aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
blob: ae787be40c552359663e17c25bebf74fd57f9329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"

using namespace llvm;

namespace llvm {
cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::Hidden,
                                 cl::desc("Run Partial inlinining pass"));

static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
  cl::init(false), cl::Hidden,
  cl::desc("Run GVN instead of Early CSE after vectorization passes"));

cl::opt<bool> ExtraVectorizerPasses(
    "extra-vectorizer-passes", cl::init(false), cl::Hidden,
    cl::desc("Run cleanup optimization passes after vectorization."));

static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
                 cl::desc("Run the loop rerolling pass"));

cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
                        cl::desc("Run the NewGVN pass"));

// Experimental option to use CFL-AA
static cl::opt<::CFLAAType>
    UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden,
             cl::desc("Enable the new, experimental CFL alias analysis"),
             cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"),
                        clEnumValN(::CFLAAType::Steensgaard, "steens",
                                   "Enable unification-based CFL-AA"),
                        clEnumValN(::CFLAAType::Andersen, "anders",
                                   "Enable inclusion-based CFL-AA"),
                        clEnumValN(::CFLAAType::Both, "both",
                                   "Enable both variants of CFL-AA")));

cl::opt<bool> EnableLoopInterchange(
    "enable-loopinterchange", cl::init(false), cl::Hidden,
    cl::desc("Enable the experimental LoopInterchange Pass"));

cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false),
                                 cl::Hidden,
                                 cl::desc("Enable Unroll And Jam Pass"));

cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
                                cl::Hidden,
                                cl::desc("Enable the LoopFlatten Pass"));

cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread",
                                     cl::desc("Enable DFA jump threading."),
                                     cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
                            cl::desc("Enable preparation for ThinLTO."));

static cl::opt<bool>
    EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
                         cl::desc("Enable performing ThinLTO."));

cl::opt<bool> EnableHotColdSplit("hot-cold-split",
                                 cl::desc("Enable hot-cold splitting pass"));

cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden,
    cl::desc("Enable ir outliner pass"));

static cl::opt<bool> UseLoopVersioningLICM(
    "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
    cl::desc("Enable the experimental Loop Versioning LICM pass"));

cl::opt<bool>
    DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
                      cl::desc("Disable pre-instrumentation inliner"));

cl::opt<int> PreInlineThreshold(
    "preinline-threshold", cl::Hidden, cl::init(75),
    cl::desc("Control the amount of inlining in pre-instrumentation inliner "
             "(default = 75)"));

cl::opt<bool>
    EnableGVNHoist("enable-gvn-hoist",
                   cl::desc("Enable the GVN hoisting pass (default = off)"));

static cl::opt<bool>
    DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
                              cl::Hidden,
                              cl::desc("Disable shrink-wrap library calls"));

cl::opt<bool>
    EnableGVNSink("enable-gvn-sink",
                  cl::desc("Enable the GVN sinking pass (default = off)"));

// This option is used in simplifying testing SampleFDO optimizations for
// profile loading.
cl::opt<bool>
    EnableCHR("enable-chr", cl::init(true), cl::Hidden,
              cl::desc("Enable control height reduction optimization (CHR)"));

cl::opt<bool> FlattenedProfileUsed(
    "flattened-profile-used", cl::init(false), cl::Hidden,
    cl::desc("Indicate the sample profile being used is flattened, i.e., "
             "no inline hierachy exists in the profile. "));

cl::opt<bool> EnableOrderFileInstrumentation(
    "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
    cl::desc("Enable order file instrumentation (default = off)"));

cl::opt<bool> EnableMatrix(
    "enable-matrix", cl::init(false), cl::Hidden,
    cl::desc("Enable lowering of the matrix intrinsics"));

cl::opt<bool> EnableConstraintElimination(
    "enable-constraint-elimination", cl::init(false), cl::Hidden,
    cl::desc(
        "Enable pass to eliminate conditions based on linear constraints."));

cl::opt<bool> EnableFunctionSpecialization(
    "enable-function-specialization", cl::init(false), cl::Hidden,
    cl::desc("Enable Function Specialization pass"));

