aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/MemProfContextDisambiguation.cpp
blob: c1e5ab1a2b56185d05c3597a28a4df93b5ad21f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
//==-- MemProfContextDisambiguation.cpp - Disambiguate contexts -------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements support for context disambiguation of allocation
// calls for profile guided heap optimization. Specifically, it uses Memprof
// profiles which indicate context specific allocation behavior (currently
// distinguishing cold vs hot memory allocations). Cloning is performed to
// expose the cold allocation call contexts, and the allocation calls are
// subsequently annotated with an attribute for later transformation.
//
// The transformations can be performed either directly on IR (regular LTO), or
// on a ThinLTO index (and later applied to the IR during the ThinLTO backend).
// Both types of LTO operate on a the same base graph representation, which
// uses CRTP to support either IR or Index formats.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <deque>
#include <sstream>
#include <unordered_map>
#include <vector>
using namespace llvm;
using namespace llvm::memprof;

#define DEBUG_TYPE "memprof-context-disambiguation"

STATISTIC(FunctionClonesAnalysis,
          "Number of function clones created during whole program analysis");
STATISTIC(FunctionClonesThinBackend,
          "Number of function clones created during ThinLTO backend");
STATISTIC(FunctionsClonedThinBackend,
          "Number of functions that had clones created during ThinLTO backend");
STATISTIC(AllocTypeNotCold, "Number of not cold static allocations (possibly "
                            "cloned) during whole program analysis");
STATISTIC(AllocTypeCold, "Number of cold static allocations (possibly cloned) "
                         "during whole program analysis");
STATISTIC(AllocTypeNotColdThinBackend,
          "Number of not cold static allocations (possibly cloned) during "
          "ThinLTO backend");
STATISTIC(AllocTypeColdThinBackend, "Number of cold static allocations "
                                    "(possibly cloned) during ThinLTO backend");
STATISTIC(OrigAllocsThinBackend,
          "Number of original (not cloned) allocations with memprof profiles "
          "during ThinLTO backend");
STATISTIC(
    AllocVersionsThinBackend,
    "Number of allocation versions (including clones) during ThinLTO backend");
STATISTIC(MaxAllocVersionsThinBackend,
          "Maximum number of allocation versions created for an original "
          "allocation during ThinLTO backend");
STATISTIC(UnclonableAllocsThinBackend,
          "Number of unclonable ambigous allocations during ThinLTO backend");
STATISTIC(RemovedEdgesWithMismatchedCallees,
          "Number of edges removed due to mismatched callees (profiled vs IR)");
STATISTIC(FoundProfiledCalleeCount,
          "Number of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeDepth,
          "Aggregate depth of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeMaxDepth,
          "Maximum depth of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeNonUniquelyCount,
          "Number of profiled callees found via multiple tail call chains");

static cl::opt<std::string> DotFilePathPrefix(
    "memprof-dot-file-path-prefix", cl::init(""), cl::Hidden,
    cl::value_desc("filename"),
    cl::desc("Specify the path prefix of the MemProf dot files."));

static cl::opt<bool> ExportToDot("memprof-export-to-dot", cl::init(false),
                                 cl::Hidden,
                                 cl::desc("Export graph to dot files."));

static cl::opt<bool>
    DumpCCG("memprof-dump-ccg", cl::init(false), cl::Hidden,
            cl::desc("Dump CallingContextGraph to stdout after each stage."));

static cl::opt<bool>
    VerifyCCG("memprof-verify-ccg", cl::init(false), cl::Hidden,
              cl::desc("Perform verification checks on CallingContextGraph."));

static cl::opt<bool>
    VerifyNodes("memprof-verify-nodes", cl::init(false), cl::Hidden,
                cl::desc("Perform frequent verification checks on nodes."));

static cl::opt<std::string> MemProfImportSummary(
    "memprof-import-summary",
    cl::desc("Import summary to use for testing the ThinLTO backend via opt"),
    cl::Hidden);

static cl::opt<unsigned>
    TailCallSearchDepth("memprof-tail-call-search-depth", cl::init(5),
                        cl::Hidden,
                        cl::desc("Max depth to recursively search for missing "
                                 "frames through tail calls."));

namespace llvm {
cl::opt<bool> EnableMemProfContextDisambiguation(
    "enable-memprof-context-disambiguation", cl::init(false), cl::Hidden,
    cl::ZeroOrMore, cl::desc("Enable MemProf context disambiguation"));

// Indicate we are linking with an allocator that supports hot/cold operator
// new interfaces.
cl::opt<bool> SupportsHotColdNew(
    "supports-hot-cold-new", cl::init(false), cl::Hidden,
    cl::desc("Linking with hot/cold operator new interfaces"));
} // namespace llvm

namespace {
/// CRTP base for graphs built from either IR or ThinLTO summary index.
///
/// The graph represents the call contexts in all memprof metadata on allocation
/// calls, with nodes for the allocations themselves, as well as for the calls
/// in each context. The graph is initially built from the allocation memprof
/// metadata (or summary) MIBs. It is then updated to match calls with callsite
/// metadata onto the nodes, updating it to reflect any inlining performed on
/// those calls.
///
/// Each MIB (representing an allocation's call context with allocation
/// behavior) is assigned a unique context id during the graph build. The edges
/// and nodes in the graph are decorated with the context ids they carry. This
/// is used to correctly update the graph when cloning is performed so that we
/// can uniquify the context for a single (possibly cloned) allocation.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
class CallsiteContextGraph {
public:
  CallsiteContextGraph() = default;
  CallsiteContextGraph(const CallsiteContextGraph &) = default;
  CallsiteContextGraph(CallsiteContextGraph &&) = default;

  /// Main entry point to perform analysis and transformations on graph.
  bool process();

  /// Perform cloning on the graph necessary to uniquely identify the allocation
  /// behavior of an allocation based on its context.
  void identifyClones();

  /// Assign callsite clones to functions, cloning functions as needed to
  /// accommodate the combinations of their callsite clones reached by callers.
  /// For regular LTO this clones functions and callsites in the IR, but for
  /// ThinLTO the cloning decisions are noted in the summaries and later applied
  /// in applyImport.
  bool assignFunctions();

  void dump() const;
  void print(raw_ostream &OS) const;

  friend raw_ostream &operator<<(raw_ostream &OS,
                                 const CallsiteContextGraph &CCG) {
    CCG.print(OS);
    return OS;
  }

  friend struct GraphTraits<
      const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;
  friend struct DOTGraphTraits<
      const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;

  void exportToDot(std::string Label) const;

  /// Represents a function clone via FuncTy pointer and clone number pair.
  struct FuncInfo final
      : public std::pair<FuncTy *, unsigned /*Clone number*/> {
    using Base = std::pair<FuncTy *, unsigned>;
    FuncInfo(const Base &B) : Base(B) {}
    FuncInfo(FuncTy *F = nullptr, unsigned CloneNo = 0) : Base(F, CloneNo) {}
    explicit operator bool() const { return this->first != nullptr; }
    FuncTy *func() const { return this->first; }
    unsigned cloneNo() const { return this->second; }
  };

  /// Represents a callsite clone via CallTy and clone number pair.
  struct CallInfo final : public std::pair<CallTy, unsigned /*Clone number*/> {
    using Base = std::pair<CallTy, unsigned>;
    CallInfo(const Base &B) : Base(B) {}
    CallInfo(CallTy Call = nullptr, unsigned CloneNo = 0)
        : Base(Call, CloneNo) {}
    explicit operator bool() const { return (bool)this->first; }
    CallTy call() const { return this->first; }
    unsigned cloneNo() const { return this->second; }
    void setCloneNo(unsigned N) { this->second = N; }
    void print(raw_ostream &OS) const {
      if (!operator bool()) {
        assert(!cloneNo());
        OS << "null Call";
        return;
      }
      call()->print(OS);
      OS << "\t(clone " << cloneNo() << ")";
    }
    void dump() const {
      print(dbgs());
      dbgs() << "\n";
    }
    friend raw_ostream &operator<<(raw_ostream &OS, const CallInfo &Call) {
      Call.print(OS);
      return OS;
    }
  };

  struct ContextEdge;

  /// Node in the Callsite Context Graph
  struct ContextNode {
    // Keep this for now since in the IR case where we have an Instruction* it
    // is not as immediately discoverable. Used for printing richer information
    // when dumping graph.
    bool IsAllocation;

    // Keeps track of when the Call was reset to null because there was
    // recursion.
    bool Recursive = false;

    // The corresponding allocation or interior call.
    CallInfo Call;

    // For alloc nodes this is a unique id assigned when constructed, and for
    // callsite stack nodes it is the original stack id when the node is
    // constructed from the memprof MIB metadata on the alloc nodes. Note that
    // this is only used when matching callsite metadata onto the stack nodes
    // created when processing the allocation memprof MIBs, and for labeling
    // nodes in the dot graph. Therefore we don't bother to assign a value for
    // clones.
    uint64_t OrigStackOrAllocId = 0;

    // This will be formed by ORing together the AllocationType enum values
    // for contexts including this node.
    uint8_t AllocTypes = 0;

    // Edges to all callees in the profiled call stacks.
    // TODO: Should this be a map (from Callee node) for more efficient lookup?
    std::vector<std::shared_ptr<ContextEdge>> CalleeEdges;

    // Edges to all callers in the profiled call stacks.
    // TODO: Should this be a map (from Caller node) for more efficient lookup?
    std::vector<std::shared_ptr<ContextEdge>> CallerEdges;

    // Get the list of edges from which we can compute allocation information
    // such as the context ids and allocation type of this node.
    const std::vector<std::shared_ptr<ContextEdge>> *
    getEdgesWithAllocInfo() const {
      // If node has any callees, compute from those, otherwise compute from
      // callers (i.e. if this is the leaf allocation node).
      if (!CalleeEdges.empty())
        return &CalleeEdges;
      if (!CallerEdges.empty()) {
        // A node with caller edges but no callee edges must be the allocation
        // node.
        assert(IsAllocation);
        return &CallerEdges;
      }
      return nullptr;
    }

    // Compute the context ids for this node from the union of its edge context
    // ids.
    DenseSet<uint32_t> getContextIds() const {
      DenseSet<uint32_t> ContextIds;
      auto *Edges = getEdgesWithAllocInfo();
      if (!Edges)
        return {};
      unsigned Count = 0;
      for (auto &Edge : *Edges)
        Count += Edge->getContextIds().size();
      ContextIds.reserve(Count);
      for (auto &Edge : *Edges)
        ContextIds.insert(Edge->getContextIds().begin(),
                          Edge->getContextIds().end());
      return ContextIds;
    }

    // Compute the allocation type for this node from the OR of its edge
    // allocation types.
    uint8_t computeAllocType() const {
      auto *Edges = getEdgesWithAllocInfo();
      if (!Edges)
        return (uint8_t)AllocationType::None;
      uint8_t BothTypes =
          (uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
      uint8_t AllocType = (uint8_t)AllocationType::None;
      for (auto &Edge : *Edges) {
        AllocType |= Edge->AllocTypes;
        // Bail early if alloc type reached both, no further refinement.
        if (AllocType == BothTypes)
          return AllocType;
      }
      return AllocType;
    }

    // The context ids set for this node is empty if its edge context ids are
    // also all empty.
    bool emptyContextIds() const {
      auto *Edges = getEdgesWithAllocInfo();
      if (!Edges)
        return true;
      for (auto &Edge : *Edges) {
        if (!Edge->getContextIds().empty())
          return false;
      }
      return true;
    }

    // List of clones of this ContextNode, initially empty.
    std::vector<ContextNode *> Clones;

    // If a clone, points to the original uncloned node.
    ContextNode *CloneOf = nullptr;

    ContextNode(bool IsAllocation) : IsAllocation(IsAllocation), Call() {}

    ContextNode(bool IsAllocation, CallInfo C)
        : IsAllocation(IsAllocation), Call(C) {}

    void addClone(ContextNode *Clone) {
      if (CloneOf) {
        CloneOf->Clones.push_back(Clone);
        Clone->CloneOf = CloneOf;
      } else {
        Clones.push_back(Clone);
        assert(!Clone->CloneOf);
        Clone->CloneOf = this;
      }
    }

    ContextNode *getOrigNode() {
      if (!CloneOf)
        return this;
      return CloneOf;
    }

    void addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
                               unsigned int ContextId);

    ContextEdge *findEdgeFromCallee(const ContextNode *Callee);
    ContextEdge *findEdgeFromCaller(const ContextNode *Caller);
    void eraseCalleeEdge(const ContextEdge *Edge);
    void eraseCallerEdge(const ContextEdge *Edge);

    void setCall(CallInfo C) { Call = C; }

    bool hasCall() const { return (bool)Call.call(); }

    void printCall(raw_ostream &OS) const { Call.print(OS); }

    // True if this node was effectively removed from the graph, in which case
    // it should have an allocation type of None and empty context ids.
    bool isRemoved() const {
      assert((AllocTypes == (uint8_t)AllocationType::None) ==
             emptyContextIds());
      return AllocTypes == (uint8_t)AllocationType::None;
    }

    void dump() const;
    void print(raw_ostream &OS) const;

    friend raw_ostream &operator<<(raw_ostream &OS, const ContextNode &Node) {
      Node.print(OS);
      return OS;
    }
  };

  /// Edge in the Callsite Context Graph from a ContextNode N to a caller or
  /// callee.
  struct ContextEdge {
    ContextNode *Callee;
    ContextNode *Caller;

    // This will be formed by ORing together the AllocationType enum values
    // for contexts including this edge.
    uint8_t AllocTypes = 0;

    // The set of IDs for contexts including this edge.
    DenseSet<uint32_t> ContextIds;

    ContextEdge(ContextNode *Callee, ContextNode *Caller, uint8_t AllocType,
                DenseSet<uint32_t> ContextIds)
        : Callee(Callee), Caller(Caller), AllocTypes(AllocType),
          ContextIds(std::move(ContextIds)) {}

    DenseSet<uint32_t> &getContextIds() { return ContextIds; }

    void dump() const;
    void print(raw_ostream &OS) const;

    friend raw_ostream &operator<<(raw_ostream &OS, const ContextEdge &Edge) {
      Edge.print(OS);
      return OS;
    }
  };

  /// Helpers to remove callee edges that have allocation type None (due to not
  /// carrying any context ids) after transformations.
  void removeNoneTypeCalleeEdges(ContextNode *Node);
  void
  recursivelyRemoveNoneTypeCalleeEdges(ContextNode *Node,
                                       DenseSet<const ContextNode *> &Visited);

protected:
  /// Get a list of nodes corresponding to the stack ids in the given callsite
  /// context.
  template <class NodeT, class IteratorT>
  std::vector<uint64_t>
  getStackIdsWithContextNodes(CallStack<NodeT, IteratorT> &CallsiteContext);

  /// Adds nodes for the given allocation and any stack ids on its memprof MIB
  /// metadata (or summary).
  ContextNode *addAllocNode(CallInfo Call, const FuncTy *F);

  /// Adds nodes for the given MIB stack ids.
  template <class NodeT, class IteratorT>
  void addStackNodesForMIB(ContextNode *AllocNode,
                           CallStack<NodeT, IteratorT> &StackContext,
                           CallStack<NodeT, IteratorT> &CallsiteContext,
                           AllocationType AllocType);

  /// Matches all callsite metadata (or summary) to the nodes created for
  /// allocation memprof MIB metadata, synthesizing new nodes to reflect any
  /// inlining performed on those callsite instructions.
  void updateStackNodes();

  /// Update graph to conservatively handle any callsite stack nodes that target
  /// multiple different callee target functions.
  void handleCallsitesWithMultipleTargets();

  /// Save lists of calls with MemProf metadata in each function, for faster
  /// iteration.
  MapVector<FuncTy *, std::vector<CallInfo>> FuncToCallsWithMetadata;

  /// Map from callsite node to the enclosing caller function.
  std::map<const ContextNode *, const FuncTy *> NodeToCallingFunc;

private:
  using EdgeIter = typename std::vector<std::shared_ptr<ContextEdge>>::iterator;

  using CallContextInfo = std::tuple<CallTy, std::vector<uint64_t>,
                                     const FuncTy *, DenseSet<uint32_t>>;

  /// Assigns the given Node to calls at or inlined into the location with
  /// the Node's stack id, after post order traversing and processing its
  /// caller nodes. Uses the call information recorded in the given
  /// StackIdToMatchingCalls map, and creates new nodes for inlined sequences
  /// as needed. Called by updateStackNodes which sets up the given
  /// StackIdToMatchingCalls map.
  void assignStackNodesPostOrder(
      ContextNode *Node, DenseSet<const ContextNode *> &Visited,
      DenseMap<uint64_t, std::vector<CallContextInfo>> &StackIdToMatchingCalls);

  /// Duplicates the given set of context ids, updating the provided
  /// map from each original id with the newly generated context ids,
  /// and returning the new duplicated id set.
  DenseSet<uint32_t> duplicateContextIds(
      const DenseSet<uint32_t> &StackSequenceContextIds,
      DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);

  /// Propagates all duplicated context ids across the graph.
  void propagateDuplicateContextIds(
      const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);

  /// Connect the NewNode to OrigNode's callees if TowardsCallee is true,
  /// else to its callers. Also updates OrigNode's edges to remove any context
  /// ids moved to the newly created edge.
  void connectNewNode(ContextNode *NewNode, ContextNode *OrigNode,
                      bool TowardsCallee,
                      DenseSet<uint32_t> RemainingContextIds);

  /// Get the stack id corresponding to the given Id or Index (for IR this will
  /// return itself, for a summary index this will return the id recorded in the
  /// index for that stack id index value).
  uint64_t getStackId(uint64_t IdOrIndex) const {
    return static_cast<const DerivedCCG *>(this)->getStackId(IdOrIndex);
  }

  /// Returns true if the given call targets the callee of the given edge, or if
  /// we were able to identify the call chain through intermediate tail calls.
  /// In the latter case new context nodes are added to the graph for the
  /// identified tail calls, and their synthesized nodes are added to
  /// TailCallToContextNodeMap. The EdgeIter is updated in either case to the
  /// next element after the input position (either incremented or updated after
  /// removing the old edge).
  bool
  calleesMatch(CallTy Call, EdgeIter &EI,
               MapVector<CallInfo, ContextNode *> &TailCallToContextNodeMap);

