full_json = run_tblgen(full_tblgen)
print(json.dumps(full_json, indent=4))
```

    {
        "!instanceof": {
            "Query": [
                "anonymous_0",
                "anonymous_1",
                "anonymous_2",
                "anonymous_3",
                "anonymous_4"
            ]
        },
        "!tablegen_json_version": 1,
        "all": {
            "!anonymous": false,
            "!fields": [],
            "!name": "all",
            "!superclasses": []
        },
        "and": {
            "!anonymous": false,
            "!fields": [],
            "!name": "and",
            "!superclasses": []
        },
        "anonymous_0": {
            "!anonymous": true,
            "!fields": [],
            "!name": "anonymous_0",
            "!superclasses": [
                "Query"
            ],
            "Fields": {
                "args": [],
                "kind": "dag",
                "operator": {
                    "def": "all",
                    "kind": "def",
                    "printable": "all"
                },
                "printable": "(all)"
            },
            "OrderedBy": [],
            "TableName": "Customer",
            "WhereClause": {
                "args": [],
                "kind": "dag",
                "operator": {
                    "def": "none",
                    "kind": "def",
                    "printable": "none"
                },
                "printable": "(none)"
            }
        },
        "anonymous_1": {
            "!anonymous": true,
            "!fields": [],
            "!name": "anonymous_1",
            "!superclasses": [
                "Query"
            ],
            "Fields": {
                "args": [
                    [
                        "Person",
                        null
                    ],
                    [
                        "Amount",
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "fields",
                    "kind": "def",
                    "printable": "fields"
                },
                "printable": "(fields \"Person\", \"Amount\")"
            },
            "OrderedBy": [],
            "TableName": "Orders",
            "WhereClause": {
                "args": [],
                "kind": "dag",
                "operator": {
                    "def": "none",
                    "kind": "def",
                    "printable": "none"
                },
                "printable": "(none)"
            }
        },
        "anonymous_2": {
            "!anonymous": true,
            "!fields": [],
            "!name": "anonymous_2",
            "!superclasses": [
                "Query"
            ],
            "Fields": {
                "args": [
                    [
                        "Affiliation",
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "fields",
                    "kind": "def",
                    "printable": "fields"
                },
                "printable": "(fields \"Affiliation\")"
            },
            "OrderedBy": [],
            "TableName": "Customer",
            "WhereClause": {
                "args": [
                    [
                        "Name",
                        null
                    ],
                    [
                        "Mary Blackburn",
                        "str"
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "eq",
                    "kind": "def",
                    "printable": "eq"
                },
                "printable": "(eq \"Name\", \"Mary Blackburn\":$str)"
            }
        },
        "anonymous_3": {
            "!anonymous": true,
            "!fields": [],
            "!name": "anonymous_3",
            "!superclasses": [
                "Query"
            ],
            "Fields": {
                "args": [
                    [
                        "ProductName",
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "fields",
                    "kind": "def",
                    "printable": "fields"
                },
                "printable": "(fields \"ProductName\")"
            },
            "OrderedBy": [],
            "TableName": "Orders",
            "WhereClause": {
                "args": [
                    [
                        "Amount",
                        null
                    ],
                    [
                        8,
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "gt",
                    "kind": "def",
                    "printable": "gt"
                },
                "printable": "(gt \"Amount\", 8)"
            }
        },
        "anonymous_4": {
            "!anonymous": true,
            "!fields": [],
            "!name": "anonymous_4",
            "!superclasses": [
                "Query"
            ],
            "Fields": {
                "args": [
                    [
                        "ProductName",
                        "name"
                    ],
                    [
                        "Person",
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "fields",
                    "kind": "def",
                    "printable": "fields"
                },
                "printable": "(fields \"ProductName\":$name, \"Person\")"
            },
            "OrderedBy": [
                "$name"
            ],
            "TableName": "Orders",
            "WhereClause": {
                "args": [
                    [
                        {
                            "args": [
                                [
                                    "Amount",
                                    null
                                ],
                                [
                                    8,
                                    null
                                ]
                            ],
                            "kind": "dag",
                            "operator": {
                                "def": "gt",
                                "kind": "def",
                                "printable": "gt"
                            },
                            "printable": "(gt \"Amount\", 8)"
                        },
                        null
                    ],
                    [
                        {
                            "args": [
                                [
                                    "Person",
                                    null
                                ],
                                [
                                    1,
                                    null
                                ]
                            ],
                            "kind": "dag",
                            "operator": {
                                "def": "ne",
                                "kind": "def",
                                "printable": "ne"
                            },
                            "printable": "(ne \"Person\", 1)"
                        },
                        null
                    ]
                ],
                "kind": "dag",
                "operator": {
                    "def": "and",
                    "kind": "def",
                    "printable": "and"
                },
                "printable": "(and (gt \"Amount\", 8), (ne \"Person\", 1))"
            }
        },
        "eq": {
            "!anonymous": false,
            "!fields": [],
            "!name": "eq",
            "!superclasses": []
        },
        "fields": {
            "!anonymous": false,
            "!fields": [],
            "!name": "fields",
            "!superclasses": []
        },
        "ge": {
            "!anonymous": false,
            "!fields": [],
            "!name": "ge",
            "!superclasses": []
        },
        "gt": {
            "!anonymous": false,
            "!fields": [],
            "!name": "gt",
            "!superclasses": []
        },
        "ne": {
            "!anonymous": false,
            "!fields": [],
            "!name": "ne",
            "!superclasses": []
        },
        "none": {
            "!anonymous": false,
            "!fields": [],
            "!name": "none",
            "!superclasses": []
        },
        "or": {
            "!anonymous": false,
            "!fields": [],
            "!name": "or",
            "!superclasses": []
        }
    }


The backend is going to walk the JSON we decoded. You can see the full output above in case you want to browse but for now don't read the whole thing. We will highlight the key aspects of it as we go along.