cl::opt<AttributorRunOption> AttributorRun(
    "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
    cl::desc("Enable the attributor inter-procedural deduction pass."),
    cl::values(clEnumValN(AttributorRunOption::ALL, "all",
                          "enable all attributor runs"),
               clEnumValN(AttributorRunOption::MODULE, "module",
                          "enable module-wide attributor runs"),
               clEnumValN(AttributorRunOption::CGSCC, "cgscc",
                          "enable call graph SCC attributor runs"),
               clEnumValN(AttributorRunOption::NONE, "none",
                          "disable attributor runs")));

extern cl::opt<bool> EnableKnowledgeRetention;
} // namespace llvm

PassManagerBuilder::PassManagerBuilder() {
    OptLevel = 2;
    SizeLevel = 0;
    LibraryInfo = nullptr;
    Inliner = nullptr;
    DisableUnrollLoops = false;
    SLPVectorize = false;
    LoopVectorize = true;
    LoopsInterleaved = true;
    RerollLoops = RunLoopRerolling;
    NewGVN = RunNewGVN;
    LicmMssaOptCap = SetLicmMssaOptCap;
    LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
    DisableGVNLoadPRE = false;
    ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
    VerifyInput = false;
    VerifyOutput = false;
    MergeFunctions = false;
    PrepareForLTO = false;
    EnablePGOInstrGen = false;
    EnablePGOCSInstrGen = false;
    EnablePGOCSInstrUse = false;
    PGOInstrGen = "";
    PGOInstrUse = "";
    PGOSampleUse = "";
    PrepareForThinLTO = EnablePrepareForThinLTO;
    PerformThinLTO = EnablePerformThinLTO;
    DivergentTarget = false;
    CallGraphProfile = true;
}

PassManagerBuilder::~PassManagerBuilder() {
  delete LibraryInfo;
  delete Inliner;
}

/// Set of global extensions, automatically added as part of the standard set.
static ManagedStatic<
    SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
                           PassManagerBuilder::ExtensionFn,
                           PassManagerBuilder::GlobalExtensionID>,
                8>>
    GlobalExtensions;
static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;

/// Check if GlobalExtensions is constructed and not empty.
/// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
/// the construction of the object.
static bool GlobalExtensionsNotEmpty() {
  return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
}

PassManagerBuilder::GlobalExtensionID
PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
                                       PassManagerBuilder::ExtensionFn Fn) {
  auto ExtensionID = GlobalExtensionsCounter++;
  GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
  return ExtensionID;
}

void PassManagerBuilder::removeGlobalExtension(
    PassManagerBuilder::GlobalExtensionID ExtensionID) {
  // RegisterStandardPasses may try to call this function after GlobalExtensions
  // has already been destroyed; doing so should not generate an error.
  if (!GlobalExtensions.isConstructed())
    return;

  auto GlobalExtension =
      llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
        return std::get<2>(elem) == ExtensionID;
      });
  assert(GlobalExtension != GlobalExtensions->end() &&
         "The extension ID to be removed should always be valid.");

  GlobalExtensions->erase(GlobalExtension);
}

void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
  Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
}

void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
                                           legacy::PassManagerBase &PM) const {
  if (GlobalExtensionsNotEmpty()) {
    for (auto &Ext : *GlobalExtensions) {
      if (std::get<0>(Ext) == ETy)
        std::get<1>(Ext)(*this, PM);
    }
  }
  for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
    if (Extensions[i].first == ETy)
      Extensions[i].second(*this, PM);
}

void PassManagerBuilder::addInitialAliasAnalysisPasses(
    legacy::PassManagerBase &PM) const {
  switch (UseCFLAA) {
  case ::CFLAAType::Steensgaard:
    PM.add(createCFLSteensAAWrapperPass());
    break;
  case ::CFLAAType::Andersen:
    PM.add(createCFLAndersAAWrapperPass());
    break;
  case ::CFLAAType::Both:
    PM.add(createCFLSteensAAWrapperPass());
    PM.add(createCFLAndersAAWrapperPass());
    break;
  default:
    break;
  }

  // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
  // BasicAliasAnalysis wins if they disagree. This is intended to help
  // support "obvious" type-punning idioms.
  PM.add(createTypeBasedAAWrapperPass());
  PM.add(createScopedNoAliasAAWrapperPass());
}

void PassManagerBuilder::populateFunctionPassManager(
    legacy::FunctionPassManager &FPM) {
  addExtensionsToPM(EP_EarlyAsPossible, FPM);

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  // The backends do not handle matrix intrinsics currently.
  // Make sure they are also lowered in O0.
  // FIXME: A lightweight version of the pass should run in the backend
  //        pipeline on demand.
  if (EnableMatrix && OptLevel == 0)
    FPM.add(createLowerMatrixIntrinsicsMinimalPass());

  if (OptLevel == 0) return;

  addInitialAliasAnalysisPasses(FPM);

  // Lower llvm.expect to metadata before attempting transforms.
  // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
  FPM.add(createLowerExpectIntrinsicPass());
  FPM.add(createCFGSimplificationPass());
  FPM.add(createSROAPass());
  FPM.add(createEarlyCSEPass());
}

void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
  MPM.add(createSROAPass());
  MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
  if (EnableKnowledgeRetention)
    MPM.add(createAssumeSimplifyPass());

  if (OptLevel > 1) {
    if (EnableGVNHoist)
      MPM.add(createGVNHoistPass());
    if (EnableGVNSink) {
      MPM.add(createGVNSinkPass());
      MPM.add(createCFGSimplificationPass(
          SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
    }
  }

  if (EnableConstraintElimination)
    MPM.add(createConstraintEliminationPass());

  if (OptLevel > 1) {
    // Speculative execution if the target has divergent branches; otherwise nop.
    MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());

    MPM.add(createJumpThreadingPass());         // Thread jumps.
    MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  }
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true))); // Merge & remove BBs
  // Combine silly seq's
  if (OptLevel > 2)
    MPM.add(createAggressiveInstCombinerPass());
  MPM.add(createInstructionCombiningPass());
  if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
    MPM.add(createLibCallsShrinkWrapPass());
  addExtensionsToPM(EP_Peephole, MPM);

  // TODO: Investigate the cost/benefit of tail call elimination on debugging.
  if (OptLevel > 1)
    MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true)));                            // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions

  // The matrix extension can introduce large vector operations early, which can
  // benefit from running vector-combine early on.
  if (EnableMatrix)
    MPM.add(createVectorCombinePass());

  // Begin the loop pass pipeline.

  // The simple loop unswitch pass relies on separate cleanup passes. Schedule
  // them first so when we re-process a loop they run before other loop
  // passes.
  MPM.add(createLoopInstSimplifyPass());
  MPM.add(createLoopSimplifyCFGPass());

  // Try to remove as much code from the loop header as possible,
  // to reduce amount of IR that will have to be duplicated. However,
  // do not perform speculative hoisting the first time as LICM
  // will destroy metadata that may not need to be destroyed if run
  // after loop rotation.
  // TODO: Investigate promotion cap for O1.
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                         /*AllowSpeculation=*/false));
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
  // TODO: Investigate promotion cap for O1.
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                         /*AllowSpeculation=*/true));
  MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
  // FIXME: We break the loop pass pipeline here in order to do full
  // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
  // need for this.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  MPM.add(createInstructionCombiningPass());
  // We resume loop passes creating a second loop pipeline here.
  if (EnableLoopFlatten) {
    MPM.add(createLoopFlattenPass()); // Flatten loops
    MPM.add(createLoopSimplifyCFGPass());
  }
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  addExtensionsToPM(EP_LateLoopOptimizations, MPM);
  MPM.add(createLoopDeletionPass());          // Delete dead loops

  if (EnableLoopInterchange)
    MPM.add(createLoopInterchangePass()); // Interchange loops

  // Unroll small loops and perform peeling.
  MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                     ForgetAllSCEVInLoopUnroll));
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
  // This ends the loop pass pipelines.