  /// Returns true if the given call targets the given function, or if we were
  /// able to identify the call chain through intermediate tail calls (in which
  /// case FoundCalleeChain will be populated).
  bool calleeMatchesFunc(
      CallTy Call, const FuncTy *Func, const FuncTy *CallerFunc,
      std::vector<std::pair<CallTy, FuncTy *>> &FoundCalleeChain) {
    return static_cast<DerivedCCG *>(this)->calleeMatchesFunc(
        Call, Func, CallerFunc, FoundCalleeChain);
  }

  /// Get a list of nodes corresponding to the stack ids in the given
  /// callsite's context.
  std::vector<uint64_t> getStackIdsWithContextNodesForCall(CallTy Call) {
    return static_cast<DerivedCCG *>(this)->getStackIdsWithContextNodesForCall(
        Call);
  }

  /// Get the last stack id in the context for callsite.
  uint64_t getLastStackId(CallTy Call) {
    return static_cast<DerivedCCG *>(this)->getLastStackId(Call);
  }

  /// Update the allocation call to record type of allocated memory.
  void updateAllocationCall(CallInfo &Call, AllocationType AllocType) {
    AllocType == AllocationType::Cold ? AllocTypeCold++ : AllocTypeNotCold++;
    static_cast<DerivedCCG *>(this)->updateAllocationCall(Call, AllocType);
  }

  /// Update non-allocation call to invoke (possibly cloned) function
  /// CalleeFunc.
  void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc) {
    static_cast<DerivedCCG *>(this)->updateCall(CallerCall, CalleeFunc);
  }

  /// Clone the given function for the given callsite, recording mapping of all
  /// of the functions tracked calls to their new versions in the CallMap.
  /// Assigns new clones to clone number CloneNo.
  FuncInfo cloneFunctionForCallsite(
      FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
      std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
    return static_cast<DerivedCCG *>(this)->cloneFunctionForCallsite(
        Func, Call, CallMap, CallsWithMetadataInFunc, CloneNo);
  }

  /// Gets a label to use in the dot graph for the given call clone in the given
  /// function.
  std::string getLabel(const FuncTy *Func, const CallTy Call,
                       unsigned CloneNo) const {
    return static_cast<const DerivedCCG *>(this)->getLabel(Func, Call, CloneNo);
  }

  /// Helpers to find the node corresponding to the given call or stackid.
  ContextNode *getNodeForInst(const CallInfo &C);
  ContextNode *getNodeForAlloc(const CallInfo &C);
  ContextNode *getNodeForStackId(uint64_t StackId);

  /// Computes the alloc type corresponding to the given context ids, by
  /// unioning their recorded alloc types.
  uint8_t computeAllocType(DenseSet<uint32_t> &ContextIds);

  /// Returns the allocation type of the intersection of the contexts of two
  /// nodes (based on their provided context id sets), optimized for the case
  /// when Node1Ids is smaller than Node2Ids.
  uint8_t intersectAllocTypesImpl(const DenseSet<uint32_t> &Node1Ids,
                                  const DenseSet<uint32_t> &Node2Ids);

  /// Returns the allocation type of the intersection of the contexts of two
  /// nodes (based on their provided context id sets).
  uint8_t intersectAllocTypes(const DenseSet<uint32_t> &Node1Ids,
                              const DenseSet<uint32_t> &Node2Ids);

  /// Create a clone of Edge's callee and move Edge to that new callee node,
  /// performing the necessary context id and allocation type updates.
  /// If callee's caller edge iterator is supplied, it is updated when removing
  /// the edge from that list. If ContextIdsToMove is non-empty, only that
  /// subset of Edge's ids are moved to an edge to the new callee.
  ContextNode *
  moveEdgeToNewCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
                           EdgeIter *CallerEdgeI = nullptr,
                           DenseSet<uint32_t> ContextIdsToMove = {});

  /// Change the callee of Edge to existing callee clone NewCallee, performing
  /// the necessary context id and allocation type updates.
  /// If callee's caller edge iterator is supplied, it is updated when removing
  /// the edge from that list. If ContextIdsToMove is non-empty, only that
  /// subset of Edge's ids are moved to an edge to the new callee.
  void moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
                                     ContextNode *NewCallee,
                                     EdgeIter *CallerEdgeI = nullptr,
                                     bool NewClone = false,
                                     DenseSet<uint32_t> ContextIdsToMove = {});

  /// Recursively perform cloning on the graph for the given Node and its
  /// callers, in order to uniquely identify the allocation behavior of an
  /// allocation given its context. The context ids of the allocation being
  /// processed are given in AllocContextIds.
  void identifyClones(ContextNode *Node, DenseSet<const ContextNode *> &Visited,
                      const DenseSet<uint32_t> &AllocContextIds);

  /// Map from each context ID to the AllocationType assigned to that context.
  DenseMap<uint32_t, AllocationType> ContextIdToAllocationType;

  /// Identifies the context node created for a stack id when adding the MIB
  /// contexts to the graph. This is used to locate the context nodes when
  /// trying to assign the corresponding callsites with those stack ids to these
  /// nodes.
  DenseMap<uint64_t, ContextNode *> StackEntryIdToContextNodeMap;

  /// Maps to track the calls to their corresponding nodes in the graph.
  MapVector<CallInfo, ContextNode *> AllocationCallToContextNodeMap;
  MapVector<CallInfo, ContextNode *> NonAllocationCallToContextNodeMap;

  /// Owner of all ContextNode unique_ptrs.
  std::vector<std::unique_ptr<ContextNode>> NodeOwner;

  /// Perform sanity checks on graph when requested.
  void check() const;

  /// Keeps track of the last unique context id assigned.
  unsigned int LastContextId = 0;
};

template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextNode =
    typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextEdge =
    typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using FuncInfo =
    typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::FuncInfo;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using CallInfo =
    typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::CallInfo;

/// CRTP derived class for graphs built from IR (regular LTO).
class ModuleCallsiteContextGraph
    : public CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
                                  Instruction *> {
public:
  ModuleCallsiteContextGraph(
      Module &M,
      llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);

private:
  friend CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
                              Instruction *>;

  uint64_t getStackId(uint64_t IdOrIndex) const;
  bool calleeMatchesFunc(
      Instruction *Call, const Function *Func, const Function *CallerFunc,
      std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain);
  bool findProfiledCalleeThroughTailCalls(
      const Function *ProfiledCallee, Value *CurCallee, unsigned Depth,
      std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain,
      bool &FoundMultipleCalleeChains);
  uint64_t getLastStackId(Instruction *Call);
  std::vector<uint64_t> getStackIdsWithContextNodesForCall(Instruction *Call);
  void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
  void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
  CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
                       Instruction *>::FuncInfo
  cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
                           std::map<CallInfo, CallInfo> &CallMap,
                           std::vector<CallInfo> &CallsWithMetadataInFunc,
                           unsigned CloneNo);
  std::string getLabel(const Function *Func, const Instruction *Call,
                       unsigned CloneNo) const;

  const Module &Mod;
  llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
};

/// Represents a call in the summary index graph, which can either be an
/// allocation or an interior callsite node in an allocation's context.
/// Holds a pointer to the corresponding data structure in the index.
struct IndexCall : public PointerUnion<CallsiteInfo *, AllocInfo *> {
  IndexCall() : PointerUnion() {}
  IndexCall(std::nullptr_t) : IndexCall() {}
  IndexCall(CallsiteInfo *StackNode) : PointerUnion(StackNode) {}
  IndexCall(AllocInfo *AllocNode) : PointerUnion(AllocNode) {}
  IndexCall(PointerUnion PT) : PointerUnion(PT) {}

  IndexCall *operator->() { return this; }

  PointerUnion<CallsiteInfo *, AllocInfo *> getBase() const { return *this; }

  void print(raw_ostream &OS) const {
    if (auto *AI = llvm::dyn_cast_if_present<AllocInfo *>(getBase())) {
      OS << *AI;
    } else {
      auto *CI = llvm::dyn_cast_if_present<CallsiteInfo *>(getBase());
      assert(CI);
      OS << *CI;
    }
  }
};

/// CRTP derived class for graphs built from summary index (ThinLTO).
class IndexCallsiteContextGraph
    : public CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
                                  IndexCall> {
public:
  IndexCallsiteContextGraph(
      ModuleSummaryIndex &Index,
      llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
          isPrevailing);

  ~IndexCallsiteContextGraph() {
    // Now that we are done with the graph it is safe to add the new
    // CallsiteInfo structs to the function summary vectors. The graph nodes
    // point into locations within these vectors, so we don't want to add them
    // any earlier.
    for (auto &I : FunctionCalleesToSynthesizedCallsiteInfos) {
      auto *FS = I.first;
      for (auto &Callsite : I.second)
        FS->addCallsite(*Callsite.second);
    }
  }

private:
  friend CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
                              IndexCall>;

  uint64_t getStackId(uint64_t IdOrIndex) const;
  bool calleeMatchesFunc(
      IndexCall &Call, const FunctionSummary *Func,
      const FunctionSummary *CallerFunc,
      std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain);
  bool findProfiledCalleeThroughTailCalls(
      ValueInfo ProfiledCallee, ValueInfo CurCallee, unsigned Depth,
      std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain,
      bool &FoundMultipleCalleeChains);
  uint64_t getLastStackId(IndexCall &Call);
  std::vector<uint64_t> getStackIdsWithContextNodesForCall(IndexCall &Call);
  void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
  void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
  CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
                       IndexCall>::FuncInfo
  cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
                           std::map<CallInfo, CallInfo> &CallMap,
                           std::vector<CallInfo> &CallsWithMetadataInFunc,
                           unsigned CloneNo);
  std::string getLabel(const FunctionSummary *Func, const IndexCall &Call,
                       unsigned CloneNo) const;

  // Saves mapping from function summaries containing memprof records back to
  // its VI, for use in checking and debugging.
  std::map<const FunctionSummary *, ValueInfo> FSToVIMap;

  const ModuleSummaryIndex &Index;
  llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
      isPrevailing;

  // Saves/owns the callsite info structures synthesized for missing tail call
  // frames that we discover while building the graph.
  // It maps from the summary of the function making the tail call, to a map
  // of callee ValueInfo to corresponding synthesized callsite info.
  std::unordered_map<FunctionSummary *,
                     std::map<ValueInfo, std::unique_ptr<CallsiteInfo>>>
      FunctionCalleesToSynthesizedCallsiteInfos;
};
} // namespace

namespace llvm {
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
    ModuleCallsiteContextGraph, Function, Instruction *>::CallInfo>
    : public DenseMapInfo<std::pair<Instruction *, unsigned>> {};
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
    IndexCallsiteContextGraph, FunctionSummary, IndexCall>::CallInfo>
    : public DenseMapInfo<std::pair<IndexCall, unsigned>> {};
template <>
struct DenseMapInfo<IndexCall>
    : public DenseMapInfo<PointerUnion<CallsiteInfo *, AllocInfo *>> {};
} // end namespace llvm

namespace {

struct FieldSeparator {
  bool Skip = true;
  const char *Sep;

  FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
};

raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
  if (FS.Skip) {
    FS.Skip = false;
    return OS;
  }
  return OS << FS.Sep;
}

// Map the uint8_t alloc types (which may contain NotCold|Cold) to the alloc
// type we should actually use on the corresponding allocation.
// If we can't clone a node that has NotCold+Cold alloc type, we will fall
// back to using NotCold. So don't bother cloning to distinguish NotCold+Cold
// from NotCold.
AllocationType allocTypeToUse(uint8_t AllocTypes) {
  assert(AllocTypes != (uint8_t)AllocationType::None);
  if (AllocTypes ==
      ((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
    return AllocationType::NotCold;
  else
    return (AllocationType)AllocTypes;
}

// Helper to check if the alloc types for all edges recorded in the
// InAllocTypes vector match the alloc types for all edges in the Edges
// vector.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool allocTypesMatch(
    const std::vector<uint8_t> &InAllocTypes,
    const std::vector<std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>>
        &Edges) {
  return std::equal(
      InAllocTypes.begin(), InAllocTypes.end(), Edges.begin(),
      [](const uint8_t &l,
         const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &r) {
        // Can share if one of the edges is None type - don't
        // care about the type along that edge as it doesn't
        // exist for those context ids.
        if (l == (uint8_t)AllocationType::None ||
            r->AllocTypes == (uint8_t)AllocationType::None)
          return true;
        return allocTypeToUse(l) == allocTypeToUse(r->AllocTypes);
      });
}

} // end anonymous namespace

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForInst(
    const CallInfo &C) {
  ContextNode *Node = getNodeForAlloc(C);
  if (Node)
    return Node;

  return NonAllocationCallToContextNodeMap.lookup(C);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForAlloc(
    const CallInfo &C) {
  return AllocationCallToContextNodeMap.lookup(C);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForStackId(
    uint64_t StackId) {
  auto StackEntryNode = StackEntryIdToContextNodeMap.find(StackId);
  if (StackEntryNode != StackEntryIdToContextNodeMap.end())
    return StackEntryNode->second;
  return nullptr;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
    addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
                          unsigned int ContextId) {
  for (auto &Edge : CallerEdges) {
    if (Edge->Caller == Caller) {
      Edge->AllocTypes |= (uint8_t)AllocType;
      Edge->getContextIds().insert(ContextId);
      return;
    }
  }
  std::shared_ptr<ContextEdge> Edge = std::make_shared<ContextEdge>(
      this, Caller, (uint8_t)AllocType, DenseSet<uint32_t>({ContextId}));
  CallerEdges.push_back(Edge);
  Caller->CalleeEdges.push_back(Edge);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<
    DerivedCCG, FuncTy, CallTy>::removeNoneTypeCalleeEdges(ContextNode *Node) {
  for (auto EI = Node->CalleeEdges.begin(); EI != Node->CalleeEdges.end();) {
    auto Edge = *EI;
    if (Edge->AllocTypes == (uint8_t)AllocationType::None) {
      assert(Edge->ContextIds.empty());
      Edge->Callee->eraseCallerEdge(Edge.get());
      EI = Node->CalleeEdges.erase(EI);
    } else
      ++EI;
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
    findEdgeFromCallee(const ContextNode *Callee) {
  for (const auto &Edge : CalleeEdges)
    if (Edge->Callee == Callee)
      return Edge.get();
  return nullptr;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
    findEdgeFromCaller(const ContextNode *Caller) {
  for (const auto &Edge : CallerEdges)
    if (Edge->Caller == Caller)
      return Edge.get();
  return nullptr;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
    eraseCalleeEdge(const ContextEdge *Edge) {
  auto EI = llvm::find_if(
      CalleeEdges, [Edge](const std::shared_ptr<ContextEdge> &CalleeEdge) {
        return CalleeEdge.get() == Edge;
      });
  assert(EI != CalleeEdges.end());
  CalleeEdges.erase(EI);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
    eraseCallerEdge(const ContextEdge *Edge) {
  auto EI = llvm::find_if(
      CallerEdges, [Edge](const std::shared_ptr<ContextEdge> &CallerEdge) {
        return CallerEdge.get() == Edge;
      });
  assert(EI != CallerEdges.end());
  CallerEdges.erase(EI);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::computeAllocType(
    DenseSet<uint32_t> &ContextIds) {
  uint8_t BothTypes =
      (uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
  uint8_t AllocType = (uint8_t)AllocationType::None;
  for (auto Id : ContextIds) {
    AllocType |= (uint8_t)ContextIdToAllocationType[Id];
    // Bail early if alloc type reached both, no further refinement.
    if (AllocType == BothTypes)
      return AllocType;
  }
  return AllocType;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypesImpl(
    const DenseSet<uint32_t> &Node1Ids, const DenseSet<uint32_t> &Node2Ids) {
  uint8_t BothTypes =
      (uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
  uint8_t AllocType = (uint8_t)AllocationType::None;
  for (auto Id : Node1Ids) {
    if (!Node2Ids.count(Id))
      continue;
    AllocType |= (uint8_t)ContextIdToAllocationType[Id];
    // Bail early if alloc type reached both, no further refinement.
    if (AllocType == BothTypes)
      return AllocType;
  }
  return AllocType;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypes(
    const DenseSet<uint32_t> &Node1Ids, const DenseSet<uint32_t> &Node2Ids) {
  if (Node1Ids.size() < Node2Ids.size())
    return intersectAllocTypesImpl(Node1Ids, Node2Ids);
  else
    return intersectAllocTypesImpl(Node2Ids, Node1Ids);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addAllocNode(
    CallInfo Call, const FuncTy *F) {
  assert(!getNodeForAlloc(Call));
  NodeOwner.push_back(
      std::make_unique<ContextNode>(/*IsAllocation=*/true, Call));
  ContextNode *AllocNode = NodeOwner.back().get();
  AllocationCallToContextNodeMap[Call] = AllocNode;
  NodeToCallingFunc[AllocNode] = F;
  // Use LastContextId as a uniq id for MIB allocation nodes.
  AllocNode->OrigStackOrAllocId = LastContextId;
  // Alloc type should be updated as we add in the MIBs. We should assert
  // afterwards that it is not still None.
  AllocNode->AllocTypes = (uint8_t)AllocationType::None;

  return AllocNode;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addStackNodesForMIB(
    ContextNode *AllocNode, CallStack<NodeT, IteratorT> &StackContext,
    CallStack<NodeT, IteratorT> &CallsiteContext, AllocationType AllocType) {
  // Treating the hot alloc type as NotCold before the disambiguation for "hot"
  // is done.
  if (AllocType == AllocationType::Hot)
    AllocType = AllocationType::NotCold;

  ContextIdToAllocationType[++LastContextId] = AllocType;

  // Update alloc type and context ids for this MIB.
  AllocNode->AllocTypes |= (uint8_t)AllocType;