```python
print(full_json["!instanceof"])
```

    {'Query': ['anonymous_0', 'anonymous_1', 'anonymous_2', 'anonymous_3', 'anonymous_4']}


Any key beginning with `!` is some sort of metadata about the other keys. Here this is a list of all instances of certain classes. We just have `Query` which lists all the queries we defined.


```python
print(full_json["anonymous_0"]["!superclasses"])
```

    ['Query']


On each def there is also a `!superclasses` that gives you the same information. Meaning you could use `!instanceof` to get a list of keys to lookup, or you could walk all keys and check `!superclasses`.


```python
print(full_json["anonymous_0"]["Fields"])
```

    {'args': [], 'kind': 'dag', 'operator': {'def': 'all', 'kind': 'def', 'printable': 'all'}, 'printable': '(all)'}


From a def object you can find its attributes. Here we have the fields we want the query to show, which is all of them.

# The Backend

The core of a backend is looping over all defs of a certain class and outputting some text based on their properties.

Here we're going to loop over all defs of type `Query` and emit SQL queries for them.


```python
def find_all_queries(j):
    queries = []
    for key in j:
        # ! means it is some metadata, not a def.
        if not key.startswith("!"):
            value = full_json[key]
            # If we inherit from Query.
            if "Query" in value["!superclasses"]:
                queries.append(value)
    return queries

queries = find_all_queries(full_json)
                
print([q["!name"] for q in queries])
```

    ['anonymous_0', 'anonymous_1', 'anonymous_2', 'anonymous_3', 'anonymous_4']


Why are the names `anonymous_...`? When we defined them we did `def :` and missed out the name. This is allowed and `llvm-tblgen` just came up with a name for us. For this purpose the names are irrelevant.

Now we have the relevant classes we need to "emit" them. Meaning produce something from them, in this case a SQL query.


```python
def emit_operator(operator):
    return {
            'gt': ' > ',
            'ge': ' >= ',
            'lt': ' < ',
            'le': ' <= ',
            'ne': ' <> ',
            'eq': ' = ',
            'or': ' OR ',
            'and': ' AND '
            }[operator]

print(emit_operator('and'))
```

     AND 


The maps our TableGen constants to the equivalent SQL logical operation.


```python
def emit_fields(args):
    # Return a comma separated list of arg names.
    return ", ".join([arg[0] for arg in args])

print(emit_fields([["Abc", None], ["Def", None]]))
```

    Abc, Def


This emits the the fields we are selecting. Each field has a name (`arg[0]`) and an optional tag that we will use later.