  // Break up allocas that may now be splittable after loop unrolling.
  MPM.add(createSROAPass());

  if (OptLevel > 1) {
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(NewGVN ? createNewGVNPass()
                   : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
  }
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  if (EnableConstraintElimination)
    MPM.add(createConstraintEliminationPass());

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);
  if (OptLevel > 1) {
    if (EnableDFAJumpThreading && SizeLevel == 0)
      MPM.add(createDFAJumpThreadingPass());

    MPM.add(createJumpThreadingPass());         // Thread jumps
    MPM.add(createCorrelatedValuePropagationPass());
  }
  MPM.add(createAggressiveDCEPass()); // Delete dead instructions

  MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
  // TODO: Investigate if this is too expensive at O1.
  if (OptLevel > 1) {
    MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                           /*AllowSpeculation=*/true));
  }

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());

  // Merge & remove BBs and sink & hoist common instructions.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
  // Clean up after everything.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);

  if (EnableCHR && OptLevel >= 3 &&
      (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
    MPM.add(createControlHeightReductionLegacyPass());
}

/// FIXME: Should LTO cause any differences to this set of passes?
void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
                                         bool IsFullLTO) {
  PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));

  if (IsFullLTO) {
    // The vectorizer may have significantly shortened a loop body; unroll
    // again. Unroll small loops to hide loop backedge latency and saturate any
    // parallel execution resources of an out-of-order processor. We also then
    // need to clean up redundancies and loop invariant code.
    // FIXME: It would be really good to use a loop-integrated instruction
    // combiner for cleanup here so that the unrolling and LICM can be pipelined
    // across the loop nests.
    // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
    if (EnableUnrollAndJam && !DisableUnrollLoops)
      PM.add(createLoopUnrollAndJamPass(OptLevel));
    PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                ForgetAllSCEVInLoopUnroll));
    PM.add(createWarnMissedTransformationsPass());
  }

  if (!IsFullLTO) {
    // Eliminate loads by forwarding stores from the previous iteration to loads
    // of the current iteration.
    PM.add(createLoopLoadEliminationPass());
  }
  // Cleanup after the loop optimization passes.
  PM.add(createInstructionCombiningPass());

  if (OptLevel > 1 && ExtraVectorizerPasses) {
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correlated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    PM.add(createEarlyCSEPass());
    PM.add(createCorrelatedValuePropagationPass());
    PM.add(createInstructionCombiningPass());
    PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                          /*AllowSpeculation=*/true));
    PM.add(createSimpleLoopUnswitchLegacyPass());
    PM.add(createCFGSimplificationPass(
        SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
    PM.add(createInstructionCombiningPass());
  }

  // Now that we've formed fast to execute loop structures, we do further
  // optimizations. These are run afterward as they might block doing complex
  // analyses and transforms such as what are needed for loop vectorization.

  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
  // GVN, loop transforms, and others have already run, so it's now better to
  // convert to more optimized IR using more aggressive simplify CFG options.
  // The extra sinking transform can create larger basic blocks, so do this
  // before SLP vectorization.
  PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
                                         .forwardSwitchCondToPhi(true)
                                         .convertSwitchRangeToICmp(true)
                                         .convertSwitchToLookupTable(true)
                                         .needCanonicalLoops(false)
                                         .hoistCommonInsts(true)
                                         .sinkCommonInsts(true)));

  if (IsFullLTO) {
    PM.add(createSCCPPass());                 // Propagate exposed constants
    PM.add(createInstructionCombiningPass()); // Clean up again
    PM.add(createBitTrackingDCEPass());
  }

  // Optimize parallel scalar instruction chains into SIMD instructions.
  if (SLPVectorize) {
    PM.add(createSLPVectorizerPass());
    if (OptLevel > 1 && ExtraVectorizerPasses)
      PM.add(createEarlyCSEPass());
  }

  // Enhance/cleanup vector code.
  PM.add(createVectorCombinePass());

  if (!IsFullLTO) {
    addExtensionsToPM(EP_Peephole, PM);
    PM.add(createInstructionCombiningPass());

    if (EnableUnrollAndJam && !DisableUnrollLoops) {
      // Unroll and Jam. We do this before unroll but need to be in a separate
      // loop pass manager in order for the outer loop to be processed by
      // unroll and jam before the inner loop is unrolled.
      PM.add(createLoopUnrollAndJamPass(OptLevel));
    }