  // Now add or update nodes for each stack id in alloc's context.
  // Later when processing the stack ids on non-alloc callsites we will adjust
  // for any inlining in the context.
  ContextNode *PrevNode = AllocNode;
  // Look for recursion (direct recursion should have been collapsed by
  // module summary analysis, here we should just be detecting mutual
  // recursion). Mark these nodes so we don't try to clone.
  SmallSet<uint64_t, 8> StackIdSet;
  // Skip any on the allocation call (inlining).
  for (auto ContextIter = StackContext.beginAfterSharedPrefix(CallsiteContext);
       ContextIter != StackContext.end(); ++ContextIter) {
    auto StackId = getStackId(*ContextIter);
    ContextNode *StackNode = getNodeForStackId(StackId);
    if (!StackNode) {
      NodeOwner.push_back(
          std::make_unique<ContextNode>(/*IsAllocation=*/false));
      StackNode = NodeOwner.back().get();
      StackEntryIdToContextNodeMap[StackId] = StackNode;
      StackNode->OrigStackOrAllocId = StackId;
    }
    auto Ins = StackIdSet.insert(StackId);
    if (!Ins.second)
      StackNode->Recursive = true;
    StackNode->AllocTypes |= (uint8_t)AllocType;
    PrevNode->addOrUpdateCallerEdge(StackNode, AllocType, LastContextId);
    PrevNode = StackNode;
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
DenseSet<uint32_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::duplicateContextIds(
    const DenseSet<uint32_t> &StackSequenceContextIds,
    DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
  DenseSet<uint32_t> NewContextIds;
  for (auto OldId : StackSequenceContextIds) {
    NewContextIds.insert(++LastContextId);
    OldToNewContextIds[OldId].insert(LastContextId);
    assert(ContextIdToAllocationType.count(OldId));
    // The new context has the same allocation type as original.
    ContextIdToAllocationType[LastContextId] = ContextIdToAllocationType[OldId];
  }
  return NewContextIds;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
    propagateDuplicateContextIds(
        const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
  // Build a set of duplicated context ids corresponding to the input id set.
  auto GetNewIds = [&OldToNewContextIds](const DenseSet<uint32_t> &ContextIds) {
    DenseSet<uint32_t> NewIds;
    for (auto Id : ContextIds)
      if (auto NewId = OldToNewContextIds.find(Id);
          NewId != OldToNewContextIds.end())
        NewIds.insert(NewId->second.begin(), NewId->second.end());
    return NewIds;
  };

  // Recursively update context ids sets along caller edges.
  auto UpdateCallers = [&](ContextNode *Node,
                           DenseSet<const ContextEdge *> &Visited,
                           auto &&UpdateCallers) -> void {
    for (const auto &Edge : Node->CallerEdges) {
      auto Inserted = Visited.insert(Edge.get());
      if (!Inserted.second)
        continue;
      ContextNode *NextNode = Edge->Caller;
      DenseSet<uint32_t> NewIdsToAdd = GetNewIds(Edge->getContextIds());
      // Only need to recursively iterate to NextNode via this caller edge if
      // it resulted in any added ids to NextNode.
      if (!NewIdsToAdd.empty()) {
        Edge->getContextIds().insert(NewIdsToAdd.begin(), NewIdsToAdd.end());
        UpdateCallers(NextNode, Visited, UpdateCallers);
      }
    }
  };

  DenseSet<const ContextEdge *> Visited;
  for (auto &Entry : AllocationCallToContextNodeMap) {
    auto *Node = Entry.second;
    UpdateCallers(Node, Visited, UpdateCallers);
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::connectNewNode(
    ContextNode *NewNode, ContextNode *OrigNode, bool TowardsCallee,
    // This must be passed by value to make a copy since it will be adjusted
    // as ids are moved.
    DenseSet<uint32_t> RemainingContextIds) {
  auto &OrigEdges =
      TowardsCallee ? OrigNode->CalleeEdges : OrigNode->CallerEdges;
  // Increment iterator in loop so that we can remove edges as needed.
  for (auto EI = OrigEdges.begin(); EI != OrigEdges.end();) {
    auto Edge = *EI;
    // Remove any matching context ids from Edge, return set that were found and
    // removed, these are the new edge's context ids. Also update the remaining
    // (not found ids).
    DenseSet<uint32_t> NewEdgeContextIds, NotFoundContextIds;
    set_subtract(Edge->getContextIds(), RemainingContextIds, NewEdgeContextIds,
                 NotFoundContextIds);
    RemainingContextIds.swap(NotFoundContextIds);
    // If no matching context ids for this edge, skip it.
    if (NewEdgeContextIds.empty()) {
      ++EI;
      continue;
    }
    if (TowardsCallee) {
      uint8_t NewAllocType = computeAllocType(NewEdgeContextIds);
      auto NewEdge = std::make_shared<ContextEdge>(
          Edge->Callee, NewNode, NewAllocType, std::move(NewEdgeContextIds));
      NewNode->CalleeEdges.push_back(NewEdge);
      NewEdge->Callee->CallerEdges.push_back(NewEdge);
    } else {
      uint8_t NewAllocType = computeAllocType(NewEdgeContextIds);
      auto NewEdge = std::make_shared<ContextEdge>(
          NewNode, Edge->Caller, NewAllocType, std::move(NewEdgeContextIds));
      NewNode->CallerEdges.push_back(NewEdge);
      NewEdge->Caller->CalleeEdges.push_back(NewEdge);
    }
    // Remove old edge if context ids empty.
    if (Edge->getContextIds().empty()) {
      if (TowardsCallee) {
        Edge->Callee->eraseCallerEdge(Edge.get());
        EI = OrigNode->CalleeEdges.erase(EI);
      } else {
        Edge->Caller->eraseCalleeEdge(Edge.get());
        EI = OrigNode->CallerEdges.erase(EI);
      }
      continue;
    }
    ++EI;
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkEdge(
    const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &Edge) {
  // Confirm that alloc type is not None and that we have at least one context
  // id.
  assert(Edge->AllocTypes != (uint8_t)AllocationType::None);
  assert(!Edge->ContextIds.empty());
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkNode(const ContextNode<DerivedCCG, FuncTy, CallTy> *Node,
                      bool CheckEdges = true) {
  if (Node->isRemoved())
    return;
#ifndef NDEBUG
  // Compute node's context ids once for use in asserts.
  auto NodeContextIds = Node->getContextIds();
#endif
  // Node's context ids should be the union of both its callee and caller edge
  // context ids.
  if (Node->CallerEdges.size()) {
    DenseSet<uint32_t> CallerEdgeContextIds(
        Node->CallerEdges.front()->ContextIds);
    for (const auto &Edge : llvm::drop_begin(Node->CallerEdges)) {
      if (CheckEdges)
        checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
      set_union(CallerEdgeContextIds, Edge->ContextIds);
    }
    // Node can have more context ids than callers if some contexts terminate at
    // node and some are longer.
    assert(NodeContextIds == CallerEdgeContextIds ||
           set_is_subset(CallerEdgeContextIds, NodeContextIds));
  }
  if (Node->CalleeEdges.size()) {
    DenseSet<uint32_t> CalleeEdgeContextIds(
        Node->CalleeEdges.front()->ContextIds);
    for (const auto &Edge : llvm::drop_begin(Node->CalleeEdges)) {
      if (CheckEdges)
        checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
      set_union(CalleeEdgeContextIds, Edge->getContextIds());
    }
    assert(NodeContextIds == CalleeEdgeContextIds);
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
    assignStackNodesPostOrder(ContextNode *Node,
                              DenseSet<const ContextNode *> &Visited,
                              DenseMap<uint64_t, std::vector<CallContextInfo>>
                                  &StackIdToMatchingCalls) {
  auto Inserted = Visited.insert(Node);
  if (!Inserted.second)
    return;
  // Post order traversal. Iterate over a copy since we may add nodes and
  // therefore new callers during the recursive call, invalidating any
  // iterator over the original edge vector. We don't need to process these
  // new nodes as they were already processed on creation.
  auto CallerEdges = Node->CallerEdges;
  for (auto &Edge : CallerEdges) {
    // Skip any that have been removed during the recursion.
    if (!Edge)
      continue;
    assignStackNodesPostOrder(Edge->Caller, Visited, StackIdToMatchingCalls);
  }

  // If this node's stack id is in the map, update the graph to contain new
  // nodes representing any inlining at interior callsites. Note we move the
  // associated context ids over to the new nodes.

  // Ignore this node if it is for an allocation or we didn't record any
  // stack id lists ending at it.
  if (Node->IsAllocation ||
      !StackIdToMatchingCalls.count(Node->OrigStackOrAllocId))
    return;

  auto &Calls = StackIdToMatchingCalls[Node->OrigStackOrAllocId];
  // Handle the simple case first. A single call with a single stack id.
  // In this case there is no need to create any new context nodes, simply
  // assign the context node for stack id to this Call.
  if (Calls.size() == 1) {
    auto &[Call, Ids, Func, SavedContextIds] = Calls[0];
    if (Ids.size() == 1) {
      assert(SavedContextIds.empty());
      // It should be this Node
      assert(Node == getNodeForStackId(Ids[0]));
      if (Node->Recursive)
        return;
      Node->setCall(Call);
      NonAllocationCallToContextNodeMap[Call] = Node;
      NodeToCallingFunc[Node] = Func;
      return;
    }
  }

  // Find the node for the last stack id, which should be the same
  // across all calls recorded for this id, and is this node's id.
  uint64_t LastId = Node->OrigStackOrAllocId;
  ContextNode *LastNode = getNodeForStackId(LastId);
  // We should only have kept stack ids that had nodes.
  assert(LastNode);

  for (unsigned I = 0; I < Calls.size(); I++) {
    auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
    // Skip any for which we didn't assign any ids, these don't get a node in
    // the graph.
    if (SavedContextIds.empty())
      continue;

    assert(LastId == Ids.back());

    ContextNode *FirstNode = getNodeForStackId(Ids[0]);
    assert(FirstNode);

    // Recompute the context ids for this stack id sequence (the
    // intersection of the context ids of the corresponding nodes).
    // Start with the ids we saved in the map for this call, which could be
    // duplicated context ids. We have to recompute as we might have overlap
    // overlap between the saved context ids for different last nodes, and
    // removed them already during the post order traversal.
    set_intersect(SavedContextIds, FirstNode->getContextIds());
    ContextNode *PrevNode = nullptr;
    for (auto Id : Ids) {
      ContextNode *CurNode = getNodeForStackId(Id);
      // We should only have kept stack ids that had nodes and weren't
      // recursive.
      assert(CurNode);
      assert(!CurNode->Recursive);
      if (!PrevNode) {
        PrevNode = CurNode;
        continue;
      }
      auto *Edge = CurNode->findEdgeFromCallee(PrevNode);
      if (!Edge) {
        SavedContextIds.clear();
        break;
      }
      PrevNode = CurNode;
      set_intersect(SavedContextIds, Edge->getContextIds());

      // If we now have no context ids for clone, skip this call.
      if (SavedContextIds.empty())
        break;
    }
    if (SavedContextIds.empty())
      continue;

    // Create new context node.
    NodeOwner.push_back(
        std::make_unique<ContextNode>(/*IsAllocation=*/false, Call));
    ContextNode *NewNode = NodeOwner.back().get();
    NodeToCallingFunc[NewNode] = Func;
    NonAllocationCallToContextNodeMap[Call] = NewNode;
    NewNode->AllocTypes = computeAllocType(SavedContextIds);

    // Connect to callees of innermost stack frame in inlined call chain.
    // This updates context ids for FirstNode's callee's to reflect those
    // moved to NewNode.
    connectNewNode(NewNode, FirstNode, /*TowardsCallee=*/true, SavedContextIds);

    // Connect to callers of outermost stack frame in inlined call chain.
    // This updates context ids for FirstNode's caller's to reflect those
    // moved to NewNode.
    connectNewNode(NewNode, LastNode, /*TowardsCallee=*/false, SavedContextIds);

    // Now we need to remove context ids from edges/nodes between First and
    // Last Node.
    PrevNode = nullptr;
    for (auto Id : Ids) {
      ContextNode *CurNode = getNodeForStackId(Id);
      // We should only have kept stack ids that had nodes.
      assert(CurNode);

      // Remove the context ids moved to NewNode from CurNode, and the
      // edge from the prior node.
      if (PrevNode) {
        auto *PrevEdge = CurNode->findEdgeFromCallee(PrevNode);
        assert(PrevEdge);
        set_subtract(PrevEdge->getContextIds(), SavedContextIds);
        if (PrevEdge->getContextIds().empty()) {
          PrevNode->eraseCallerEdge(PrevEdge);
          CurNode->eraseCalleeEdge(PrevEdge);
        }
      }
      // Since we update the edges from leaf to tail, only look at the callee
      // edges. This isn't an alloc node, so if there are no callee edges, the
      // alloc type is None.
      CurNode->AllocTypes = CurNode->CalleeEdges.empty()
                                ? (uint8_t)AllocationType::None
                                : CurNode->computeAllocType();
      PrevNode = CurNode;
    }
    if (VerifyNodes) {
      checkNode<DerivedCCG, FuncTy, CallTy>(NewNode, /*CheckEdges=*/true);
      for (auto Id : Ids) {
        ContextNode *CurNode = getNodeForStackId(Id);
        // We should only have kept stack ids that had nodes.
        assert(CurNode);
        checkNode<DerivedCCG, FuncTy, CallTy>(CurNode, /*CheckEdges=*/true);
      }
    }
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::updateStackNodes() {
  // Map of stack id to all calls with that as the last (outermost caller)
  // callsite id that has a context node (some might not due to pruning
  // performed during matching of the allocation profile contexts).
  // The CallContextInfo contains the Call and a list of its stack ids with
  // ContextNodes, the function containing Call, and the set of context ids
  // the analysis will eventually identify for use in any new node created
  // for that callsite.
  DenseMap<uint64_t, std::vector<CallContextInfo>> StackIdToMatchingCalls;
  for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
    for (auto &Call : CallsWithMetadata) {
      // Ignore allocations, already handled.
      if (AllocationCallToContextNodeMap.count(Call))
        continue;
      auto StackIdsWithContextNodes =
          getStackIdsWithContextNodesForCall(Call.call());
      // If there were no nodes created for MIBs on allocs (maybe this was in
      // the unambiguous part of the MIB stack that was pruned), ignore.
      if (StackIdsWithContextNodes.empty())
        continue;
      // Otherwise, record this Call along with the list of ids for the last
      // (outermost caller) stack id with a node.
      StackIdToMatchingCalls[StackIdsWithContextNodes.back()].push_back(
          {Call.call(), StackIdsWithContextNodes, Func, {}});
    }
  }

  // First make a pass through all stack ids that correspond to a call,
  // as identified in the above loop. Compute the context ids corresponding to
  // each of these calls when they correspond to multiple stack ids due to
  // due to inlining. Perform any duplication of context ids required when
  // there is more than one call with the same stack ids. Their (possibly newly
  // duplicated) context ids are saved in the StackIdToMatchingCalls map.
  DenseMap<uint32_t, DenseSet<uint32_t>> OldToNewContextIds;
  for (auto &It : StackIdToMatchingCalls) {
    auto &Calls = It.getSecond();
    // Skip single calls with a single stack id. These don't need a new node.
    if (Calls.size() == 1) {
      auto &Ids = std::get<1>(Calls[0]);
      if (Ids.size() == 1)
        continue;
    }
    // In order to do the best and maximal matching of inlined calls to context
    // node sequences we will sort the vectors of stack ids in descending order
    // of length, and within each length, lexicographically by stack id. The
    // latter is so that we can specially handle calls that have identical stack
    // id sequences (either due to cloning or artificially because of the MIB
    // context pruning).
    std::stable_sort(Calls.begin(), Calls.end(),
                     [](const CallContextInfo &A, const CallContextInfo &B) {
                       auto &IdsA = std::get<1>(A);
                       auto &IdsB = std::get<1>(B);
                       return IdsA.size() > IdsB.size() ||
                              (IdsA.size() == IdsB.size() && IdsA < IdsB);
                     });

    // Find the node for the last stack id, which should be the same
    // across all calls recorded for this id, and is the id for this
    // entry in the StackIdToMatchingCalls map.
    uint64_t LastId = It.getFirst();
    ContextNode *LastNode = getNodeForStackId(LastId);
    // We should only have kept stack ids that had nodes.
    assert(LastNode);

    if (LastNode->Recursive)
      continue;

    // Initialize the context ids with the last node's. We will subsequently
    // refine the context ids by computing the intersection along all edges.
    DenseSet<uint32_t> LastNodeContextIds = LastNode->getContextIds();
    assert(!LastNodeContextIds.empty());

    for (unsigned I = 0; I < Calls.size(); I++) {
      auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
      assert(SavedContextIds.empty());
      assert(LastId == Ids.back());

      // First compute the context ids for this stack id sequence (the
      // intersection of the context ids of the corresponding nodes).
      // Start with the remaining saved ids for the last node.
      assert(!LastNodeContextIds.empty());
      DenseSet<uint32_t> StackSequenceContextIds = LastNodeContextIds;

      ContextNode *PrevNode = LastNode;
      ContextNode *CurNode = LastNode;
      bool Skip = false;

      // Iterate backwards through the stack Ids, starting after the last Id
      // in the list, which was handled once outside for all Calls.
      for (auto IdIter = Ids.rbegin() + 1; IdIter != Ids.rend(); IdIter++) {
        auto Id = *IdIter;
        CurNode = getNodeForStackId(Id);
        // We should only have kept stack ids that had nodes.
        assert(CurNode);

        if (CurNode->Recursive) {
          Skip = true;
          break;
        }

        auto *Edge = CurNode->findEdgeFromCaller(PrevNode);
        // If there is no edge then the nodes belong to different MIB contexts,
        // and we should skip this inlined context sequence. For example, this
        // particular inlined context may include stack ids A->B, and we may
        // indeed have nodes for both A and B, but it is possible that they were
        // never profiled in sequence in a single MIB for any allocation (i.e.
        // we might have profiled an allocation that involves the callsite A,
        // but through a different one of its callee callsites, and we might
        // have profiled an allocation that involves callsite B, but reached
        // from a different caller callsite).
        if (!Edge) {
          Skip = true;
          break;
        }
        PrevNode = CurNode;

        // Update the context ids, which is the intersection of the ids along
        // all edges in the sequence.
        set_intersect(StackSequenceContextIds, Edge->getContextIds());

        // If we now have no context ids for clone, skip this call.
        if (StackSequenceContextIds.empty()) {
          Skip = true;
          break;
        }
      }
      if (Skip)
        continue;

      // If some of this call's stack ids did not have corresponding nodes (due
      // to pruning), don't include any context ids for contexts that extend
      // beyond these nodes. Otherwise we would be matching part of unrelated /
      // not fully matching stack contexts. To do this, subtract any context ids
      // found in caller nodes of the last node found above.
      if (Ids.back() != getLastStackId(Call)) {
        for (const auto &PE : LastNode->CallerEdges) {
          set_subtract(StackSequenceContextIds, PE->getContextIds());
          if (StackSequenceContextIds.empty())
            break;
        }
        // If we now have no context ids for clone, skip this call.
        if (StackSequenceContextIds.empty())
          continue;
      }

      // Check if the next set of stack ids is the same (since the Calls vector
      // of tuples is sorted by the stack ids we can just look at the next one).
      bool DuplicateContextIds = false;
      if (I + 1 < Calls.size()) {
        auto NextIds = std::get<1>(Calls[I + 1]);
        DuplicateContextIds = Ids == NextIds;
      }

