aboutsummaryrefslogtreecommitdiff
path: root/llvm/test/Transforms/LoopVectorize/AArch64/scalable-vectorization.ll
blob: e83eb729b521c2e5831aafa62d0e108ee45a0ae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
; REQUIRES: asserts
; RUN: opt -mtriple=aarch64-none-linux-gnu -mattr=+sve -force-target-instruction-cost=1 -passes=loop-vectorize -S -debug-only=loop-vectorize -scalable-vectorization=off < %s 2>&1 | FileCheck %s --check-prefixes=CHECK,CHECK_SCALABLE_DISABLED
; RUN: opt -mtriple=aarch64-none-linux-gnu -mattr=+sve -force-target-instruction-cost=1 -passes=loop-vectorize -S -debug-only=loop-vectorize -scalable-vectorization=on < %s 2>&1 | FileCheck %s --check-prefixes=CHECK,CHECK_SCALABLE_ON
; RUN: opt -mtriple=aarch64-none-linux-gnu -mattr=+sve -force-target-instruction-cost=1 -passes=loop-vectorize -S -debug-only=loop-vectorize -vectorizer-maximize-bandwidth -scalable-vectorization=on < %s 2>&1 | FileCheck %s --check-prefixes=CHECK,CHECK_SCALABLE_ON_MAXBW

; Test that the MaxVF for the following loop, that has no dependence distances,
; is calculated as vscale x 4 (max legal SVE vector size) or vscale x 16
; (maximized bandwidth for i8 in the loop).
define void @test0(ptr %a, ptr %b, ptr %c) #0 {
; CHECK: LV: Checking a loop in 'test0'
; CHECK_SCALABLE_ON: LV: Found feasible scalable VF = vscale x 4
; CHECK_SCALABLE_ON: LV: Selecting VF: 16
; CHECK_SCALABLE_DISABLED-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_DISABLED: LV: Selecting VF: 16
; CHECK_SCALABLE_ON_MAXBW: LV: Found feasible scalable VF = vscale x 16
; CHECK_SCALABLE_ON_MAXBW: LV: Selecting VF: vscale x 16
entry:
  br label %loop

loop:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
  %arrayidx = getelementptr inbounds i32, ptr %c, i64 %iv
  %0 = load i32, ptr %arrayidx, align 4
  %arrayidx2 = getelementptr inbounds i8, ptr %b, i64 %iv
  %1 = load i8, ptr %arrayidx2, align 4
  %zext = zext i8 %1 to i32
  %add = add nsw i32 %zext, %0
  %arrayidx5 = getelementptr inbounds i32, ptr %a, i64 %iv
  store i32 %add, ptr %arrayidx5, align 4
  %iv.next = add nuw nsw i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1024
  br i1 %exitcond.not, label %exit, label %loop

exit:
  ret void
}

; Test that the MaxVF for the following loop, with a dependence distance
; of 64 elements, is calculated as (maxvscale = 16) * 4.
define void @test1(ptr %a, ptr %b) #0 {
; CHECK: LV: Checking a loop in 'test1'
; CHECK_SCALABLE_ON: LV: Found feasible scalable VF = vscale x 4
; CHECK_SCALABLE_ON: LV: Selecting VF: 16
; CHECK_SCALABLE_DISABLED-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_DISABLED: LV: Selecting VF: 16
; CHECK_SCALABLE_ON_MAXBW: LV: Found feasible scalable VF = vscale x 4
; CHECK_SCALABLE_ON_MAXBW: LV: Selecting VF: 16
entry:
  br label %loop

loop:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
  %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
  %0 = load i32, ptr %arrayidx, align 4
  %arrayidx2 = getelementptr inbounds i8, ptr %b, i64 %iv
  %1 = load i8, ptr %arrayidx2, align 4
  %zext = zext i8 %1 to i32
  %add = add nsw i32 %zext, %0
  %2 = add nuw nsw i64 %iv, 64
  %arrayidx5 = getelementptr inbounds i32, ptr %a, i64 %2
  store i32 %add, ptr %arrayidx5, align 4
  %iv.next = add nuw nsw i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1024
  br i1 %exitcond.not, label %exit, label %loop