    // Unroll small loops
    PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                ForgetAllSCEVInLoopUnroll));

    if (!DisableUnrollLoops) {
      // LoopUnroll may generate some redundency to cleanup.
      PM.add(createInstructionCombiningPass());

      // Runtime unrolling will introduce runtime check in loop prologue. If the
      // unrolled loop is a inner loop, then the prologue will be inside the
      // outer loop. LICM pass can help to promote the runtime check out if the
      // checked value is loop invariant.
      PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                            /*AllowSpeculation=*/true));
    }

    PM.add(createWarnMissedTransformationsPass());
  }

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  if (IsFullLTO)
    PM.add(createInstructionCombiningPass());
}

void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  MPM.add(createAnnotation2MetadataLegacyPass());

  if (!PGOSampleUse.empty()) {
    MPM.add(createPruneEHPass());
    // In ThinLTO mode, when flattened profile is used, all the available
    // profile information will be annotated in PreLink phase so there is
    // no need to load the profile again in PostLink.
    if (!(FlattenedProfileUsed && PerformThinLTO))
      MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Allow forcing function attributes as a debugging and tuning aid.
  MPM.add(createForceFunctionAttrsLegacyPass());

  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
      MPM.add(createBarrierNoopPass());

    if (PerformThinLTO) {
      MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
      // Drop available_externally and unreferenced globals. This is necessary
      // with ThinLTO in order to avoid leaving undefined references to dead
      // globals in the object file.
      MPM.add(createEliminateAvailableExternallyPass());
      MPM.add(createGlobalDCEPass());
    }

    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);

    if (PrepareForLTO || PrepareForThinLTO) {
      MPM.add(createCanonicalizeAliasesPass());
      // Rename anon globals to be able to export them in the summary.
      // This has to be done after we add the extensions to the pass manager
      // as there could be passes (e.g. Adddress sanitizer) which introduce
      // new unnamed globals.
      MPM.add(createNameAnonGlobalPass());
    }

    MPM.add(createAnnotationRemarksLegacyPass());
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  // For ThinLTO there are two passes of indirect call promotion. The
  // first is during the compile phase when PerformThinLTO=false and
  // intra-module indirect call targets are promoted. The second is during
  // the ThinLTO backend when PerformThinLTO=true, when we promote imported
  // inter-module indirect calls. For that we perform indirect call promotion
  // earlier in the pass pipeline, here before globalopt. Otherwise imported
  // available_externally functions look unreferenced and are removed.
  if (PerformThinLTO) {
    MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
  }

  // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
  // as it will change the CFG too much to make the 2nd profile annotation
  // in backend more difficult.
  bool PrepareForThinLTOUsingPGOSampleProfile =
      PrepareForThinLTO && !PGOSampleUse.empty();
  if (PrepareForThinLTOUsingPGOSampleProfile)
    DisableUnrollLoops = true;

  // Infer attributes about declarations if possible.
  MPM.add(createInferFunctionAttrsLegacyPass());

  // Infer attributes on declarations, call sites, arguments, etc.
  if (AttributorRun & AttributorRunOption::MODULE)
    MPM.add(createAttributorLegacyPass());

  addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);

  if (OptLevel > 2)
    MPM.add(createCallSiteSplittingPass());

  // Propage constant function arguments by specializing the functions.
  if (OptLevel > 2 && EnableFunctionSpecialization)
    MPM.add(createFunctionSpecializationPass());

  MPM.add(createIPSCCPPass());          // IP SCCP
  MPM.add(createCalledValuePropagationPass());

  MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
  // Promote any localized global vars.
  MPM.add(createPromoteMemoryToRegisterPass());

  MPM.add(createDeadArgEliminationPass()); // Dead argument elimination

  MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true))); // Clean up after IPCP & DAE

  // We add a module alias analysis pass here. In part due to bugs in the
  // analysis infrastructure this "works" in that the analysis stays alive
  // for the entire SCC pass run below.
  MPM.add(createGlobalsAAWrapperPass());