      // If we don't have duplicate context ids, then we can assign all the
      // context ids computed for the original node sequence to this call.
      // If there are duplicate calls with the same stack ids then we synthesize
      // new context ids that are duplicates of the originals. These are
      // assigned to SavedContextIds, which is a reference into the map entry
      // for this call, allowing us to access these ids later on.
      OldToNewContextIds.reserve(OldToNewContextIds.size() +
                                 StackSequenceContextIds.size());
      SavedContextIds =
          DuplicateContextIds
              ? duplicateContextIds(StackSequenceContextIds, OldToNewContextIds)
              : StackSequenceContextIds;
      assert(!SavedContextIds.empty());

      if (!DuplicateContextIds) {
        // Update saved last node's context ids to remove those that are
        // assigned to other calls, so that it is ready for the next call at
        // this stack id.
        set_subtract(LastNodeContextIds, StackSequenceContextIds);
        if (LastNodeContextIds.empty())
          break;
      }
    }
  }

  // Propagate the duplicate context ids over the graph.
  propagateDuplicateContextIds(OldToNewContextIds);

  if (VerifyCCG)
    check();

  // Now perform a post-order traversal over the graph, starting with the
  // allocation nodes, essentially processing nodes from callers to callees.
  // For any that contains an id in the map, update the graph to contain new
  // nodes representing any inlining at interior callsites. Note we move the
  // associated context ids over to the new nodes.
  DenseSet<const ContextNode *> Visited;
  for (auto &Entry : AllocationCallToContextNodeMap)
    assignStackNodesPostOrder(Entry.second, Visited, StackIdToMatchingCalls);
  if (VerifyCCG)
    check();
}

uint64_t ModuleCallsiteContextGraph::getLastStackId(Instruction *Call) {
  CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
      Call->getMetadata(LLVMContext::MD_callsite));
  return CallsiteContext.back();
}

uint64_t IndexCallsiteContextGraph::getLastStackId(IndexCall &Call) {
  assert(isa<CallsiteInfo *>(Call.getBase()));
  CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
      CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call.getBase()));
  // Need to convert index into stack id.
  return Index.getStackIdAtIndex(CallsiteContext.back());
}

static const std::string MemProfCloneSuffix = ".memprof.";

static std::string getMemProfFuncName(Twine Base, unsigned CloneNo) {
  // We use CloneNo == 0 to refer to the original version, which doesn't get
  // renamed with a suffix.
  if (!CloneNo)
    return Base.str();
  return (Base + MemProfCloneSuffix + Twine(CloneNo)).str();
}

std::string ModuleCallsiteContextGraph::getLabel(const Function *Func,
                                                 const Instruction *Call,
                                                 unsigned CloneNo) const {
  return (Twine(Call->getFunction()->getName()) + " -> " +
          cast<CallBase>(Call)->getCalledFunction()->getName())
      .str();
}

std::string IndexCallsiteContextGraph::getLabel(const FunctionSummary *Func,
                                                const IndexCall &Call,
                                                unsigned CloneNo) const {
  auto VI = FSToVIMap.find(Func);
  assert(VI != FSToVIMap.end());
  if (isa<AllocInfo *>(Call.getBase()))
    return (VI->second.name() + " -> alloc").str();
  else {
    auto *Callsite = dyn_cast_if_present<CallsiteInfo *>(Call.getBase());
    return (VI->second.name() + " -> " +
            getMemProfFuncName(Callsite->Callee.name(),
                               Callsite->Clones[CloneNo]))
        .str();
  }
}

std::vector<uint64_t>
ModuleCallsiteContextGraph::getStackIdsWithContextNodesForCall(
    Instruction *Call) {
  CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
      Call->getMetadata(LLVMContext::MD_callsite));
  return getStackIdsWithContextNodes<MDNode, MDNode::op_iterator>(
      CallsiteContext);
}

std::vector<uint64_t>
IndexCallsiteContextGraph::getStackIdsWithContextNodesForCall(IndexCall &Call) {
  assert(isa<CallsiteInfo *>(Call.getBase()));
  CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
      CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call.getBase()));
  return getStackIdsWithContextNodes<CallsiteInfo,
                                     SmallVector<unsigned>::const_iterator>(
      CallsiteContext);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
std::vector<uint64_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getStackIdsWithContextNodes(
    CallStack<NodeT, IteratorT> &CallsiteContext) {
  std::vector<uint64_t> StackIds;
  for (auto IdOrIndex : CallsiteContext) {
    auto StackId = getStackId(IdOrIndex);
    ContextNode *Node = getNodeForStackId(StackId);
    if (!Node)
      break;
    StackIds.push_back(StackId);
  }
  return StackIds;
}

ModuleCallsiteContextGraph::ModuleCallsiteContextGraph(
    Module &M,
    llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter)
    : Mod(M), OREGetter(OREGetter) {
  for (auto &F : M) {
    std::vector<CallInfo> CallsWithMetadata;
    for (auto &BB : F) {
      for (auto &I : BB) {
        if (!isa<CallBase>(I))
          continue;
        if (auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof)) {
          CallsWithMetadata.push_back(&I);
          auto *AllocNode = addAllocNode(&I, &F);
          auto *CallsiteMD = I.getMetadata(LLVMContext::MD_callsite);
          assert(CallsiteMD);
          CallStack<MDNode, MDNode::op_iterator> CallsiteContext(CallsiteMD);
          // Add all of the MIBs and their stack nodes.
          for (auto &MDOp : MemProfMD->operands()) {
            auto *MIBMD = cast<const MDNode>(MDOp);
            MDNode *StackNode = getMIBStackNode(MIBMD);
            assert(StackNode);
            CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
            addStackNodesForMIB<MDNode, MDNode::op_iterator>(
                AllocNode, StackContext, CallsiteContext,
                getMIBAllocType(MIBMD));
          }
          assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
          // Memprof and callsite metadata on memory allocations no longer
          // needed.
          I.setMetadata(LLVMContext::MD_memprof, nullptr);
          I.setMetadata(LLVMContext::MD_callsite, nullptr);
        }
        // For callsite metadata, add to list for this function for later use.
        else if (I.getMetadata(LLVMContext::MD_callsite))
          CallsWithMetadata.push_back(&I);
      }
    }
    if (!CallsWithMetadata.empty())
      FuncToCallsWithMetadata[&F] = CallsWithMetadata;
  }

  if (DumpCCG) {
    dbgs() << "CCG before updating call stack chains:\n";
    dbgs() << *this;
  }

  if (ExportToDot)
    exportToDot("prestackupdate");

  updateStackNodes();

  handleCallsitesWithMultipleTargets();

  // Strip off remaining callsite metadata, no longer needed.
  for (auto &FuncEntry : FuncToCallsWithMetadata)
    for (auto &Call : FuncEntry.second)
      Call.call()->setMetadata(LLVMContext::MD_callsite, nullptr);
}

IndexCallsiteContextGraph::IndexCallsiteContextGraph(
    ModuleSummaryIndex &Index,
    llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
        isPrevailing)
    : Index(Index), isPrevailing(isPrevailing) {
  for (auto &I : Index) {
    auto VI = Index.getValueInfo(I);
    for (auto &S : VI.getSummaryList()) {
      // We should only add the prevailing nodes. Otherwise we may try to clone
      // in a weak copy that won't be linked (and may be different than the
      // prevailing version).
      // We only keep the memprof summary on the prevailing copy now when
      // building the combined index, as a space optimization, however don't
      // rely on this optimization. The linker doesn't resolve local linkage
      // values so don't check whether those are prevailing.
      if (!GlobalValue::isLocalLinkage(S->linkage()) &&
          !isPrevailing(VI.getGUID(), S.get()))
        continue;
      auto *FS = dyn_cast<FunctionSummary>(S.get());
      if (!FS)
        continue;
      std::vector<CallInfo> CallsWithMetadata;
      if (!FS->allocs().empty()) {
        for (auto &AN : FS->mutableAllocs()) {
          // This can happen because of recursion elimination handling that
          // currently exists in ModuleSummaryAnalysis. Skip these for now.
          // We still added them to the summary because we need to be able to
          // correlate properly in applyImport in the backends.
          if (AN.MIBs.empty())
            continue;
          CallsWithMetadata.push_back({&AN});
          auto *AllocNode = addAllocNode({&AN}, FS);
          // Pass an empty CallStack to the CallsiteContext (second)
          // parameter, since for ThinLTO we already collapsed out the inlined
          // stack ids on the allocation call during ModuleSummaryAnalysis.
          CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
              EmptyContext;
          // Now add all of the MIBs and their stack nodes.
          for (auto &MIB : AN.MIBs) {
            CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
                StackContext(&MIB);
            addStackNodesForMIB<MIBInfo, SmallVector<unsigned>::const_iterator>(
                AllocNode, StackContext, EmptyContext, MIB.AllocType);
          }
          assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
          // Initialize version 0 on the summary alloc node to the current alloc
          // type, unless it has both types in which case make it default, so
          // that in the case where we aren't able to clone the original version
          // always ends up with the default allocation behavior.
          AN.Versions[0] = (uint8_t)allocTypeToUse(AllocNode->AllocTypes);
        }
      }
      // For callsite metadata, add to list for this function for later use.
      if (!FS->callsites().empty())
        for (auto &SN : FS->mutableCallsites())
          CallsWithMetadata.push_back({&SN});

      if (!CallsWithMetadata.empty())
        FuncToCallsWithMetadata[FS] = CallsWithMetadata;

      if (!FS->allocs().empty() || !FS->callsites().empty())
        FSToVIMap[FS] = VI;
    }
  }

  if (DumpCCG) {
    dbgs() << "CCG before updating call stack chains:\n";
    dbgs() << *this;
  }

  if (ExportToDot)
    exportToDot("prestackupdate");

  updateStackNodes();

  handleCallsitesWithMultipleTargets();
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy,
                          CallTy>::handleCallsitesWithMultipleTargets() {
  // Look for and workaround callsites that call multiple functions.
  // This can happen for indirect calls, which needs better handling, and in
  // more rare cases (e.g. macro expansion).
  // TODO: To fix this for indirect calls we will want to perform speculative
  // devirtualization using either the normal PGO info with ICP, or using the
  // information in the profiled MemProf contexts. We can do this prior to
  // this transformation for regular LTO, and for ThinLTO we can simulate that
  // effect in the summary and perform the actual speculative devirtualization
  // while cloning in the ThinLTO backend.

  // Keep track of the new nodes synthesized for discovered tail calls missing
  // from the profiled contexts.
  MapVector<CallInfo, ContextNode *> TailCallToContextNodeMap;

  for (auto &Entry : NonAllocationCallToContextNodeMap) {
    auto *Node = Entry.second;
    assert(Node->Clones.empty());
    // Check all node callees and see if in the same function.
    auto Call = Node->Call.call();
    for (auto EI = Node->CalleeEdges.begin(); EI != Node->CalleeEdges.end();) {
      auto Edge = *EI;
      if (!Edge->Callee->hasCall()) {
        ++EI;
        continue;
      }
      assert(NodeToCallingFunc.count(Edge->Callee));
      // Check if the called function matches that of the callee node.
      if (calleesMatch(Call, EI, TailCallToContextNodeMap))
        continue;
      RemovedEdgesWithMismatchedCallees++;
      // Work around by setting Node to have a null call, so it gets
      // skipped during cloning. Otherwise assignFunctions will assert
      // because its data structures are not designed to handle this case.
      Node->setCall(CallInfo());
      break;
    }
  }

  // Remove all mismatched nodes identified in the above loop from the node map
  // (checking whether they have a null call which is set above). For a
  // MapVector like NonAllocationCallToContextNodeMap it is much more efficient
  // to do the removal via remove_if than by individually erasing entries above.
  NonAllocationCallToContextNodeMap.remove_if(
      [](const auto &it) { return !it.second->hasCall(); });

  // Add the new nodes after the above loop so that the iteration is not
  // invalidated.
  for (auto &[Call, Node] : TailCallToContextNodeMap)
    NonAllocationCallToContextNodeMap[Call] = Node;
}

uint64_t ModuleCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
  // In the Module (IR) case this is already the Id.
  return IdOrIndex;
}

uint64_t IndexCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
  // In the Index case this is an index into the stack id list in the summary
  // index, convert it to an Id.
  return Index.getStackIdAtIndex(IdOrIndex);
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::calleesMatch(
    CallTy Call, EdgeIter &EI,
    MapVector<CallInfo, ContextNode *> &TailCallToContextNodeMap) {
  auto Edge = *EI;
  const FuncTy *ProfiledCalleeFunc = NodeToCallingFunc[Edge->Callee];
  const FuncTy *CallerFunc = NodeToCallingFunc[Edge->Caller];
  // Will be populated in order of callee to caller if we find a chain of tail
  // calls between the profiled caller and callee.
  std::vector<std::pair<CallTy, FuncTy *>> FoundCalleeChain;
  if (!calleeMatchesFunc(Call, ProfiledCalleeFunc, CallerFunc,
                         FoundCalleeChain)) {
    ++EI;
    return false;
  }

  // The usual case where the profiled callee matches that of the IR/summary.
  if (FoundCalleeChain.empty()) {
    ++EI;
    return true;
  }

  auto AddEdge = [Edge, &EI](ContextNode *Caller, ContextNode *Callee) {
    auto *CurEdge = Callee->findEdgeFromCaller(Caller);
    // If there is already an edge between these nodes, simply update it and
    // return.
    if (CurEdge) {
      CurEdge->ContextIds.insert(Edge->ContextIds.begin(),
                                 Edge->ContextIds.end());
      CurEdge->AllocTypes |= Edge->AllocTypes;
      return;
    }
    // Otherwise, create a new edge and insert it into the caller and callee
    // lists.
    auto NewEdge = std::make_shared<ContextEdge>(
        Callee, Caller, Edge->AllocTypes, Edge->ContextIds);
    Callee->CallerEdges.push_back(NewEdge);
    if (Caller == Edge->Caller) {
      // If we are inserting the new edge into the current edge's caller, insert
      // the new edge before the current iterator position, and then increment
      // back to the current edge.
      EI = Caller->CalleeEdges.insert(EI, NewEdge);
      ++EI;
      assert(*EI == Edge &&
             "Iterator position not restored after insert and increment");
    } else
      Caller->CalleeEdges.push_back(NewEdge);
  };

  // Create new nodes for each found callee and connect in between the profiled
  // caller and callee.
  auto *CurCalleeNode = Edge->Callee;
  for (auto &[NewCall, Func] : FoundCalleeChain) {
    ContextNode *NewNode = nullptr;
    // First check if we have already synthesized a node for this tail call.
    if (TailCallToContextNodeMap.count(NewCall)) {
      NewNode = TailCallToContextNodeMap[NewCall];
      NewNode->AllocTypes |= Edge->AllocTypes;
    } else {
      FuncToCallsWithMetadata[Func].push_back({NewCall});
      // Create Node and record node info.
      NodeOwner.push_back(
          std::make_unique<ContextNode>(/*IsAllocation=*/false, NewCall));
      NewNode = NodeOwner.back().get();
      NodeToCallingFunc[NewNode] = Func;
      TailCallToContextNodeMap[NewCall] = NewNode;
      NewNode->AllocTypes = Edge->AllocTypes;
    }

    // Hook up node to its callee node
    AddEdge(NewNode, CurCalleeNode);

    CurCalleeNode = NewNode;
  }

  // Hook up edge's original caller to new callee node.
  AddEdge(Edge->Caller, CurCalleeNode);

  // Remove old edge
  Edge->Callee->eraseCallerEdge(Edge.get());
  EI = Edge->Caller->CalleeEdges.erase(EI);

  return true;
}

bool ModuleCallsiteContextGraph::findProfiledCalleeThroughTailCalls(
    const Function *ProfiledCallee, Value *CurCallee, unsigned Depth,
    std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain,
    bool &FoundMultipleCalleeChains) {
  // Stop recursive search if we have already explored the maximum specified
  // depth.
  if (Depth > TailCallSearchDepth)
    return false;

  auto SaveCallsiteInfo = [&](Instruction *Callsite, Function *F) {
    FoundCalleeChain.push_back({Callsite, F});
  };

  auto *CalleeFunc = dyn_cast<Function>(CurCallee);
  if (!CalleeFunc) {
    auto *Alias = dyn_cast<GlobalAlias>(CurCallee);
    assert(Alias);
    CalleeFunc = dyn_cast<Function>(Alias->getAliasee());
    assert(CalleeFunc);
  }

  // Look for tail calls in this function, and check if they either call the
  // profiled callee directly, or indirectly (via a recursive search).
  // Only succeed if there is a single unique tail call chain found between the
  // profiled caller and callee, otherwise we could perform incorrect cloning.
  bool FoundSingleCalleeChain = false;
  for (auto &BB : *CalleeFunc) {
    for (auto &I : BB) {
      auto *CB = dyn_cast<CallBase>(&I);
      if (!CB || !CB->isTailCall())
        continue;
      auto *CalledValue = CB->getCalledOperand();
      auto *CalledFunction = CB->getCalledFunction();
      if (CalledValue && !CalledFunction) {
        CalledValue = CalledValue->stripPointerCasts();
        // Stripping pointer casts can reveal a called function.
        CalledFunction = dyn_cast<Function>(CalledValue);
      }
      // Check if this is an alias to a function. If so, get the
      // called aliasee for the checks below.
      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
        assert(!CalledFunction &&
               "Expected null called function in callsite for alias");
        CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
      }
      if (!CalledFunction)
        continue;
      if (CalledFunction == ProfiledCallee) {
        if (FoundSingleCalleeChain) {
          FoundMultipleCalleeChains = true;
          return false;
        }
        FoundSingleCalleeChain = true;
        FoundProfiledCalleeCount++;
        FoundProfiledCalleeDepth += Depth;
        if (Depth > FoundProfiledCalleeMaxDepth)
          FoundProfiledCalleeMaxDepth = Depth;
        SaveCallsiteInfo(&I, CalleeFunc);
      } else if (findProfiledCalleeThroughTailCalls(
                     ProfiledCallee, CalledFunction, Depth + 1,
                     FoundCalleeChain, FoundMultipleCalleeChains)) {
        // findProfiledCalleeThroughTailCalls should not have returned
        // true if FoundMultipleCalleeChains.
        assert(!FoundMultipleCalleeChains);
        if (FoundSingleCalleeChain) {
          FoundMultipleCalleeChains = true;
          return false;
        }
        FoundSingleCalleeChain = true;
        SaveCallsiteInfo(&I, CalleeFunc);
      } else if (FoundMultipleCalleeChains)
        return false;
    }
  }

  return FoundSingleCalleeChain;
}

bool ModuleCallsiteContextGraph::calleeMatchesFunc(
    Instruction *Call, const Function *Func, const Function *CallerFunc,
    std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain) {
  auto *CB = dyn_cast<CallBase>(Call);
  if (!CB->getCalledOperand())
    return false;
  auto *CalleeVal = CB->getCalledOperand()->stripPointerCasts();
  auto *CalleeFunc = dyn_cast<Function>(CalleeVal);
  if (CalleeFunc == Func)
    return true;
  auto *Alias = dyn_cast<GlobalAlias>(CalleeVal);
  if (Alias && Alias->getAliasee() == Func)
    return true;

