aboutsummaryrefslogtreecommitdiff
path: root/llvm/unittests/Support/SuffixTreeTest.cpp
blob: e8393c0a555ef6966ab06fcb55c3ee6291a235e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//===- unittests/Support/SuffixTreeTest.cpp - suffix tree tests -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/SuffixTree.h"
#include "gtest/gtest.h"
#include <vector>

using namespace llvm;

namespace {

// Each example vector has a unique element at the end to represent the end of
// the string

// Tests that The SuffixTree finds a simple repetition of the substring {1, 2}
// {1, 2} twice in the provided string.
TEST(SuffixTreeTest, TestSingleRepetition) {
  std::vector<unsigned> SimpleRepetitionData = {1, 2, 1, 2, 3};
  SuffixTree ST(SimpleRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  ASSERT_EQ(SubStrings.size(), 1u);
  EXPECT_EQ(SubStrings[0].Length, 2u);
  EXPECT_EQ(SubStrings[0].StartIndices.size(), 2u);
  for (unsigned StartIdx : SubStrings[0].StartIndices) {
    EXPECT_EQ(SimpleRepetitionData[StartIdx], 1u);
    EXPECT_EQ(SimpleRepetitionData[StartIdx + 1], 2u);
  }
}

// Tests that the SuffixTree is able to find the substrings {1, 2, 3} at
// at indices 0 and 3 as well as the substrings {2, 3} at indices 1 and 4.
// This test also serves as a flag for improvements to the suffix tree.
//
// FIXME: Right now, the longest repeated substring from a specific index is
// returned, this could be improved to return the longest repeated substring, as
// well as those that are smaller.
TEST(SuffixTreeTest, TestLongerRepetition) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 2, 3, 1, 2, 3, 4};
  SuffixTree ST(RepeatedRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 2u);
  unsigned Len;
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    Len = RS.Length;
    bool IsExpectedLen = (Len == 3u || Len == 2u);
    bool IsExpectedIndex;
    ASSERT_TRUE(IsExpectedLen);

    if (Len == 3u) {
      for (unsigned StartIdx : RS.StartIndices) {
        IsExpectedIndex = (StartIdx == 0u || StartIdx == 3u);
        EXPECT_TRUE(IsExpectedIndex);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx], 1u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 2u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 2], 3u);
      }
    } else {
      for (unsigned StartIdx : RS.StartIndices) {
        IsExpectedIndex = (StartIdx == 1u || StartIdx == 4u);
        EXPECT_TRUE(IsExpectedIndex);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx], 2u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 3u);
      }
    }
  }
}

// Tests that the SuffixTree is able to find substring {1, 1, 1, 1, 1} at
// indices 0 and 1.
//
// FIXME: Add support for detecting {1, 1} and {1, 1, 1}
// See Test TestSingleCharacterRepeatWithLeafDescendants for the fix
TEST(SuffixTreeTest, TestSingleCharacterRepeat) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 1, 1, 1, 1, 1, 2};
  std::vector<unsigned>::iterator RRDIt, RRDIt2;
  SuffixTree ST(RepeatedRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 1u);
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    EXPECT_EQ(RS.StartIndices.size(),
              RepeatedRepetitionData.size() - RS.Length);
    for (unsigned StartIdx : SubStrings[0].StartIndices) {
      RRDIt = RRDIt2 = RepeatedRepetitionData.begin();
      std::advance(RRDIt, StartIdx);
      std::advance(RRDIt2, StartIdx + SubStrings[0].Length);
      ASSERT_TRUE(
          all_of(make_range<std::vector<unsigned>::iterator>(RRDIt, RRDIt2),
                 [](unsigned Elt) { return Elt == 1; }));
    }
  }
}

// Tests that the SuffixTree is able to find the following substrings:
// {1, 1} at indices 0, 1, 2, 3, and 4;
// {1, 1, 1} at indices 0, 1, 2, and 3;
// {1, 1, 1, 1}  at indices 0, 1, and 2; and
// {1, 1, 1, 1, 1} at indices 0 and 1.
//
// This is the fix for TestSingleCharacterRepeat.
TEST(SuffixTreeTest, TestSingleCharacterRepeatWithLeafDescendants) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 1, 1, 1, 1, 1, 2};
  std::vector<unsigned>::iterator RRDIt, RRDIt2;
  SuffixTree ST(RepeatedRepetitionData, /*OutlinerLeafDescendants=*/true);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 4u);
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    EXPECT_EQ(RS.StartIndices.size(),
              RepeatedRepetitionData.size() - RS.Length);
    for (unsigned StartIdx : SubStrings[0].StartIndices) {
      RRDIt = RRDIt2 = RepeatedRepetitionData.begin();
      std::advance(RRDIt, StartIdx);
      std::advance(RRDIt2, StartIdx + SubStrings[0].Length);
      ASSERT_TRUE(
          all_of(make_range<std::vector<unsigned>::iterator>(RRDIt, RRDIt2),
                 [](unsigned Elt) { return Elt == 1; }));
    }
  }
}

// The suffix tree cannot currently find repeated substrings in strings of the
// form {1, 2, 3, 1, 2, 3}, because the two {1, 2, 3}s are adjacent ("tandem
// repeats")
//
// FIXME: Teach the SuffixTree to recognize these cases.
TEST(SuffixTreeTest, TestTandemRepeat) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 2, 3, 1, 2, 3};
  SuffixTree ST(RepeatedRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 0u);
}