  // Start of CallGraph SCC passes.
  MPM.add(createPruneEHPass()); // Remove dead EH info
  bool RunInliner = false;
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
    RunInliner = true;
  }

  // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
  if (AttributorRun & AttributorRunOption::CGSCC)
    MPM.add(createAttributorCGSCCLegacyPass());

  // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
  // there are no OpenMP runtime calls present in the module.
  if (OptLevel > 1)
    MPM.add(createOpenMPOptCGSCCLegacyPass());

  MPM.add(createPostOrderFunctionAttrsLegacyPass());

  addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
  addFunctionSimplificationPasses(MPM);

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  if (RunPartialInlining)
    MPM.add(createPartialInliningPass());

  if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
    // Remove avail extern fns and globals definitions if we aren't
    // compiling an object file for later LTO. For LTO we want to preserve
    // these so they are eligible for inlining at link-time. Note if they
    // are unreferenced they will be removed by GlobalDCE later, so
    // this only impacts referenced available externally globals.
    // Eventually they will be suppressed during codegen, but eliminating
    // here enables more opportunity for GlobalDCE as it may make
    // globals referenced by available external functions dead
    // and saves running remaining passes on the eliminated functions.
    MPM.add(createEliminateAvailableExternallyPass());

  if (EnableOrderFileInstrumentation)
    MPM.add(createInstrOrderFilePass());

  MPM.add(createReversePostOrderFunctionAttrsPass());

  // The inliner performs some kind of dead code elimination as it goes,
  // but there are cases that are not really caught by it. We might
  // at some point consider teaching the inliner about them, but it
  // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
  // benefits generally outweight the cost, making the whole pipeline
  // faster.
  if (RunInliner) {
    MPM.add(createGlobalOptimizerPass());
    MPM.add(createGlobalDCEPass());
  }

  // If we are planning to perform ThinLTO later, let's not bloat the code with
  // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
  // during ThinLTO and perform the rest of the optimizations afterward.
  if (PrepareForThinLTO) {
    // Ensure we perform any last passes, but do so before renaming anonymous
    // globals in case the passes add any.
    addExtensionsToPM(EP_OptimizerLast, MPM);
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to export them in the summary.
    MPM.add(createNameAnonGlobalPass());
    return;
  }

  if (PerformThinLTO)
    // Optimize globals now when performing ThinLTO, this enables more
    // optimizations later.
    MPM.add(createGlobalOptimizerPass());

  // Scheduling LoopVersioningLICM when inlining is over, because after that
  // we may see more accurate aliasing. Reason to run this late is that too
  // early versioning may prevent further inlining due to increase of code
  // size. By placing it just after inlining other optimizations which runs
  // later might get benefit of no-alias assumption in clone loop.
  if (UseLoopVersioningLICM) {
    MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                           /*AllowSpeculation=*/true));
  }

  // We add a fresh GlobalsModRef run at this point. This is particularly
  // useful as the above will have inlined, DCE'ed, and function-attr
  // propagated everything. We should at this point have a reasonably minimal
  // and richly annotated call graph. By computing aliasing and mod/ref
  // information for all local globals here, the late loop passes and notably
  // the vectorizer will be able to use them to help recognize vectorizable
  // memory operations.
  //
  // Note that this relies on a bug in the pass manager which preserves
  // a module analysis into a function pass pipeline (and throughout it) so
  // long as the first function pass doesn't invalidate the module analysis.
  // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
  // this to work. Fortunately, it is trivial to preserve AliasAnalysis
  // (doing nothing preserves it as it is required to be conservatively
  // correct in the face of IR changes).
  MPM.add(createGlobalsAAWrapperPass());

  MPM.add(createFloat2IntPass());
  MPM.add(createLowerConstantIntrinsicsPass());

  if (EnableMatrix) {
    MPM.add(createLowerMatrixIntrinsicsPass());
    // CSE the pointer arithmetic of the column vectors.  This allows alias
    // analysis to establish no-aliasing between loads and stores of different
    // columns of the same matrix.
    MPM.add(createEarlyCSEPass(false));
  }

  addExtensionsToPM(EP_VectorizerStart, MPM);