  // Recursively search for the profiled callee through tail calls starting with
  // the actual Callee. The discovered tail call chain is saved in
  // FoundCalleeChain, and we will fixup the graph to include these callsites
  // after returning.
  // FIXME: We will currently redo the same recursive walk if we find the same
  // mismatched callee from another callsite. We can improve this with more
  // bookkeeping of the created chain of new nodes for each mismatch.
  unsigned Depth = 1;
  bool FoundMultipleCalleeChains = false;
  if (!findProfiledCalleeThroughTailCalls(Func, CalleeVal, Depth,
                                          FoundCalleeChain,
                                          FoundMultipleCalleeChains)) {
    LLVM_DEBUG(dbgs() << "Not found through unique tail call chain: "
                      << Func->getName() << " from " << CallerFunc->getName()
                      << " that actually called " << CalleeVal->getName()
                      << (FoundMultipleCalleeChains
                              ? " (found multiple possible chains)"
                              : "")
                      << "\n");
    if (FoundMultipleCalleeChains)
      FoundProfiledCalleeNonUniquelyCount++;
    return false;
  }

  return true;
}

bool IndexCallsiteContextGraph::findProfiledCalleeThroughTailCalls(
    ValueInfo ProfiledCallee, ValueInfo CurCallee, unsigned Depth,
    std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain,
    bool &FoundMultipleCalleeChains) {
  // Stop recursive search if we have already explored the maximum specified
  // depth.
  if (Depth > TailCallSearchDepth)
    return false;

  auto CreateAndSaveCallsiteInfo = [&](ValueInfo Callee, FunctionSummary *FS) {
    // Make a CallsiteInfo for each discovered callee, if one hasn't already
    // been synthesized.
    if (!FunctionCalleesToSynthesizedCallsiteInfos.count(FS) ||
        !FunctionCalleesToSynthesizedCallsiteInfos[FS].count(Callee))
      // StackIds is empty (we don't have debug info available in the index for
      // these callsites)
      FunctionCalleesToSynthesizedCallsiteInfos[FS][Callee] =
          std::make_unique<CallsiteInfo>(Callee, SmallVector<unsigned>());
    CallsiteInfo *NewCallsiteInfo =
        FunctionCalleesToSynthesizedCallsiteInfos[FS][Callee].get();
    FoundCalleeChain.push_back({NewCallsiteInfo, FS});
  };

  // Look for tail calls in this function, and check if they either call the
  // profiled callee directly, or indirectly (via a recursive search).
  // Only succeed if there is a single unique tail call chain found between the
  // profiled caller and callee, otherwise we could perform incorrect cloning.
  bool FoundSingleCalleeChain = false;
  for (auto &S : CurCallee.getSummaryList()) {
    if (!GlobalValue::isLocalLinkage(S->linkage()) &&
        !isPrevailing(CurCallee.getGUID(), S.get()))
      continue;
    auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject());
    if (!FS)
      continue;
    auto FSVI = CurCallee;
    auto *AS = dyn_cast<AliasSummary>(S.get());
    if (AS)
      FSVI = AS->getAliaseeVI();
    for (auto &CallEdge : FS->calls()) {
      if (!CallEdge.second.hasTailCall())
        continue;
      if (CallEdge.first == ProfiledCallee) {
        if (FoundSingleCalleeChain) {
          FoundMultipleCalleeChains = true;
          return false;
        }
        FoundSingleCalleeChain = true;
        FoundProfiledCalleeCount++;
        FoundProfiledCalleeDepth += Depth;
        if (Depth > FoundProfiledCalleeMaxDepth)
          FoundProfiledCalleeMaxDepth = Depth;
        CreateAndSaveCallsiteInfo(CallEdge.first, FS);
        // Add FS to FSToVIMap  in case it isn't already there.
        assert(!FSToVIMap.count(FS) || FSToVIMap[FS] == FSVI);
        FSToVIMap[FS] = FSVI;
      } else if (findProfiledCalleeThroughTailCalls(
                     ProfiledCallee, CallEdge.first, Depth + 1,
                     FoundCalleeChain, FoundMultipleCalleeChains)) {
        // findProfiledCalleeThroughTailCalls should not have returned
        // true if FoundMultipleCalleeChains.
        assert(!FoundMultipleCalleeChains);
        if (FoundSingleCalleeChain) {
          FoundMultipleCalleeChains = true;
          return false;
        }
        FoundSingleCalleeChain = true;
        CreateAndSaveCallsiteInfo(CallEdge.first, FS);
        // Add FS to FSToVIMap  in case it isn't already there.
        assert(!FSToVIMap.count(FS) || FSToVIMap[FS] == FSVI);
        FSToVIMap[FS] = FSVI;
      } else if (FoundMultipleCalleeChains)
        return false;
    }
  }

  return FoundSingleCalleeChain;
}

bool IndexCallsiteContextGraph::calleeMatchesFunc(
    IndexCall &Call, const FunctionSummary *Func,
    const FunctionSummary *CallerFunc,
    std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain) {
  ValueInfo Callee =
      dyn_cast_if_present<CallsiteInfo *>(Call.getBase())->Callee;
  // If there is no summary list then this is a call to an externally defined
  // symbol.
  AliasSummary *Alias =
      Callee.getSummaryList().empty()
          ? nullptr
          : dyn_cast<AliasSummary>(Callee.getSummaryList()[0].get());
  assert(FSToVIMap.count(Func));
  auto FuncVI = FSToVIMap[Func];
  if (Callee == FuncVI ||
      // If callee is an alias, check the aliasee, since only function
      // summary base objects will contain the stack node summaries and thus
      // get a context node.
      (Alias && Alias->getAliaseeVI() == FuncVI))
    return true;

  // Recursively search for the profiled callee through tail calls starting with
  // the actual Callee. The discovered tail call chain is saved in
  // FoundCalleeChain, and we will fixup the graph to include these callsites
  // after returning.
  // FIXME: We will currently redo the same recursive walk if we find the same
  // mismatched callee from another callsite. We can improve this with more
  // bookkeeping of the created chain of new nodes for each mismatch.
  unsigned Depth = 1;
  bool FoundMultipleCalleeChains = false;
  if (!findProfiledCalleeThroughTailCalls(
          FuncVI, Callee, Depth, FoundCalleeChain, FoundMultipleCalleeChains)) {
    LLVM_DEBUG(dbgs() << "Not found through unique tail call chain: " << FuncVI
                      << " from " << FSToVIMap[CallerFunc]
                      << " that actually called " << Callee
                      << (FoundMultipleCalleeChains
                              ? " (found multiple possible chains)"
                              : "")
                      << "\n");
    if (FoundMultipleCalleeChains)
      FoundProfiledCalleeNonUniquelyCount++;
    return false;
  }

  return true;
}

static std::string getAllocTypeString(uint8_t AllocTypes) {
  if (!AllocTypes)
    return "None";
  std::string Str;
  if (AllocTypes & (uint8_t)AllocationType::NotCold)
    Str += "NotCold";
  if (AllocTypes & (uint8_t)AllocationType::Cold)
    Str += "Cold";
  return Str;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::dump()
    const {
  print(dbgs());
  dbgs() << "\n";
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::print(
    raw_ostream &OS) const {
  OS << "Node " << this << "\n";
  OS << "\t";
  printCall(OS);
  if (Recursive)
    OS << " (recursive)";
  OS << "\n";
  OS << "\tAllocTypes: " << getAllocTypeString(AllocTypes) << "\n";
  OS << "\tContextIds:";
  // Make a copy of the computed context ids that we can sort for stability.
  auto ContextIds = getContextIds();
  std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
  std::sort(SortedIds.begin(), SortedIds.end());
  for (auto Id : SortedIds)
    OS << " " << Id;
  OS << "\n";
  OS << "\tCalleeEdges:\n";
  for (auto &Edge : CalleeEdges)
    OS << "\t\t" << *Edge << "\n";
  OS << "\tCallerEdges:\n";
  for (auto &Edge : CallerEdges)
    OS << "\t\t" << *Edge << "\n";
  if (!Clones.empty()) {
    OS << "\tClones: ";
    FieldSeparator FS;
    for (auto *Clone : Clones)
      OS << FS << Clone;
    OS << "\n";
  } else if (CloneOf) {
    OS << "\tClone of " << CloneOf << "\n";
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::dump()
    const {
  print(dbgs());
  dbgs() << "\n";
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::print(
    raw_ostream &OS) const {
  OS << "Edge from Callee " << Callee << " to Caller: " << Caller
     << " AllocTypes: " << getAllocTypeString(AllocTypes);
  OS << " ContextIds:";
  std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
  std::sort(SortedIds.begin(), SortedIds.end());
  for (auto Id : SortedIds)
    OS << " " << Id;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::dump() const {
  print(dbgs());
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::print(
    raw_ostream &OS) const {
  OS << "Callsite Context Graph:\n";
  using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
  for (const auto Node : nodes<GraphType>(this)) {
    if (Node->isRemoved())
      continue;
    Node->print(OS);
    OS << "\n";
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::check() const {
  using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
  for (const auto Node : nodes<GraphType>(this)) {
    checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
    for (auto &Edge : Node->CallerEdges)
      checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct GraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *> {
  using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
  using NodeRef = const ContextNode<DerivedCCG, FuncTy, CallTy> *;

  using NodePtrTy = std::unique_ptr<ContextNode<DerivedCCG, FuncTy, CallTy>>;
  static NodeRef getNode(const NodePtrTy &P) { return P.get(); }

  using nodes_iterator =
      mapped_iterator<typename std::vector<NodePtrTy>::const_iterator,
                      decltype(&getNode)>;

  static nodes_iterator nodes_begin(GraphType G) {
    return nodes_iterator(G->NodeOwner.begin(), &getNode);
  }

  static nodes_iterator nodes_end(GraphType G) {
    return nodes_iterator(G->NodeOwner.end(), &getNode);
  }

  static NodeRef getEntryNode(GraphType G) {
    return G->NodeOwner.begin()->get();
  }

  using EdgePtrTy = std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>;
  static const ContextNode<DerivedCCG, FuncTy, CallTy> *
  GetCallee(const EdgePtrTy &P) {
    return P->Callee;
  }

  using ChildIteratorType =
      mapped_iterator<typename std::vector<std::shared_ptr<ContextEdge<
                          DerivedCCG, FuncTy, CallTy>>>::const_iterator,
                      decltype(&GetCallee)>;

  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(N->CalleeEdges.begin(), &GetCallee);
  }

  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(N->CalleeEdges.end(), &GetCallee);
  }
};

template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct DOTGraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>
    : public DefaultDOTGraphTraits {
  DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}

  using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
  using GTraits = GraphTraits<GraphType>;
  using NodeRef = typename GTraits::NodeRef;
  using ChildIteratorType = typename GTraits::ChildIteratorType;

  static std::string getNodeLabel(NodeRef Node, GraphType G) {
    std::string LabelString =
        (Twine("OrigId: ") + (Node->IsAllocation ? "Alloc" : "") +
         Twine(Node->OrigStackOrAllocId))
            .str();
    LabelString += "\n";
    if (Node->hasCall()) {
      auto Func = G->NodeToCallingFunc.find(Node);
      assert(Func != G->NodeToCallingFunc.end());
      LabelString +=
          G->getLabel(Func->second, Node->Call.call(), Node->Call.cloneNo());
    } else {
      LabelString += "null call";
      if (Node->Recursive)
        LabelString += " (recursive)";
      else
        LabelString += " (external)";
    }
    return LabelString;
  }

  static std::string getNodeAttributes(NodeRef Node, GraphType) {
    std::string AttributeString = (Twine("tooltip=\"") + getNodeId(Node) + " " +
                                   getContextIds(Node->getContextIds()) + "\"")
                                      .str();
    AttributeString +=
        (Twine(",fillcolor=\"") + getColor(Node->AllocTypes) + "\"").str();
    AttributeString += ",style=\"filled\"";
    if (Node->CloneOf) {
      AttributeString += ",color=\"blue\"";
      AttributeString += ",style=\"filled,bold,dashed\"";
    } else
      AttributeString += ",style=\"filled\"";
    return AttributeString;
  }

  static std::string getEdgeAttributes(NodeRef, ChildIteratorType ChildIter,
                                       GraphType) {
    auto &Edge = *(ChildIter.getCurrent());
    return (Twine("tooltip=\"") + getContextIds(Edge->ContextIds) + "\"" +
            Twine(",fillcolor=\"") + getColor(Edge->AllocTypes) + "\"")
        .str();
  }

  // Since the NodeOwners list includes nodes that are no longer connected to
  // the graph, skip them here.
  static bool isNodeHidden(NodeRef Node, GraphType) {
    return Node->isRemoved();
  }

private:
  static std::string getContextIds(const DenseSet<uint32_t> &ContextIds) {
    std::string IdString = "ContextIds:";
    if (ContextIds.size() < 100) {
      std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
      std::sort(SortedIds.begin(), SortedIds.end());
      for (auto Id : SortedIds)
        IdString += (" " + Twine(Id)).str();
    } else {
      IdString += (" (" + Twine(ContextIds.size()) + " ids)").str();
    }
    return IdString;
  }

  static std::string getColor(uint8_t AllocTypes) {
    if (AllocTypes == (uint8_t)AllocationType::NotCold)
      // Color "brown1" actually looks like a lighter red.
      return "brown1";
    if (AllocTypes == (uint8_t)AllocationType::Cold)
      return "cyan";
    if (AllocTypes ==
        ((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
      // Lighter purple.
      return "mediumorchid1";
    return "gray";
  }

  static std::string getNodeId(NodeRef Node) {
    std::stringstream SStream;
    SStream << std::hex << "N0x" << (unsigned long long)Node;
    std::string Result = SStream.str();
    return Result;
  }
};

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::exportToDot(
    std::string Label) const {
  WriteGraph(this, "", false, Label,
             DotFilePathPrefix + "ccg." + Label + ".dot");
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::moveEdgeToNewCalleeClone(
    const std::shared_ptr<ContextEdge> &Edge, EdgeIter *CallerEdgeI,
    DenseSet<uint32_t> ContextIdsToMove) {
  ContextNode *Node = Edge->Callee;
  NodeOwner.push_back(
      std::make_unique<ContextNode>(Node->IsAllocation, Node->Call));
  ContextNode *Clone = NodeOwner.back().get();
  Node->addClone(Clone);
  assert(NodeToCallingFunc.count(Node));
  NodeToCallingFunc[Clone] = NodeToCallingFunc[Node];
  moveEdgeToExistingCalleeClone(Edge, Clone, CallerEdgeI, /*NewClone=*/true,
                                ContextIdsToMove);
  return Clone;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
    moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
                                  ContextNode *NewCallee, EdgeIter *CallerEdgeI,
                                  bool NewClone,
                                  DenseSet<uint32_t> ContextIdsToMove) {
  // NewCallee and Edge's current callee must be clones of the same original
  // node (Edge's current callee may be the original node too).
  assert(NewCallee->getOrigNode() == Edge->Callee->getOrigNode());

  ContextNode *OldCallee = Edge->Callee;

  // We might already have an edge to the new callee from earlier cloning for a
  // different allocation. If one exists we will reuse it.
  auto ExistingEdgeToNewCallee = NewCallee->findEdgeFromCaller(Edge->Caller);

  // Callers will pass an empty ContextIdsToMove set when they want to move the
  // edge. Copy in Edge's ids for simplicity.
  if (ContextIdsToMove.empty())
    ContextIdsToMove = Edge->getContextIds();