exit:
  ret void
}

; Test that the MaxVF for the following loop, with a dependence distance
; of 32 elements, is calculated as (maxvscale = 16) * 2.
define void @test2(ptr %a, ptr %b) #0 {
; CHECK: LV: Checking a loop in 'test2'
; CHECK_SCALABLE_ON: LV: Found feasible scalable VF = vscale x 2
; CHECK_SCALABLE_ON: LV: Selecting VF: 16
; CHECK_SCALABLE_DISABLED-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_DISABLED: LV: Selecting VF: 16
; CHECK_SCALABLE_ON_MAXBW: LV: Found feasible scalable VF = vscale x 2
; CHECK_SCALABLE_ON_MAXBW: LV: Selecting VF: 16
entry:
  br label %loop

loop:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
  %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
  %0 = load i32, ptr %arrayidx, align 4
  %arrayidx2 = getelementptr inbounds i8, ptr %b, i64 %iv
  %1 = load i8, ptr %arrayidx2, align 4
  %zext = zext i8 %1 to i32
  %add = add nsw i32 %zext, %0
  %2 = add nuw nsw i64 %iv, 32
  %arrayidx5 = getelementptr inbounds i32, ptr %a, i64 %2
  store i32 %add, ptr %arrayidx5, align 4
  %iv.next = add nuw nsw i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1024
  br i1 %exitcond.not, label %exit, label %loop

exit:
  ret void
}

; Test that the MaxVF for the following loop, with a dependence distance
; of 16 elements, is calculated as (maxvscale = 16) * 1.
define void @test3(ptr %a, ptr %b) #0 {
; CHECK: LV: Checking a loop in 'test3'
; CHECK_SCALABLE_ON: LV: Found feasible scalable VF = vscale x 1
; CHECK_SCALABLE_ON: LV: Selecting VF: 16
; CHECK_SCALABLE_DISABLED-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_DISABLED: LV: Selecting VF: 16
; CHECK_SCALABLE_ON_MAXBW: LV: Found feasible scalable VF = vscale x 1
; CHECK_SCALABLE_ON_MAXBW: LV: Selecting VF: 16
entry:
  br label %loop

loop:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
  %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
  %0 = load i32, ptr %arrayidx, align 4
  %arrayidx2 = getelementptr inbounds i8, ptr %b, i64 %iv
  %1 = load i8, ptr %arrayidx2, align 4
  %zext = zext i8 %1 to i32
  %add = add nsw i32 %zext, %0
  %2 = add nuw nsw i64 %iv, 16
  %arrayidx5 = getelementptr inbounds i32, ptr %a, i64 %2
  store i32 %add, ptr %arrayidx5, align 4
  %iv.next = add nuw nsw i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1024
  br i1 %exitcond.not, label %exit, label %loop

exit:
  ret void
}

; Test the fallback mechanism when scalable vectors are not feasible due
; to e.g. dependence distance.
define void @test4(ptr %a, ptr %b) #0 {
; CHECK: LV: Checking a loop in 'test4'
; CHECK_SCALABLE_ON-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_ON-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_ON: LV: Selecting VF: 4
; CHECK_SCALABLE_DISABLED-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_DISABLED: LV: Selecting VF: 4
; CHECK_SCALABLE_ON_MAXBW-NOT: LV: Found feasible scalable VF
; CHECK_SCALABLE_ON_MAXBW: LV: Selecting VF: 4
entry:
  br label %loop

loop:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
  %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
  %0 = load i32, ptr %arrayidx, align 4
  %arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv
  %1 = load i32, ptr %arrayidx2, align 4
  %add = add nsw i32 %1, %0
  %2 = add nuw nsw i64 %iv, 8
  %arrayidx5 = getelementptr inbounds i32, ptr %a, i64 %2
  store i32 %add, ptr %arrayidx5, align 4
  %iv.next = add nuw nsw i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1024
  br i1 %exitcond.not, label %exit, label %loop

exit:
  ret void
}

attributes #0 = { vscale_range(1, 16) }