// Tests that the SuffixTree does not erroneously include values that are not
// in repeated substrings.  That is, only finds {1, 1} at indices 0 and 3 and
// does not include 2 and 3.
TEST(SuffixTreeTest, TestExclusion) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 1, 2, 1, 1, 3};
  std::vector<unsigned>::iterator RRDIt, RRDIt2;
  SuffixTree ST(RepeatedRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 1u);
  bool IsExpectedIndex;
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    for (unsigned StartIdx : RS.StartIndices) {
      IsExpectedIndex = (StartIdx == 0u || StartIdx == 3u);
      EXPECT_TRUE(IsExpectedIndex);
      RRDIt = RRDIt2 = RepeatedRepetitionData.begin();
      std::advance(RRDIt, StartIdx);
      std::advance(RRDIt2, StartIdx + RS.Length);
      EXPECT_TRUE(
          all_of(make_range<std::vector<unsigned>::iterator>(RRDIt, RRDIt2),
                 [](unsigned Elt) { return Elt == 1; }));
    }
  }
}

// Tests that the SuffixTree is able to find three substrings
// {1, 2, 3} at indices 6 and 10;
// {2, 3} at indices 7 and 11; and
// {1, 2} at indicies 0 and 3.
//
// FIXME: {1, 2} has indices 6 and 10 missing as it is a substring of {1, 2, 3}
// See Test TestSubstringRepeatsWithLeafDescendants for the fix
TEST(SuffixTreeTest, TestSubstringRepeats) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 2, 100, 1, 2, 101, 1,
                                                  2, 3, 103, 1, 2, 3,   104};
  SuffixTree ST(RepeatedRepetitionData);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 3u);
  unsigned Len;
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    Len = RS.Length;
    bool IsExpectedLen = (Len == 3u || Len == 2u);
    ASSERT_TRUE(IsExpectedLen);
    bool IsExpectedIndex;

    if (Len == 3u) { // {1, 2, 3}
      EXPECT_EQ(RS.StartIndices.size(), 2u);
      for (unsigned StartIdx : RS.StartIndices) {
        IsExpectedIndex = (StartIdx == 6u || StartIdx == 10u);
        EXPECT_TRUE(IsExpectedIndex);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx], 1u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 2u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 2], 3u);
      }
    } else {
      if (RepeatedRepetitionData[RS.StartIndices[0]] == 1u) { // {1, 2}
        EXPECT_EQ(RS.StartIndices.size(), 2u);
        for (unsigned StartIdx : RS.StartIndices) {
          IsExpectedIndex = (StartIdx == 0u || StartIdx == 3u);
          EXPECT_TRUE(IsExpectedIndex);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 2u);
        }
      } else { // {2, 3}
        EXPECT_EQ(RS.StartIndices.size(), 2u);
        for (unsigned StartIdx : RS.StartIndices) {
          IsExpectedIndex = (StartIdx == 7u || StartIdx == 11u);
          EXPECT_TRUE(IsExpectedIndex);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx], 2u);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 3u);
        }
      }
    }
  }
}

// Tests that the SuffixTree is able to find three substrings
// {1, 2, 3} at indices 6 and 10;
// {2, 3} at indices 7 and 11; and
// {1, 2} at indicies 0, 3, 6, and 10.
//
// This is the fix for TestSubstringRepeats
TEST(SuffixTreeTest, TestSubstringRepeatsWithLeafDescendants) {
  std::vector<unsigned> RepeatedRepetitionData = {1, 2, 100, 1, 2, 101, 1,
                                                  2, 3, 103, 1, 2, 3,   104};
  SuffixTree ST(RepeatedRepetitionData, /*OutlinerLeafDescendants=*/true);
  std::vector<SuffixTree::RepeatedSubstring> SubStrings;
  for (auto It = ST.begin(); It != ST.end(); It++)
    SubStrings.push_back(*It);
  EXPECT_EQ(SubStrings.size(), 3u);
  unsigned Len;
  for (SuffixTree::RepeatedSubstring &RS : SubStrings) {
    Len = RS.Length;
    bool IsExpectedLen = (Len == 3u || Len == 2u);
    ASSERT_TRUE(IsExpectedLen);
    bool IsExpectedIndex;

    if (Len == 3u) { // {1, 2, 3}
      EXPECT_EQ(RS.StartIndices.size(), 2u);
      for (unsigned StartIdx : RS.StartIndices) {
        IsExpectedIndex = (StartIdx == 6u || StartIdx == 10u);
        EXPECT_TRUE(IsExpectedIndex);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx], 1u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 2u);
        EXPECT_EQ(RepeatedRepetitionData[StartIdx + 2], 3u);
      }
    } else {
      if (RepeatedRepetitionData[RS.StartIndices[0]] == 1u) { // {1, 2}
        EXPECT_EQ(RS.StartIndices.size(), 4u);
        for (unsigned StartIdx : RS.StartIndices) {
          IsExpectedIndex = (StartIdx == 0u || StartIdx == 3u ||
                             StartIdx == 6u || StartIdx == 10u);
          EXPECT_TRUE(IsExpectedIndex);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 2u);
        }
      } else { // {2, 3}
        EXPECT_EQ(RS.StartIndices.size(), 2u);
        for (unsigned StartIdx : RS.StartIndices) {
          IsExpectedIndex = (StartIdx == 7u || StartIdx == 11u);
          EXPECT_TRUE(IsExpectedIndex);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx], 2u);
          EXPECT_EQ(RepeatedRepetitionData[StartIdx + 1], 3u);
        }
      }
    }
  }
}

} // namespace