  // If we are moving all of Edge's ids, then just move the whole Edge.
  // Otherwise only move the specified subset, to a new edge if needed.
  if (Edge->getContextIds().size() == ContextIdsToMove.size()) {
    // Moving the whole Edge.
    if (CallerEdgeI)
      *CallerEdgeI = OldCallee->CallerEdges.erase(*CallerEdgeI);
    else
      OldCallee->eraseCallerEdge(Edge.get());
    if (ExistingEdgeToNewCallee) {
      // Since we already have an edge to NewCallee, simply move the ids
      // onto it, and remove the existing Edge.
      ExistingEdgeToNewCallee->getContextIds().insert(ContextIdsToMove.begin(),
                                                      ContextIdsToMove.end());
      ExistingEdgeToNewCallee->AllocTypes |= Edge->AllocTypes;
      assert(Edge->ContextIds == ContextIdsToMove);
      Edge->ContextIds.clear();
      Edge->AllocTypes = (uint8_t)AllocationType::None;
      Edge->Caller->eraseCalleeEdge(Edge.get());
    } else {
      // Otherwise just reconnect Edge to NewCallee.
      Edge->Callee = NewCallee;
      NewCallee->CallerEdges.push_back(Edge);
      // Don't need to update Edge's context ids since we are simply
      // reconnecting it.
    }
    // In either case, need to update the alloc types on New Callee.
    NewCallee->AllocTypes |= Edge->AllocTypes;
  } else {
    // Only moving a subset of Edge's ids.
    if (CallerEdgeI)
      ++CallerEdgeI;
    // Compute the alloc type of the subset of ids being moved.
    auto CallerEdgeAllocType = computeAllocType(ContextIdsToMove);
    if (ExistingEdgeToNewCallee) {
      // Since we already have an edge to NewCallee, simply move the ids
      // onto it.
      ExistingEdgeToNewCallee->getContextIds().insert(ContextIdsToMove.begin(),
                                                      ContextIdsToMove.end());
      ExistingEdgeToNewCallee->AllocTypes |= CallerEdgeAllocType;
    } else {
      // Otherwise, create a new edge to NewCallee for the ids being moved.
      auto NewEdge = std::make_shared<ContextEdge>(
          NewCallee, Edge->Caller, CallerEdgeAllocType, ContextIdsToMove);
      Edge->Caller->CalleeEdges.push_back(NewEdge);
      NewCallee->CallerEdges.push_back(NewEdge);
    }
    // In either case, need to update the alloc types on NewCallee, and remove
    // those ids and update the alloc type on the original Edge.
    NewCallee->AllocTypes |= CallerEdgeAllocType;
    set_subtract(Edge->ContextIds, ContextIdsToMove);
    Edge->AllocTypes = computeAllocType(Edge->ContextIds);
  }
  // Now walk the old callee node's callee edges and move Edge's context ids
  // over to the corresponding edge into the clone (which is created here if
  // this is a newly created clone).
  for (auto &OldCalleeEdge : OldCallee->CalleeEdges) {
    // The context ids moving to the new callee are the subset of this edge's
    // context ids and the context ids on the caller edge being moved.
    DenseSet<uint32_t> EdgeContextIdsToMove =
        set_intersection(OldCalleeEdge->getContextIds(), ContextIdsToMove);
    set_subtract(OldCalleeEdge->getContextIds(), EdgeContextIdsToMove);
    OldCalleeEdge->AllocTypes =
        computeAllocType(OldCalleeEdge->getContextIds());
    if (!NewClone) {
      // Update context ids / alloc type on corresponding edge to NewCallee.
      // There is a chance this may not exist if we are reusing an existing
      // clone, specifically during function assignment, where we would have
      // removed none type edges after creating the clone. If we can't find
      // a corresponding edge there, fall through to the cloning below.
      if (auto *NewCalleeEdge =
              NewCallee->findEdgeFromCallee(OldCalleeEdge->Callee)) {
        NewCalleeEdge->getContextIds().insert(EdgeContextIdsToMove.begin(),
                                              EdgeContextIdsToMove.end());
        NewCalleeEdge->AllocTypes |= computeAllocType(EdgeContextIdsToMove);
        continue;
      }
    }
    auto NewEdge = std::make_shared<ContextEdge>(
        OldCalleeEdge->Callee, NewCallee,
        computeAllocType(EdgeContextIdsToMove), EdgeContextIdsToMove);
    NewCallee->CalleeEdges.push_back(NewEdge);
    NewEdge->Callee->CallerEdges.push_back(NewEdge);
  }
  // Recompute the node alloc type now that its callee edges have been
  // updated (since we will compute from those edges).
  OldCallee->AllocTypes = OldCallee->computeAllocType();
  // OldCallee alloc type should be None iff its context id set is now empty.
  assert((OldCallee->AllocTypes == (uint8_t)AllocationType::None) ==
         OldCallee->emptyContextIds());
  if (VerifyCCG) {
    checkNode<DerivedCCG, FuncTy, CallTy>(OldCallee, /*CheckEdges=*/false);
    checkNode<DerivedCCG, FuncTy, CallTy>(NewCallee, /*CheckEdges=*/false);
    for (const auto &OldCalleeEdge : OldCallee->CalleeEdges)
      checkNode<DerivedCCG, FuncTy, CallTy>(OldCalleeEdge->Callee,
                                            /*CheckEdges=*/false);
    for (const auto &NewCalleeEdge : NewCallee->CalleeEdges)
      checkNode<DerivedCCG, FuncTy, CallTy>(NewCalleeEdge->Callee,
                                            /*CheckEdges=*/false);
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
    recursivelyRemoveNoneTypeCalleeEdges(
        ContextNode *Node, DenseSet<const ContextNode *> &Visited) {
  auto Inserted = Visited.insert(Node);
  if (!Inserted.second)
    return;

  removeNoneTypeCalleeEdges(Node);

  for (auto *Clone : Node->Clones)
    recursivelyRemoveNoneTypeCalleeEdges(Clone, Visited);

  // The recursive call may remove some of this Node's caller edges.
  // Iterate over a copy and skip any that were removed.
  auto CallerEdges = Node->CallerEdges;
  for (auto &Edge : CallerEdges) {
    // Skip any that have been removed by an earlier recursive call.
    if (Edge->Callee == nullptr && Edge->Caller == nullptr) {
      assert(!is_contained(Node->CallerEdges, Edge));
      continue;
    }
    recursivelyRemoveNoneTypeCalleeEdges(Edge->Caller, Visited);
  }
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones() {
  DenseSet<const ContextNode *> Visited;
  for (auto &Entry : AllocationCallToContextNodeMap) {
    Visited.clear();
    identifyClones(Entry.second, Visited, Entry.second->getContextIds());
  }
  Visited.clear();
  for (auto &Entry : AllocationCallToContextNodeMap)
    recursivelyRemoveNoneTypeCalleeEdges(Entry.second, Visited);
  if (VerifyCCG)
    check();
}

// helper function to check an AllocType is cold or notcold or both.
bool checkColdOrNotCold(uint8_t AllocType) {
  return (AllocType == (uint8_t)AllocationType::Cold) ||
         (AllocType == (uint8_t)AllocationType::NotCold) ||
         (AllocType ==
          ((uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold));
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones(
    ContextNode *Node, DenseSet<const ContextNode *> &Visited,
    const DenseSet<uint32_t> &AllocContextIds) {
  if (VerifyNodes)
    checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
  assert(!Node->CloneOf);

  // If Node as a null call, then either it wasn't found in the module (regular
  // LTO) or summary index (ThinLTO), or there were other conditions blocking
  // cloning (e.g. recursion, calls multiple targets, etc).
  // Do this here so that we don't try to recursively clone callers below, which
  // isn't useful at least for this node.
  if (!Node->hasCall())
    return;

#ifndef NDEBUG
  auto Insert =
#endif
      Visited.insert(Node);
  // We should not have visited this node yet.
  assert(Insert.second);
  // The recursive call to identifyClones may delete the current edge from the
  // CallerEdges vector. Make a copy and iterate on that, simpler than passing
  // in an iterator and having recursive call erase from it. Other edges may
  // also get removed during the recursion, which will have null Callee and
  // Caller pointers (and are deleted later), so we skip those below.
  {
    auto CallerEdges = Node->CallerEdges;
    for (auto &Edge : CallerEdges) {
      // Skip any that have been removed by an earlier recursive call.
      if (Edge->Callee == nullptr && Edge->Caller == nullptr) {
        assert(!llvm::count(Node->CallerEdges, Edge));
        continue;
      }
      // Ignore any caller we previously visited via another edge.
      if (!Visited.count(Edge->Caller) && !Edge->Caller->CloneOf) {
        identifyClones(Edge->Caller, Visited, AllocContextIds);
      }
    }
  }

  // Check if we reached an unambiguous call or have have only a single caller.
  if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
    return;

  // We need to clone.

  // Try to keep the original version as alloc type NotCold. This will make
  // cases with indirect calls or any other situation with an unknown call to
  // the original function get the default behavior. We do this by sorting the
  // CallerEdges of the Node we will clone by alloc type.
  //
  // Give NotCold edge the lowest sort priority so those edges are at the end of
  // the caller edges vector, and stay on the original version (since the below
  // code clones greedily until it finds all remaining edges have the same type
  // and leaves the remaining ones on the original Node).
  //
  // We shouldn't actually have any None type edges, so the sorting priority for
  // that is arbitrary, and we assert in that case below.
  const unsigned AllocTypeCloningPriority[] = {/*None*/ 3, /*NotCold*/ 4,
                                               /*Cold*/ 1,
                                               /*NotColdCold*/ 2};
  std::stable_sort(Node->CallerEdges.begin(), Node->CallerEdges.end(),
                   [&](const std::shared_ptr<ContextEdge> &A,
                       const std::shared_ptr<ContextEdge> &B) {
                     // Nodes with non-empty context ids should be sorted before
                     // those with empty context ids.
                     if (A->ContextIds.empty())
                       // Either B ContextIds are non-empty (in which case we
                       // should return false because B < A), or B ContextIds
                       // are empty, in which case they are equal, and we should
                       // maintain the original relative ordering.
                       return false;
                     if (B->ContextIds.empty())
                       return true;

                     if (A->AllocTypes == B->AllocTypes)
                       // Use the first context id for each edge as a
                       // tie-breaker.
                       return *A->ContextIds.begin() < *B->ContextIds.begin();
                     return AllocTypeCloningPriority[A->AllocTypes] <
                            AllocTypeCloningPriority[B->AllocTypes];
                   });

  assert(Node->AllocTypes != (uint8_t)AllocationType::None);

  // Iterate until we find no more opportunities for disambiguating the alloc
  // types via cloning. In most cases this loop will terminate once the Node
  // has a single allocation type, in which case no more cloning is needed.
  // We need to be able to remove Edge from CallerEdges, so need to adjust
  // iterator inside the loop.
  for (auto EI = Node->CallerEdges.begin(); EI != Node->CallerEdges.end();) {
    auto CallerEdge = *EI;

    // See if cloning the prior caller edge left this node with a single alloc
    // type or a single caller. In that case no more cloning of Node is needed.
    if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
      break;

    // Only need to process the ids along this edge pertaining to the given
    // allocation.
    auto CallerEdgeContextsForAlloc =
        set_intersection(CallerEdge->getContextIds(), AllocContextIds);
    if (CallerEdgeContextsForAlloc.empty()) {
      ++EI;
      continue;
    }
    auto CallerAllocTypeForAlloc = computeAllocType(CallerEdgeContextsForAlloc);

    // Compute the node callee edge alloc types corresponding to the context ids
    // for this caller edge.
    std::vector<uint8_t> CalleeEdgeAllocTypesForCallerEdge;
    CalleeEdgeAllocTypesForCallerEdge.reserve(Node->CalleeEdges.size());
    for (auto &CalleeEdge : Node->CalleeEdges)
      CalleeEdgeAllocTypesForCallerEdge.push_back(intersectAllocTypes(
          CalleeEdge->getContextIds(), CallerEdgeContextsForAlloc));

    // Don't clone if doing so will not disambiguate any alloc types amongst
    // caller edges (including the callee edges that would be cloned).
    // Otherwise we will simply move all edges to the clone.
    //
    // First check if by cloning we will disambiguate the caller allocation
    // type from node's allocation type. Query allocTypeToUse so that we don't
    // bother cloning to distinguish NotCold+Cold from NotCold. Note that
    // neither of these should be None type.
    //
    // Then check if by cloning node at least one of the callee edges will be
    // disambiguated by splitting out different context ids.
    assert(CallerEdge->AllocTypes != (uint8_t)AllocationType::None);
    assert(Node->AllocTypes != (uint8_t)AllocationType::None);
    if (allocTypeToUse(CallerAllocTypeForAlloc) ==
            allocTypeToUse(Node->AllocTypes) &&
        allocTypesMatch<DerivedCCG, FuncTy, CallTy>(
            CalleeEdgeAllocTypesForCallerEdge, Node->CalleeEdges)) {
      ++EI;
      continue;
    }

    // First see if we can use an existing clone. Check each clone and its
    // callee edges for matching alloc types.
    ContextNode *Clone = nullptr;
    for (auto *CurClone : Node->Clones) {
      if (allocTypeToUse(CurClone->AllocTypes) !=
          allocTypeToUse(CallerAllocTypeForAlloc))
        continue;

      if (!allocTypesMatch<DerivedCCG, FuncTy, CallTy>(
              CalleeEdgeAllocTypesForCallerEdge, CurClone->CalleeEdges))
        continue;
      Clone = CurClone;
      break;
    }

    // The edge iterator is adjusted when we move the CallerEdge to the clone.
    if (Clone)
      moveEdgeToExistingCalleeClone(CallerEdge, Clone, &EI, /*NewClone=*/false,
                                    CallerEdgeContextsForAlloc);
    else
      Clone =
          moveEdgeToNewCalleeClone(CallerEdge, &EI, CallerEdgeContextsForAlloc);

    assert(EI == Node->CallerEdges.end() ||
           Node->AllocTypes != (uint8_t)AllocationType::None);
    // Sanity check that no alloc types on clone or its edges are None.
    assert(Clone->AllocTypes != (uint8_t)AllocationType::None);
  }

  // We should still have some context ids on the original Node.
  assert(!Node->emptyContextIds());

  // Sanity check that no alloc types on node or edges are None.
  assert(Node->AllocTypes != (uint8_t)AllocationType::None);

  if (VerifyNodes)
    checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
}

void ModuleCallsiteContextGraph::updateAllocationCall(
    CallInfo &Call, AllocationType AllocType) {
  std::string AllocTypeString = getAllocTypeAttributeString(AllocType);
  auto A = llvm::Attribute::get(Call.call()->getFunction()->getContext(),
                                "memprof", AllocTypeString);
  cast<CallBase>(Call.call())->addFnAttr(A);
  OREGetter(Call.call()->getFunction())
      .emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", Call.call())
            << ore::NV("AllocationCall", Call.call()) << " in clone "
            << ore::NV("Caller", Call.call()->getFunction())
            << " marked with memprof allocation attribute "
            << ore::NV("Attribute", AllocTypeString));
}

void IndexCallsiteContextGraph::updateAllocationCall(CallInfo &Call,
                                                     AllocationType AllocType) {
  auto *AI = Call.call().dyn_cast<AllocInfo *>();
  assert(AI);
  assert(AI->Versions.size() > Call.cloneNo());
  AI->Versions[Call.cloneNo()] = (uint8_t)AllocType;
}

void ModuleCallsiteContextGraph::updateCall(CallInfo &CallerCall,
                                            FuncInfo CalleeFunc) {
  if (CalleeFunc.cloneNo() > 0)
    cast<CallBase>(CallerCall.call())->setCalledFunction(CalleeFunc.func());
  OREGetter(CallerCall.call()->getFunction())
      .emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CallerCall.call())
            << ore::NV("Call", CallerCall.call()) << " in clone "
            << ore::NV("Caller", CallerCall.call()->getFunction())
            << " assigned to call function clone "
            << ore::NV("Callee", CalleeFunc.func()));
}

void IndexCallsiteContextGraph::updateCall(CallInfo &CallerCall,
                                           FuncInfo CalleeFunc) {
  auto *CI = CallerCall.call().dyn_cast<CallsiteInfo *>();
  assert(CI &&
         "Caller cannot be an allocation which should not have profiled calls");
  assert(CI->Clones.size() > CallerCall.cloneNo());
  CI->Clones[CallerCall.cloneNo()] = CalleeFunc.cloneNo();
}

CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
                     Instruction *>::FuncInfo
ModuleCallsiteContextGraph::cloneFunctionForCallsite(
    FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
    std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
  // Use existing LLVM facilities for cloning and obtaining Call in clone
  ValueToValueMapTy VMap;
  auto *NewFunc = CloneFunction(Func.func(), VMap);
  std::string Name = getMemProfFuncName(Func.func()->getName(), CloneNo);
  assert(!Func.func()->getParent()->getFunction(Name));
  NewFunc->setName(Name);
  for (auto &Inst : CallsWithMetadataInFunc) {
    // This map always has the initial version in it.
    assert(Inst.cloneNo() == 0);
    CallMap[Inst] = {cast<Instruction>(VMap[Inst.call()]), CloneNo};
  }
  OREGetter(Func.func())
      .emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", Func.func())
            << "created clone " << ore::NV("NewFunction", NewFunc));
  return {NewFunc, CloneNo};
}

CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
                     IndexCall>::FuncInfo
IndexCallsiteContextGraph::cloneFunctionForCallsite(
    FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
    std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
  // Check how many clones we have of Call (and therefore function).
  // The next clone number is the current size of versions array.
  // Confirm this matches the CloneNo provided by the caller, which is based on
  // the number of function clones we have.
  assert(CloneNo ==
         (Call.call().is<AllocInfo *>()
              ? Call.call().dyn_cast<AllocInfo *>()->Versions.size()
              : Call.call().dyn_cast<CallsiteInfo *>()->Clones.size()));
  // Walk all the instructions in this function. Create a new version for
  // each (by adding an entry to the Versions/Clones summary array), and copy
  // over the version being called for the function clone being cloned here.
  // Additionally, add an entry to the CallMap for the new function clone,
  // mapping the original call (clone 0, what is in CallsWithMetadataInFunc)
  // to the new call clone.
  for (auto &Inst : CallsWithMetadataInFunc) {
    // This map always has the initial version in it.
    assert(Inst.cloneNo() == 0);
    if (auto *AI = Inst.call().dyn_cast<AllocInfo *>()) {
      assert(AI->Versions.size() == CloneNo);
      // We assign the allocation type later (in updateAllocationCall), just add
      // an entry for it here.
      AI->Versions.push_back(0);
    } else {
      auto *CI = Inst.call().dyn_cast<CallsiteInfo *>();
      assert(CI && CI->Clones.size() == CloneNo);
      // We assign the clone number later (in updateCall), just add an entry for
      // it here.
      CI->Clones.push_back(0);
    }
    CallMap[Inst] = {Inst.call(), CloneNo};
  }
  return {Func.func(), CloneNo};
}

// This method assigns cloned callsites to functions, cloning the functions as
// needed. The assignment is greedy and proceeds roughly as follows:
//
// For each function Func:
//   For each call with graph Node having clones:
//     Initialize ClonesWorklist to Node and its clones
//     Initialize NodeCloneCount to 0
//     While ClonesWorklist is not empty:
//        Clone = pop front ClonesWorklist
//        NodeCloneCount++
//        If Func has been cloned less than NodeCloneCount times:
//           If NodeCloneCount is 1:
//             Assign Clone to original Func
//             Continue
//           Create a new function clone
//           If other callers not assigned to call a function clone yet:
//              Assign them to call new function clone
//              Continue
//           Assign any other caller calling the cloned version to new clone
//
//        For each caller of Clone:
//           If caller is assigned to call a specific function clone:
//             If we cannot assign Clone to that function clone:
//               Create new callsite Clone NewClone
//               Add NewClone to ClonesWorklist
//               Continue
//             Assign Clone to existing caller's called function clone
//           Else:
//             If Clone not already assigned to a function clone:
//                Assign to first function clone without assignment
//             Assign caller to selected function clone
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::assignFunctions() {
  bool Changed = false;

  // Keep track of the assignment of nodes (callsites) to function clones they
  // call.
  DenseMap<ContextNode *, FuncInfo> CallsiteToCalleeFuncCloneMap;

  // Update caller node to call function version CalleeFunc, by recording the
  // assignment in CallsiteToCalleeFuncCloneMap.
  auto RecordCalleeFuncOfCallsite = [&](ContextNode *Caller,
                                        const FuncInfo &CalleeFunc) {
    assert(Caller->hasCall());
    CallsiteToCalleeFuncCloneMap[Caller] = CalleeFunc;
  };