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.  This is
  // currently only performed for loops marked with the metadata
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
  MPM.add(createLoopDistributePass());

  addVectorPasses(MPM, /* IsFullLTO */ false);

  // FIXME: We shouldn't bother with this anymore.
  MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

  // GlobalOpt already deletes dead functions and globals, at -O2 try a
  // late pass of GlobalDCE.  It is capable of deleting dead cycles.
  if (OptLevel > 1) {
    MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
    MPM.add(createConstantMergePass());     // Merge dup global constants
  }

  // See comment in the new PM for justification of scheduling splitting at
  // this stage (\ref buildModuleSimplificationPipeline).
  if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
    MPM.add(createHotColdSplittingPass());

  if (EnableIROutliner)
    MPM.add(createIROutlinerPass());

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  // Add Module flag "CG Profile" based on Branch Frequency Information.
  if (CallGraphProfile)
    MPM.add(createCGProfileLegacyPass());

  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
  // canonicalization pass that enables other optimizations. As a result,
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
  // result too early.
  MPM.add(createLoopSinkPass());
  // Get rid of LCSSA nodes.
  MPM.add(createInstSimplifyLegacyPass());

  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
  // flattening of blocks.
  MPM.add(createDivRemPairsPass());

  // LoopSink (and other loop passes since the last simplifyCFG) might have
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().convertSwitchRangeToICmp(true)));

  addExtensionsToPM(EP_OptimizerLast, MPM);

  if (PrepareForLTO) {
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to handle them in the summary
    MPM.add(createNameAnonGlobalPass());
  }

  MPM.add(createAnnotationRemarksLegacyPass());
}

void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
  // Load sample profile before running the LTO optimization pipeline.
  if (!PGOSampleUse.empty()) {
    PM.add(createPruneEHPass());
    PM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Remove unused virtual tables to improve the quality of code generated by
  // whole-program devirtualization and bitset lowering.
  PM.add(createGlobalDCEPass());

  // Provide AliasAnalysis services for optimizations.
  addInitialAliasAnalysisPasses(PM);

  // Allow forcing function attributes as a debugging and tuning aid.
  PM.add(createForceFunctionAttrsLegacyPass());

  // Infer attributes about declarations if possible.
  PM.add(createInferFunctionAttrsLegacyPass());

  if (OptLevel > 1) {
    // Split call-site with more constrained arguments.
    PM.add(createCallSiteSplittingPass());

    // Propage constant function arguments by specializing the functions.
    if (EnableFunctionSpecialization && OptLevel > 2)
      PM.add(createFunctionSpecializationPass());

    // Propagate constants at call sites into the functions they call.  This
    // opens opportunities for globalopt (and inlining) by substituting function
    // pointers passed as arguments to direct uses of functions.
    PM.add(createIPSCCPPass());

    // Attach metadata to indirect call sites indicating the set of functions
    // they may target at run-time. This should follow IPSCCP.
    PM.add(createCalledValuePropagationPass());

    // Infer attributes on declarations, call sites, arguments, etc.
    if (AttributorRun & AttributorRunOption::MODULE)
      PM.add(createAttributorLegacyPass());
  }

  // Infer attributes about definitions. The readnone attribute in particular is
  // required for virtual constant propagation.
  PM.add(createPostOrderFunctionAttrsLegacyPass());
  PM.add(createReversePostOrderFunctionAttrsPass());

  // Split globals using inrange annotations on GEP indices. This can help
  // improve the quality of generated code when virtual constant propagation or
  // control flow integrity are enabled.
  PM.add(createGlobalSplitPass());

  // Apply whole-program devirtualization and virtual constant propagation.
  PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));

  // That's all we need at opt level 1.
  if (OptLevel == 1)
    return;

  // Now that we internalized some globals, see if we can hack on them!
  PM.add(createGlobalOptimizerPass());
  // Promote any localized global vars.
  PM.add(createPromoteMemoryToRegisterPass());

  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant.
  PM.add(createConstantMergePass());

  // Remove unused arguments from functions.
  PM.add(createDeadArgEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  if (OptLevel > 2)
    PM.add(createAggressiveInstCombinerPass());
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);

  // Inline small functions
  bool RunInliner = Inliner;
  if (RunInliner) {
    PM.add(Inliner);
    Inliner = nullptr;
  }

  PM.add(createPruneEHPass());   // Remove dead EH info.

  // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
  if (AttributorRun & AttributorRunOption::CGSCC)
    PM.add(createAttributorCGSCCLegacyPass());

  // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
  // there are no OpenMP runtime calls present in the module.
  if (OptLevel > 1)
    PM.add(createOpenMPOptCGSCCLegacyPass());

  // Optimize globals again if we ran the inliner.
  if (RunInliner)
    PM.add(createGlobalOptimizerPass());
  PM.add(createGlobalDCEPass()); // Remove dead functions.

  // The IPO passes may leave cruft around.  Clean up after them.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);
  PM.add(createJumpThreadingPass());

  // Break up allocas
  PM.add(createSROAPass());

  // LTO provides additional opportunities for tailcall elimination due to
  // link-time inlining, and visibility of nocapture attribute.
  if (OptLevel > 1)
    PM.add(createTailCallEliminationPass());

  // Infer attributes on declarations, call sites, arguments, etc.
  PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
  // Run a few AA driven optimizations here and now, to cleanup the code.
  PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.

  PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                        /*AllowSpeculation=*/true));
  PM.add(NewGVN ? createNewGVNPass()
                : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.

  // Nuke dead stores.
  PM.add(createDeadStoreEliminationPass());
  PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.

  // More loops are countable; try to optimize them.
  if (EnableLoopFlatten)
    PM.add(createLoopFlattenPass());
  PM.add(createIndVarSimplifyPass());
  PM.add(createLoopDeletionPass());
  if (EnableLoopInterchange)
    PM.add(createLoopInterchangePass());

  if (EnableConstraintElimination)
    PM.add(createConstraintEliminationPass());

  // Unroll small loops and perform peeling.
  PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                    ForgetAllSCEVInLoopUnroll));
  PM.add(createLoopDistributePass());

  addVectorPasses(PM, /* IsFullLTO */ true);

  addExtensionsToPM(EP_Peephole, PM);

  PM.add(createJumpThreadingPass());
}

void PassManagerBuilder::addLateLTOOptimizationPasses(
    legacy::PassManagerBase &PM) {
  // See comment in the new PM for justification of scheduling splitting at
  // this stage (\ref buildLTODefaultPipeline).
  if (EnableHotColdSplit)
    PM.add(createHotColdSplittingPass());

  // Delete basic blocks, which optimization passes may have killed.
  PM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true)));

  // Drop bodies of available externally objects to improve GlobalDCE.
  PM.add(createEliminateAvailableExternallyPass());

  // Now that we have optimized the program, discard unreachable functions.
  PM.add(createGlobalDCEPass());

  // FIXME: this is profitable (for compiler time) to do at -O0 too, but
  // currently it damages debug info.
  if (MergeFunctions)
    PM.add(createMergeFunctionsPass());
}

LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
  PassManagerBuilder *PMB = new PassManagerBuilder();
  return wrap(PMB);
}

void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
  PassManagerBuilder *Builder = unwrap(PMB);
  delete Builder;
}

void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
                                  unsigned OptLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->OptLevel = OptLevel;
}

void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
                                   unsigned SizeLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->SizeLevel = SizeLevel;
}

void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  // NOTE: The DisableUnitAtATime switch has been removed.
}

void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->DisableUnrollLoops = Value;
}

void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
                                                 LLVMBool Value) {
  // NOTE: The simplify-libcalls pass has been removed.
}

void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
                                              unsigned Threshold) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->Inliner = createFunctionInliningPass(Threshold);
}

void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
                                                  LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
  Builder->populateFunctionPassManager(*FPM);
}

void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
                                                LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::PassManagerBase *MPM = unwrap(PM);
  Builder->populateModulePassManager(*MPM);
}