```python
from collections.abc import Mapping

def emit_where_clause(where_clause):
    output = ""
    num_args = len(where_clause["args"])
    
    for idx, arg in enumerate(where_clause["args"]):
        arg_name, arg_type = arg

        if isinstance(arg_name, Mapping):
            # This is a nested where clause.
            output += emit_where_clause(arg_name)
        else:
            # This is some condition.
            if arg_type == "str":
                # String types must be emitted with "" around them.
                output += '"' + arg_name + '"'
            else:
                output += str(arg_name)

        # If this is not the last arg, emit the condition.
        if idx != (num_args-1):
            output += emit_operator(where_clause["operator"]["def"])
    
    return output

print(emit_where_clause({
"args": [["Name",None],  
        ["Mary Blackburn", "str"]],
"kind": "dag",
"operator": {
    "def": "eq",
    "kind": "def",
    "printable": "eq"
}}))
```

    Name = "Mary Blackburn"


This emits the condition that goes with the `WHERE`. The condition is a DAG, which means that we will find a possible mix of conditions and other DAGS. We recurse to handle the latter case.

For each part of the condition we print the name of the thing you're checking, then the condition (`=`, `<>`, etc.). The value to check against is last and that goes on the end.


```python
def emit_ordered_by(ordered_by, field_tag_map):
    # No ORDER BY statement to emit.
    if not ordered_by:
        return ""
    
    output = "\n ORDER BY "
    num_ordered_by = len(ordered_by)
    
    for idx, field_name in enumerate(ordered_by):
        # If it is a tag
        if field_name.startswith('$'):
            # Find the corresponding field name
            tag_name = field_name[1:]
            field_name = field_tag_map.get(tag_name)
            if field_name is None:
                raise RuntimeError('Unrecognized tag "{}"'.format(
                    tag_name))

        # Separate each tag after the first with ", ".
        if idx != 0:
            output += ", "
        output += field_name
        
    return output

print(emit_ordered_by(["$abc", "$def"], {'abc':"ABC", 'def':"DEF"}))
```

    
     ORDER BY ABC, DEF


`emit_ordered_by` produces the `ORDER BY` text. If there is no ordering return nothing, otherwise loop over all the fields we want to order by and emit their names.

If the name is a tag, we look that up in a map to get the real field name. Here's how we build that map:


```python
def build_tag_map(arguments):
    # Args are [Name, Tag]. Reverse this so we have [Tag, Name].
    # Add each one to a dictionary where Tag is the key and Name is the value.
    return dict([reversed(a) for a in arguments])

print(build_tag_map([["ABC", "abc"], ["DEF", "def"]]))
```

    {'abc': 'ABC', 'def': 'DEF'}



```python
def emit_query(q):
    fields_init = q["Fields"]
    field_op_name = fields_init["operator"]["def"]
    if not field_op_name in ["all", "fields"]:
        raise RuntimeError("Invalid dag operator " + field_op_name)
    
    field_tag_map = build_tag_map(fields_init["args"])
    
    where_clause = q["WhereClause"]
    has_where = where_clause["operator"]["def"] != "none"
    
    ret = "SELECT "
    if field_op_name == "all":
        ret += "*"
    ret += emit_fields(fields_init["args"])
    ret += " FROM " + q["TableName"]
    if has_where:
        ret += "\n WHERE " + emit_where_clause(where_clause)
    ret += emit_ordered_by(q["OrderedBy"], field_tag_map)
    ret += ";"
        
    return ret
```

Finally the main function. It emits the skeleton of the query and calls the helpers we defined earlier to fill in the gaps.

## The Result


```python
for q in queries:
    print(emit_query(q) + "\n")
```

    SELECT * FROM Customer;
    
    SELECT Person, Amount FROM Orders;
    
    SELECT Affiliation FROM Customer
     WHERE Name = "Mary Blackburn";
    
    SELECT ProductName FROM Orders
     WHERE Amount > 8;
    
    SELECT ProductName, Person FROM Orders
     WHERE Amount > 8 AND Person <> 1
     ORDER BY ProductName;
    


Now we run `emit_query` and print out the results. There you have it, that's a TableGen backend!

You've seen the core concepts. Loop over all the defs of a certain class and then emit some other structure based on the fields of each one. In this case it was SQL queries. In LLVM it's most often C++ code but it can be anything you want.

If you want to see the same thing done with a C++ backend (one written in C++ that is, not producing it), check out the links at the start of this notebook.