  // Walk all functions for which we saw calls with memprof metadata, and handle
  // cloning for each of its calls.
  for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
    FuncInfo OrigFunc(Func);
    // Map from each clone of OrigFunc to a map of remappings of each call of
    // interest (from original uncloned call to the corresponding cloned call in
    // that function clone).
    std::map<FuncInfo, std::map<CallInfo, CallInfo>> FuncClonesToCallMap;
    for (auto &Call : CallsWithMetadata) {
      ContextNode *Node = getNodeForInst(Call);
      // Skip call if we do not have a node for it (all uses of its stack ids
      // were either on inlined chains or pruned from the MIBs), or if we did
      // not create any clones for it.
      if (!Node || Node->Clones.empty())
        continue;
      assert(Node->hasCall() &&
             "Not having a call should have prevented cloning");

      // Track the assignment of function clones to clones of the current
      // callsite Node being handled.
      std::map<FuncInfo, ContextNode *> FuncCloneToCurNodeCloneMap;

      // Assign callsite version CallsiteClone to function version FuncClone,
      // and also assign (possibly cloned) Call to CallsiteClone.
      auto AssignCallsiteCloneToFuncClone = [&](const FuncInfo &FuncClone,
                                                CallInfo &Call,
                                                ContextNode *CallsiteClone,
                                                bool IsAlloc) {
        // Record the clone of callsite node assigned to this function clone.
        FuncCloneToCurNodeCloneMap[FuncClone] = CallsiteClone;

        assert(FuncClonesToCallMap.count(FuncClone));
        std::map<CallInfo, CallInfo> &CallMap = FuncClonesToCallMap[FuncClone];
        CallInfo CallClone(Call);
        if (CallMap.count(Call))
          CallClone = CallMap[Call];
        CallsiteClone->setCall(CallClone);
      };

      // Keep track of the clones of callsite Node that need to be assigned to
      // function clones. This list may be expanded in the loop body below if we
      // find additional cloning is required.
      std::deque<ContextNode *> ClonesWorklist;
      // Ignore original Node if we moved all of its contexts to clones.
      if (!Node->emptyContextIds())
        ClonesWorklist.push_back(Node);
      ClonesWorklist.insert(ClonesWorklist.end(), Node->Clones.begin(),
                            Node->Clones.end());

      // Now walk through all of the clones of this callsite Node that we need,
      // and determine the assignment to a corresponding clone of the current
      // function (creating new function clones as needed).
      unsigned NodeCloneCount = 0;
      while (!ClonesWorklist.empty()) {
        ContextNode *Clone = ClonesWorklist.front();
        ClonesWorklist.pop_front();
        NodeCloneCount++;
        if (VerifyNodes)
          checkNode<DerivedCCG, FuncTy, CallTy>(Clone);

        // Need to create a new function clone if we have more callsite clones
        // than existing function clones, which would have been assigned to an
        // earlier clone in the list (we assign callsite clones to function
        // clones greedily).
        if (FuncClonesToCallMap.size() < NodeCloneCount) {
          // If this is the first callsite copy, assign to original function.
          if (NodeCloneCount == 1) {
            // Since FuncClonesToCallMap is empty in this case, no clones have
            // been created for this function yet, and no callers should have
            // been assigned a function clone for this callee node yet.
            assert(llvm::none_of(
                Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
                  return CallsiteToCalleeFuncCloneMap.count(E->Caller);
                }));
            // Initialize with empty call map, assign Clone to original function
            // and its callers, and skip to the next clone.
            FuncClonesToCallMap[OrigFunc] = {};
            AssignCallsiteCloneToFuncClone(
                OrigFunc, Call, Clone,
                AllocationCallToContextNodeMap.count(Call));
            for (auto &CE : Clone->CallerEdges) {
              // Ignore any caller that does not have a recorded callsite Call.
              if (!CE->Caller->hasCall())
                continue;
              RecordCalleeFuncOfCallsite(CE->Caller, OrigFunc);
            }
            continue;
          }

          // First locate which copy of OrigFunc to clone again. If a caller
          // of this callsite clone was already assigned to call a particular
          // function clone, we need to redirect all of those callers to the
          // new function clone, and update their other callees within this
          // function.
          FuncInfo PreviousAssignedFuncClone;
          auto EI = llvm::find_if(
              Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
                return CallsiteToCalleeFuncCloneMap.count(E->Caller);
              });
          bool CallerAssignedToCloneOfFunc = false;
          if (EI != Clone->CallerEdges.end()) {
            const std::shared_ptr<ContextEdge> &Edge = *EI;
            PreviousAssignedFuncClone =
                CallsiteToCalleeFuncCloneMap[Edge->Caller];
            CallerAssignedToCloneOfFunc = true;
          }

          // Clone function and save it along with the CallInfo map created
          // during cloning in the FuncClonesToCallMap.
          std::map<CallInfo, CallInfo> NewCallMap;
          unsigned CloneNo = FuncClonesToCallMap.size();
          assert(CloneNo > 0 && "Clone 0 is the original function, which "
                                "should already exist in the map");
          FuncInfo NewFuncClone = cloneFunctionForCallsite(
              OrigFunc, Call, NewCallMap, CallsWithMetadata, CloneNo);
          FuncClonesToCallMap.emplace(NewFuncClone, std::move(NewCallMap));
          FunctionClonesAnalysis++;
          Changed = true;

          // If no caller callsites were already assigned to a clone of this
          // function, we can simply assign this clone to the new func clone
          // and update all callers to it, then skip to the next clone.
          if (!CallerAssignedToCloneOfFunc) {
            AssignCallsiteCloneToFuncClone(
                NewFuncClone, Call, Clone,
                AllocationCallToContextNodeMap.count(Call));
            for (auto &CE : Clone->CallerEdges) {
              // Ignore any caller that does not have a recorded callsite Call.
              if (!CE->Caller->hasCall())
                continue;
              RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);
            }
            continue;
          }

          // We may need to do additional node cloning in this case.
          // Reset the CallsiteToCalleeFuncCloneMap entry for any callers
          // that were previously assigned to call PreviousAssignedFuncClone,
          // to record that they now call NewFuncClone.
          for (auto CE : Clone->CallerEdges) {
            // Skip any that have been removed on an earlier iteration.
            if (!CE)
              continue;
            // Ignore any caller that does not have a recorded callsite Call.
            if (!CE->Caller->hasCall())
              continue;

            if (!CallsiteToCalleeFuncCloneMap.count(CE->Caller) ||
                // We subsequently fall through to later handling that
                // will perform any additional cloning required for
                // callers that were calling other function clones.
                CallsiteToCalleeFuncCloneMap[CE->Caller] !=
                    PreviousAssignedFuncClone)
              continue;

            RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);

            // If we are cloning a function that was already assigned to some
            // callers, then essentially we are creating new callsite clones
            // of the other callsites in that function that are reached by those
            // callers. Clone the other callees of the current callsite's caller
            // that were already assigned to PreviousAssignedFuncClone
            // accordingly. This is important since we subsequently update the
            // calls from the nodes in the graph and their assignments to callee
            // functions recorded in CallsiteToCalleeFuncCloneMap.
            for (auto CalleeEdge : CE->Caller->CalleeEdges) {
              // Skip any that have been removed on an earlier iteration when
              // cleaning up newly None type callee edges.
              if (!CalleeEdge)
                continue;
              ContextNode *Callee = CalleeEdge->Callee;
              // Skip the current callsite, we are looking for other
              // callsites Caller calls, as well as any that does not have a
              // recorded callsite Call.
              if (Callee == Clone || !Callee->hasCall())
                continue;
              ContextNode *NewClone = moveEdgeToNewCalleeClone(CalleeEdge);
              removeNoneTypeCalleeEdges(NewClone);
              // Moving the edge may have resulted in some none type
              // callee edges on the original Callee.
              removeNoneTypeCalleeEdges(Callee);
              assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
              // If the Callee node was already assigned to call a specific
              // function version, make sure its new clone is assigned to call
              // that same function clone.
              if (CallsiteToCalleeFuncCloneMap.count(Callee))
                RecordCalleeFuncOfCallsite(
                    NewClone, CallsiteToCalleeFuncCloneMap[Callee]);
              // Update NewClone with the new Call clone of this callsite's Call
              // created for the new function clone created earlier.
              // Recall that we have already ensured when building the graph
              // that each caller can only call callsites within the same
              // function, so we are guaranteed that Callee Call is in the
              // current OrigFunc.
              // CallMap is set up as indexed by original Call at clone 0.
              CallInfo OrigCall(Callee->getOrigNode()->Call);
              OrigCall.setCloneNo(0);
              std::map<CallInfo, CallInfo> &CallMap =
                  FuncClonesToCallMap[NewFuncClone];
              assert(CallMap.count(OrigCall));
              CallInfo NewCall(CallMap[OrigCall]);
              assert(NewCall);
              NewClone->setCall(NewCall);
            }
          }
          // Fall through to handling below to perform the recording of the
          // function for this callsite clone. This enables handling of cases
          // where the callers were assigned to different clones of a function.
        }

        // See if we can use existing function clone. Walk through
        // all caller edges to see if any have already been assigned to
        // a clone of this callsite's function. If we can use it, do so. If not,
        // because that function clone is already assigned to a different clone
        // of this callsite, then we need to clone again.
        // Basically, this checking is needed to handle the case where different
        // caller functions/callsites may need versions of this function
        // containing different mixes of callsite clones across the different
        // callsites within the function. If that happens, we need to create
        // additional function clones to handle the various combinations.
        //
        // Keep track of any new clones of this callsite created by the
        // following loop, as well as any existing clone that we decided to
        // assign this clone to.
        std::map<FuncInfo, ContextNode *> FuncCloneToNewCallsiteCloneMap;
        FuncInfo FuncCloneAssignedToCurCallsiteClone;
        // We need to be able to remove Edge from CallerEdges, so need to adjust
        // iterator in the loop.
        for (auto EI = Clone->CallerEdges.begin();
             EI != Clone->CallerEdges.end();) {
          auto Edge = *EI;
          // Ignore any caller that does not have a recorded callsite Call.
          if (!Edge->Caller->hasCall()) {
            EI++;
            continue;
          }
          // If this caller already assigned to call a version of OrigFunc, need
          // to ensure we can assign this callsite clone to that function clone.
          if (CallsiteToCalleeFuncCloneMap.count(Edge->Caller)) {
            FuncInfo FuncCloneCalledByCaller =
                CallsiteToCalleeFuncCloneMap[Edge->Caller];
            // First we need to confirm that this function clone is available
            // for use by this callsite node clone.
            //
            // While FuncCloneToCurNodeCloneMap is built only for this Node and
            // its callsite clones, one of those callsite clones X could have
            // been assigned to the same function clone called by Edge's caller
            // - if Edge's caller calls another callsite within Node's original
            // function, and that callsite has another caller reaching clone X.
            // We need to clone Node again in this case.
            if ((FuncCloneToCurNodeCloneMap.count(FuncCloneCalledByCaller) &&
                 FuncCloneToCurNodeCloneMap[FuncCloneCalledByCaller] !=
                     Clone) ||
                // Detect when we have multiple callers of this callsite that
                // have already been assigned to specific, and different, clones
                // of OrigFunc (due to other unrelated callsites in Func they
                // reach via call contexts). Is this Clone of callsite Node
                // assigned to a different clone of OrigFunc? If so, clone Node
                // again.
                (FuncCloneAssignedToCurCallsiteClone &&
                 FuncCloneAssignedToCurCallsiteClone !=
                     FuncCloneCalledByCaller)) {
              // We need to use a different newly created callsite clone, in
              // order to assign it to another new function clone on a
              // subsequent iteration over the Clones array (adjusted below).
              // Note we specifically do not reset the
              // CallsiteToCalleeFuncCloneMap entry for this caller, so that
              // when this new clone is processed later we know which version of
              // the function to copy (so that other callsite clones we have
              // assigned to that function clone are properly cloned over). See
              // comments in the function cloning handling earlier.

              // Check if we already have cloned this callsite again while
              // walking through caller edges, for a caller calling the same
              // function clone. If so, we can move this edge to that new clone
              // rather than creating yet another new clone.
              if (FuncCloneToNewCallsiteCloneMap.count(
                      FuncCloneCalledByCaller)) {
                ContextNode *NewClone =
                    FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller];
                moveEdgeToExistingCalleeClone(Edge, NewClone, &EI);
                // Cleanup any none type edges cloned over.
                removeNoneTypeCalleeEdges(NewClone);
              } else {
                // Create a new callsite clone.
                ContextNode *NewClone = moveEdgeToNewCalleeClone(Edge, &EI);
                removeNoneTypeCalleeEdges(NewClone);
                FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller] =
                    NewClone;
                // Add to list of clones and process later.
                ClonesWorklist.push_back(NewClone);
                assert(EI == Clone->CallerEdges.end() ||
                       Clone->AllocTypes != (uint8_t)AllocationType::None);
                assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
              }
              // Moving the caller edge may have resulted in some none type
              // callee edges.
              removeNoneTypeCalleeEdges(Clone);
              // We will handle the newly created callsite clone in a subsequent
              // iteration over this Node's Clones. Continue here since we
              // already adjusted iterator EI while moving the edge.
              continue;
            }

            // Otherwise, we can use the function clone already assigned to this
            // caller.
            if (!FuncCloneAssignedToCurCallsiteClone) {
              FuncCloneAssignedToCurCallsiteClone = FuncCloneCalledByCaller;
              // Assign Clone to FuncCloneCalledByCaller
              AssignCallsiteCloneToFuncClone(
                  FuncCloneCalledByCaller, Call, Clone,
                  AllocationCallToContextNodeMap.count(Call));
            } else
              // Don't need to do anything - callsite is already calling this
              // function clone.
              assert(FuncCloneAssignedToCurCallsiteClone ==
                     FuncCloneCalledByCaller);

          } else {
            // We have not already assigned this caller to a version of
            // OrigFunc. Do the assignment now.

            // First check if we have already assigned this callsite clone to a
            // clone of OrigFunc for another caller during this iteration over
            // its caller edges.
            if (!FuncCloneAssignedToCurCallsiteClone) {
              // Find first function in FuncClonesToCallMap without an assigned
              // clone of this callsite Node. We should always have one
              // available at this point due to the earlier cloning when the
              // FuncClonesToCallMap size was smaller than the clone number.
              for (auto &CF : FuncClonesToCallMap) {
                if (!FuncCloneToCurNodeCloneMap.count(CF.first)) {
                  FuncCloneAssignedToCurCallsiteClone = CF.first;
                  break;
                }
              }
              assert(FuncCloneAssignedToCurCallsiteClone);
              // Assign Clone to FuncCloneAssignedToCurCallsiteClone
              AssignCallsiteCloneToFuncClone(
                  FuncCloneAssignedToCurCallsiteClone, Call, Clone,
                  AllocationCallToContextNodeMap.count(Call));
            } else
              assert(FuncCloneToCurNodeCloneMap
                         [FuncCloneAssignedToCurCallsiteClone] == Clone);
            // Update callers to record function version called.
            RecordCalleeFuncOfCallsite(Edge->Caller,
                                       FuncCloneAssignedToCurCallsiteClone);
          }

          EI++;
        }
      }
      if (VerifyCCG) {
        checkNode<DerivedCCG, FuncTy, CallTy>(Node);
        for (const auto &PE : Node->CalleeEdges)
          checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
        for (const auto &CE : Node->CallerEdges)
          checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
        for (auto *Clone : Node->Clones) {
          checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
          for (const auto &PE : Clone->CalleeEdges)
            checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
          for (const auto &CE : Clone->CallerEdges)
            checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
        }
      }
    }
  }

  auto UpdateCalls = [&](ContextNode *Node,
                         DenseSet<const ContextNode *> &Visited,
                         auto &&UpdateCalls) {
    auto Inserted = Visited.insert(Node);
    if (!Inserted.second)
      return;

    for (auto *Clone : Node->Clones)
      UpdateCalls(Clone, Visited, UpdateCalls);

    for (auto &Edge : Node->CallerEdges)
      UpdateCalls(Edge->Caller, Visited, UpdateCalls);

    // Skip if either no call to update, or if we ended up with no context ids
    // (we moved all edges onto other clones).
    if (!Node->hasCall() || Node->emptyContextIds())
      return;

    if (Node->IsAllocation) {
      updateAllocationCall(Node->Call, allocTypeToUse(Node->AllocTypes));
      return;
    }

    if (!CallsiteToCalleeFuncCloneMap.count(Node))
      return;

    auto CalleeFunc = CallsiteToCalleeFuncCloneMap[Node];
    updateCall(Node->Call, CalleeFunc);
  };

  // Performs DFS traversal starting from allocation nodes to update calls to
  // reflect cloning decisions recorded earlier. For regular LTO this will
  // update the actual calls in the IR to call the appropriate function clone
  // (and add attributes to allocation calls), whereas for ThinLTO the decisions
  // are recorded in the summary entries.
  DenseSet<const ContextNode *> Visited;
  for (auto &Entry : AllocationCallToContextNodeMap)
    UpdateCalls(Entry.second, Visited, UpdateCalls);

  return Changed;
}

static SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> createFunctionClones(
    Function &F, unsigned NumClones, Module &M, OptimizationRemarkEmitter &ORE,
    std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
        &FuncToAliasMap) {
  // The first "clone" is the original copy, we should only call this if we
  // needed to create new clones.
  assert(NumClones > 1);
  SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
  VMaps.reserve(NumClones - 1);
  FunctionsClonedThinBackend++;
  for (unsigned I = 1; I < NumClones; I++) {
    VMaps.emplace_back(std::make_unique<ValueToValueMapTy>());
    auto *NewF = CloneFunction(&F, *VMaps.back());
    FunctionClonesThinBackend++;
    // Strip memprof and callsite metadata from clone as they are no longer
    // needed.
    for (auto &BB : *NewF) {
      for (auto &Inst : BB) {
        Inst.setMetadata(LLVMContext::MD_memprof, nullptr);
        Inst.setMetadata(LLVMContext::MD_callsite, nullptr);
      }
    }
    std::string Name = getMemProfFuncName(F.getName(), I);
    auto *PrevF = M.getFunction(Name);
    if (PrevF) {
      // We might have created this when adjusting callsite in another
      // function. It should be a declaration.
      assert(PrevF->isDeclaration());
      NewF->takeName(PrevF);
      PrevF->replaceAllUsesWith(NewF);
      PrevF->eraseFromParent();
    } else
      NewF->setName(Name);
    ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", &F)
             << "created clone " << ore::NV("NewFunction", NewF));

    // Now handle aliases to this function, and clone those as well.
    if (!FuncToAliasMap.count(&F))
      continue;
    for (auto *A : FuncToAliasMap[&F]) {
      std::string Name = getMemProfFuncName(A->getName(), I);
      auto *PrevA = M.getNamedAlias(Name);
      auto *NewA = GlobalAlias::create(A->getValueType(),
                                       A->getType()->getPointerAddressSpace(),
                                       A->getLinkage(), Name, NewF);
      NewA->copyAttributesFrom(A);
      if (PrevA) {
        // We might have created this when adjusting callsite in another
        // function. It should be a declaration.
        assert(PrevA->isDeclaration());
        NewA->takeName(PrevA);
        PrevA->replaceAllUsesWith(NewA);
        PrevA->eraseFromParent();
      }
    }
  }
  return VMaps;
}

// Locate the summary for F. This is complicated by the fact that it might
// have been internalized or promoted.
static ValueInfo findValueInfoForFunc(const Function &F, const Module &M,
                                      const ModuleSummaryIndex *ImportSummary) {
  // FIXME: Ideally we would retain the original GUID in some fashion on the
  // function (e.g. as metadata), but for now do our best to locate the
  // summary without that information.
  ValueInfo TheFnVI = ImportSummary->getValueInfo(F.getGUID());
  if (!TheFnVI)
    // See if theFn was internalized, by checking index directly with
    // original name (this avoids the name adjustment done by getGUID() for
    // internal symbols).
    TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(F.getName()));
  if (TheFnVI)
    return TheFnVI;
  // Now query with the original name before any promotion was performed.
  StringRef OrigName =
      ModuleSummaryIndex::getOriginalNameBeforePromote(F.getName());
  std::string OrigId = GlobalValue::getGlobalIdentifier(
      OrigName, GlobalValue::InternalLinkage, M.getSourceFileName());
  TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(OrigId));
  if (TheFnVI)
    return TheFnVI;
  // Could be a promoted local imported from another module. We need to pass
  // down more info here to find the original module id. For now, try with
  // the OrigName which might have been stored in the OidGuidMap in the
  // index. This would not work if there were same-named locals in multiple
  // modules, however.
  auto OrigGUID =
      ImportSummary->getGUIDFromOriginalID(GlobalValue::getGUID(OrigName));
  if (OrigGUID)
    TheFnVI = ImportSummary->getValueInfo(OrigGUID);
  return TheFnVI;
}

bool MemProfContextDisambiguation::applyImport(Module &M) {
  assert(ImportSummary);
  bool Changed = false;

  auto IsMemProfClone = [](const Function &F) {
    return F.getName().contains(MemProfCloneSuffix);
  };

  // We also need to clone any aliases that reference cloned functions, because
  // the modified callsites may invoke via the alias. Keep track of the aliases
  // for each function.
  std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
      FuncToAliasMap;
  for (auto &A : M.aliases()) {
    auto *Aliasee = A.getAliaseeObject();
    if (auto *F = dyn_cast<Function>(Aliasee))
      FuncToAliasMap[F].insert(&A);
  }

  for (auto &F : M) {
    if (F.isDeclaration() || IsMemProfClone(F))
      continue;

    OptimizationRemarkEmitter ORE(&F);

    SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
    bool ClonesCreated = false;
    unsigned NumClonesCreated = 0;
    auto CloneFuncIfNeeded = [&](unsigned NumClones) {
      // We should at least have version 0 which is the original copy.
      assert(NumClones > 0);
      // If only one copy needed use original.
      if (NumClones == 1)
        return;
      // If we already performed cloning of this function, confirm that the
      // requested number of clones matches (the thin link should ensure the
      // number of clones for each constituent callsite is consistent within
      // each function), before returning.
      if (ClonesCreated) {
        assert(NumClonesCreated == NumClones);
        return;
      }
      VMaps = createFunctionClones(F, NumClones, M, ORE, FuncToAliasMap);
      // The first "clone" is the original copy, which doesn't have a VMap.
      assert(VMaps.size() == NumClones - 1);
      Changed = true;
      ClonesCreated = true;
      NumClonesCreated = NumClones;
    };

    auto CloneCallsite = [&](const CallsiteInfo &StackNode, CallBase *CB,
                             Function *CalledFunction) {
      // Perform cloning if not yet done.
      CloneFuncIfNeeded(/*NumClones=*/StackNode.Clones.size());

      // Should have skipped indirect calls via mayHaveMemprofSummary.
      assert(CalledFunction);
      assert(!IsMemProfClone(*CalledFunction));

      // Update the calls per the summary info.
      // Save orig name since it gets updated in the first iteration
      // below.
      auto CalleeOrigName = CalledFunction->getName();
      for (unsigned J = 0; J < StackNode.Clones.size(); J++) {
        // Do nothing if this version calls the original version of its
        // callee.
        if (!StackNode.Clones[J])
          continue;
        auto NewF = M.getOrInsertFunction(
            getMemProfFuncName(CalleeOrigName, StackNode.Clones[J]),
            CalledFunction->getFunctionType());
        CallBase *CBClone;
        // Copy 0 is the original function.
        if (!J)
          CBClone = CB;
        else
          CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
        CBClone->setCalledFunction(NewF);
        ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CBClone)
                 << ore::NV("Call", CBClone) << " in clone "
                 << ore::NV("Caller", CBClone->getFunction())
                 << " assigned to call function clone "
                 << ore::NV("Callee", NewF.getCallee()));
      }
    };

    // Locate the summary for F.
    ValueInfo TheFnVI = findValueInfoForFunc(F, M, ImportSummary);
    // If not found, this could be an imported local (see comment in
    // findValueInfoForFunc). Skip for now as it will be cloned in its original
    // module (where it would have been promoted to global scope so should
    // satisfy any reference in this module).
    if (!TheFnVI)
      continue;

    auto *GVSummary =
        ImportSummary->findSummaryInModule(TheFnVI, M.getModuleIdentifier());
    if (!GVSummary) {
      // Must have been imported, use the summary which matches the definition。
      // (might be multiple if this was a linkonce_odr).
      auto SrcModuleMD = F.getMetadata("thinlto_src_module");
      assert(SrcModuleMD &&
             "enable-import-metadata is needed to emit thinlto_src_module");
      StringRef SrcModule =
          dyn_cast<MDString>(SrcModuleMD->getOperand(0))->getString();
      for (auto &GVS : TheFnVI.getSummaryList()) {
        if (GVS->modulePath() == SrcModule) {
          GVSummary = GVS.get();
          break;
        }
      }
      assert(GVSummary && GVSummary->modulePath() == SrcModule);
    }

    // If this was an imported alias skip it as we won't have the function
    // summary, and it should be cloned in the original module.
    if (isa<AliasSummary>(GVSummary))
      continue;

    auto *FS = cast<FunctionSummary>(GVSummary->getBaseObject());

    if (FS->allocs().empty() && FS->callsites().empty())
      continue;

    auto SI = FS->callsites().begin();
    auto AI = FS->allocs().begin();

    // To handle callsite infos synthesized for tail calls which have missing
    // frames in the profiled context, map callee VI to the synthesized callsite
    // info.
    DenseMap<ValueInfo, CallsiteInfo> MapTailCallCalleeVIToCallsite;
    // Iterate the callsites for this function in reverse, since we place all
    // those synthesized for tail calls at the end.
    for (auto CallsiteIt = FS->callsites().rbegin();
         CallsiteIt != FS->callsites().rend(); CallsiteIt++) {
      auto &Callsite = *CallsiteIt;
      // Stop as soon as we see a non-synthesized callsite info (see comment
      // above loop). All the entries added for discovered tail calls have empty
      // stack ids.
      if (!Callsite.StackIdIndices.empty())
        break;
      MapTailCallCalleeVIToCallsite.insert({Callsite.Callee, Callsite});
    }

    // Assume for now that the instructions are in the exact same order
    // as when the summary was created, but confirm this is correct by
    // matching the stack ids.
    for (auto &BB : F) {
      for (auto &I : BB) {
        auto *CB = dyn_cast<CallBase>(&I);
        // Same handling as when creating module summary.
        if (!mayHaveMemprofSummary(CB))
          continue;

        auto *CalledValue = CB->getCalledOperand();
        auto *CalledFunction = CB->getCalledFunction();
        if (CalledValue && !CalledFunction) {
          CalledValue = CalledValue->stripPointerCasts();
          // Stripping pointer casts can reveal a called function.
          CalledFunction = dyn_cast<Function>(CalledValue);
        }
        // Check if this is an alias to a function. If so, get the
        // called aliasee for the checks below.
        if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
          assert(!CalledFunction &&
                 "Expected null called function in callsite for alias");
          CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
        }

        CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
            I.getMetadata(LLVMContext::MD_callsite));
        auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);

        // Include allocs that were already assigned a memprof function
        // attribute in the statistics.
        if (CB->getAttributes().hasFnAttr("memprof")) {
          assert(!MemProfMD);
          CB->getAttributes().getFnAttr("memprof").getValueAsString() == "cold"
              ? AllocTypeColdThinBackend++
              : AllocTypeNotColdThinBackend++;
          OrigAllocsThinBackend++;
          AllocVersionsThinBackend++;
          if (!MaxAllocVersionsThinBackend)
            MaxAllocVersionsThinBackend = 1;
          // Remove any remaining callsite metadata and we can skip the rest of
          // the handling for this instruction, since no cloning needed.
          I.setMetadata(LLVMContext::MD_callsite, nullptr);
          continue;
        }

        if (MemProfMD) {
          // Consult the next alloc node.
          assert(AI != FS->allocs().end());
          auto &AllocNode = *(AI++);

          // Sanity check that the MIB stack ids match between the summary and
          // instruction metadata.
          auto MIBIter = AllocNode.MIBs.begin();
          for (auto &MDOp : MemProfMD->operands()) {
            assert(MIBIter != AllocNode.MIBs.end());
            LLVM_ATTRIBUTE_UNUSED auto StackIdIndexIter =
                MIBIter->StackIdIndices.begin();
            auto *MIBMD = cast<const MDNode>(MDOp);
            MDNode *StackMDNode = getMIBStackNode(MIBMD);
            assert(StackMDNode);
            CallStack<MDNode, MDNode::op_iterator> StackContext(StackMDNode);
            auto ContextIterBegin =
                StackContext.beginAfterSharedPrefix(CallsiteContext);
            // Skip the checking on the first iteration.
            uint64_t LastStackContextId =
                (ContextIterBegin != StackContext.end() &&
                 *ContextIterBegin == 0)
                    ? 1
                    : 0;
            for (auto ContextIter = ContextIterBegin;
                 ContextIter != StackContext.end(); ++ContextIter) {
              // If this is a direct recursion, simply skip the duplicate
              // entries, to be consistent with how the summary ids were
              // generated during ModuleSummaryAnalysis.
              if (LastStackContextId == *ContextIter)
                continue;
              LastStackContextId = *ContextIter;
              assert(StackIdIndexIter != MIBIter->StackIdIndices.end());
              assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
                     *ContextIter);
              StackIdIndexIter++;
            }
            MIBIter++;
          }

          // Perform cloning if not yet done.
          CloneFuncIfNeeded(/*NumClones=*/AllocNode.Versions.size());

          OrigAllocsThinBackend++;
          AllocVersionsThinBackend += AllocNode.Versions.size();
          if (MaxAllocVersionsThinBackend < AllocNode.Versions.size())
            MaxAllocVersionsThinBackend = AllocNode.Versions.size();

          // If there is only one version that means we didn't end up
          // considering this function for cloning, and in that case the alloc
          // will still be none type or should have gotten the default NotCold.
          // Skip that after calling clone helper since that does some sanity
          // checks that confirm we haven't decided yet that we need cloning.
          if (AllocNode.Versions.size() == 1) {
            assert((AllocationType)AllocNode.Versions[0] ==
                       AllocationType::NotCold ||
                   (AllocationType)AllocNode.Versions[0] ==
                       AllocationType::None);
            UnclonableAllocsThinBackend++;
            continue;
          }

          // All versions should have a singular allocation type.
          assert(llvm::none_of(AllocNode.Versions, [](uint8_t Type) {
            return Type == ((uint8_t)AllocationType::NotCold |
                            (uint8_t)AllocationType::Cold);
          }));

          // Update the allocation types per the summary info.
          for (unsigned J = 0; J < AllocNode.Versions.size(); J++) {
            // Ignore any that didn't get an assigned allocation type.
            if (AllocNode.Versions[J] == (uint8_t)AllocationType::None)
              continue;
            AllocationType AllocTy = (AllocationType)AllocNode.Versions[J];
            AllocTy == AllocationType::Cold ? AllocTypeColdThinBackend++
                                            : AllocTypeNotColdThinBackend++;
            std::string AllocTypeString = getAllocTypeAttributeString(AllocTy);
            auto A = llvm::Attribute::get(F.getContext(), "memprof",
                                          AllocTypeString);
            CallBase *CBClone;
            // Copy 0 is the original function.
            if (!J)
              CBClone = CB;
            else
              // Since VMaps are only created for new clones, we index with
              // clone J-1 (J==0 is the original clone and does not have a VMaps
              // entry).
              CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
            CBClone->addFnAttr(A);
            ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", CBClone)
                     << ore::NV("AllocationCall", CBClone) << " in clone "
                     << ore::NV("Caller", CBClone->getFunction())
                     << " marked with memprof allocation attribute "
                     << ore::NV("Attribute", AllocTypeString));
          }
        } else if (!CallsiteContext.empty()) {
          // Consult the next callsite node.
          assert(SI != FS->callsites().end());
          auto &StackNode = *(SI++);

#ifndef NDEBUG
          // Sanity check that the stack ids match between the summary and
          // instruction metadata.
          auto StackIdIndexIter = StackNode.StackIdIndices.begin();
          for (auto StackId : CallsiteContext) {
            assert(StackIdIndexIter != StackNode.StackIdIndices.end());
            assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
                   StackId);
            StackIdIndexIter++;
          }
#endif

          CloneCallsite(StackNode, CB, CalledFunction);
        } else if (CB->isTailCall()) {
          // Locate the synthesized callsite info for the callee VI, if any was
          // created, and use that for cloning.
          ValueInfo CalleeVI =
              findValueInfoForFunc(*CalledFunction, M, ImportSummary);
          if (CalleeVI && MapTailCallCalleeVIToCallsite.count(CalleeVI)) {
            auto Callsite = MapTailCallCalleeVIToCallsite.find(CalleeVI);
            assert(Callsite != MapTailCallCalleeVIToCallsite.end());
            CloneCallsite(Callsite->second, CB, CalledFunction);
          }
        }
        // Memprof and callsite metadata on memory allocations no longer needed.
        I.setMetadata(LLVMContext::MD_memprof, nullptr);
        I.setMetadata(LLVMContext::MD_callsite, nullptr);
      }
    }
  }

  return Changed;
}

template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::process() {
  if (DumpCCG) {
    dbgs() << "CCG before cloning:\n";
    dbgs() << *this;
  }
  if (ExportToDot)
    exportToDot("postbuild");

  if (VerifyCCG) {
    check();
  }

  identifyClones();

  if (VerifyCCG) {
    check();
  }

  if (DumpCCG) {
    dbgs() << "CCG after cloning:\n";
    dbgs() << *this;
  }
  if (ExportToDot)
    exportToDot("cloned");

  bool Changed = assignFunctions();

  if (DumpCCG) {
    dbgs() << "CCG after assigning function clones:\n";
    dbgs() << *this;
  }
  if (ExportToDot)
    exportToDot("clonefuncassign");

  return Changed;
}

bool MemProfContextDisambiguation::processModule(
    Module &M,
    llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {

  // If we have an import summary, then the cloning decisions were made during
  // the thin link on the index. Apply them and return.
  if (ImportSummary)
    return applyImport(M);

  // TODO: If/when other types of memprof cloning are enabled beyond just for
  // hot and cold, we will need to change this to individually control the
  // AllocationType passed to addStackNodesForMIB during CCG construction.
  // Note that we specifically check this after applying imports above, so that
  // the option isn't needed to be passed to distributed ThinLTO backend
  // clang processes, which won't necessarily have visibility into the linker
  // dependences. Instead the information is communicated from the LTO link to
  // the backends via the combined summary index.
  if (!SupportsHotColdNew)
    return false;

  ModuleCallsiteContextGraph CCG(M, OREGetter);
  return CCG.process();
}

MemProfContextDisambiguation::MemProfContextDisambiguation(
    const ModuleSummaryIndex *Summary)
    : ImportSummary(Summary) {
  if (ImportSummary) {
    // The MemProfImportSummary should only be used for testing ThinLTO
    // distributed backend handling via opt, in which case we don't have a
    // summary from the pass pipeline.
    assert(MemProfImportSummary.empty());
    return;
  }
  if (MemProfImportSummary.empty())
    return;

  auto ReadSummaryFile =
      errorOrToExpected(MemoryBuffer::getFile(MemProfImportSummary));
  if (!ReadSummaryFile) {
    logAllUnhandledErrors(ReadSummaryFile.takeError(), errs(),
                          "Error loading file '" + MemProfImportSummary +
                              "': ");
    return;
  }
  auto ImportSummaryForTestingOrErr = getModuleSummaryIndex(**ReadSummaryFile);
  if (!ImportSummaryForTestingOrErr) {
    logAllUnhandledErrors(ImportSummaryForTestingOrErr.takeError(), errs(),
                          "Error parsing file '" + MemProfImportSummary +
                              "': ");
    return;
  }
  ImportSummaryForTesting = std::move(*ImportSummaryForTestingOrErr);
  ImportSummary = ImportSummaryForTesting.get();
}

PreservedAnalyses MemProfContextDisambiguation::run(Module &M,
                                                    ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };
  if (!processModule(M, OREGetter))
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}

void MemProfContextDisambiguation::run(
    ModuleSummaryIndex &Index,
    llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
        isPrevailing) {
  // TODO: If/when other types of memprof cloning are enabled beyond just for
  // hot and cold, we will need to change this to individually control the
  // AllocationType passed to addStackNodesForMIB during CCG construction.
  // The index was set from the option, so these should be in sync.
  assert(Index.withSupportsHotColdNew() == SupportsHotColdNew);
  if (!SupportsHotColdNew)
    return;

  IndexCallsiteContextGraph CCG(Index, isPrevailing);
  CCG.process();
}