aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86InstrArithmetic.td
blob: c45ec8981ab1fea7956e430415838f78c7fab6d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the integer arithmetic instructions in the X86
// architecture.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// LEA - Load Effective Address
let SchedRW = [WriteLEA] in {
let hasSideEffects = 0 in
def LEA16r   : I<0x8D, MRMSrcMem,
                 (outs GR16:$dst), (ins anymem:$src),
                 "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16;
let isReMaterializable = 1 in
def LEA32r   : I<0x8D, MRMSrcMem,
                 (outs GR32:$dst), (ins anymem:$src),
                 "lea{l}\t{$src|$dst}, {$dst|$src}",
                 [(set GR32:$dst, lea32addr:$src)]>,
                 OpSize32, Requires<[Not64BitMode]>;

def LEA64_32r : I<0x8D, MRMSrcMem,
                  (outs GR32:$dst), (ins lea64_32mem:$src),
                  "lea{l}\t{$src|$dst}, {$dst|$src}",
                  [(set GR32:$dst, lea64_32addr:$src)]>,
                  OpSize32, Requires<[In64BitMode]>;

let isReMaterializable = 1 in
def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
                  "lea{q}\t{$src|$dst}, {$dst|$src}",
                  [(set GR64:$dst, lea64addr:$src)]>;
} // SchedRW

// Pseudo instruction for lea that prevent optimizer from eliminating
// the instruction.
let SchedRW = [WriteLEA], isPseudo = true, hasSideEffects = 1 in {
def PLEA32r   : PseudoI<(outs GR32:$dst), (ins anymem:$src), []>;
def PLEA64r   : PseudoI<(outs GR64:$dst), (ins anymem:$src), []>;
}

//===----------------------------------------------------------------------===//
// MUL/IMUL and DIV/IDIV Instructions
//
class MulDivOpR<bits<8> o, Format f, string m, X86TypeInfo t,
             X86FoldableSchedWrite sched, list<dag> p>
  : UnaryOpR<o, f, m, "$src1", t, (outs), p> {
  let SchedRW = [sched];
}

class MulDivOpM<bits<8> o, Format f, string m, X86TypeInfo t,
             X86FoldableSchedWrite sched, list<dag> p>
  : UnaryOpM<o, f, m, "$src1", t, (outs), p> {
  let SchedRW =
    [sched.Folded,
     // Memory operand.
     ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
     // Register reads (implicit or explicit).
     sched.ReadAfterFold, sched.ReadAfterFold];
}

multiclass Mul<bits<8> o, string m, Format RegMRM, Format MemMRM, SDPatternOperator node> {
  // AL is really implied by AX, but the registers in Defs must match the
  // SDNode results (i8, i32).
  //
  // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
  // This probably ought to be moved to a def : Pat<> if the
  // syntax can be accepted.
  let Defs = [AL, EFLAGS, AX], Uses = [AL] in
    def 8r : MulDivOpR<o, RegMRM, m, Xi8, WriteIMul8,
                       [(set AL, (node AL, GR8:$src1)), (implicit EFLAGS)]>;
  let Defs = [AX, DX, EFLAGS], Uses = [AX] in
    def 16r : MulDivOpR<o, RegMRM, m, Xi16, WriteIMul16, []>, OpSize16;
  let Defs = [EAX, EDX, EFLAGS], Uses = [EAX] in
    def 32r : MulDivOpR<o, RegMRM, m, Xi32, WriteIMul32, []>, OpSize32;
  let Defs = [RAX, RDX, EFLAGS], Uses = [RAX] in
    def 64r : MulDivOpR<o, RegMRM, m, Xi64, WriteIMul64, []>;
  let Defs = [AL, EFLAGS, AX], Uses = [AL] in
    def 8m : MulDivOpM<o, MemMRM, m, Xi8, WriteIMul8,
                       [(set AL, (node AL, (loadi8 addr:$src1))), (implicit EFLAGS)]>;
  let Defs = [AX, DX, EFLAGS], Uses = [AX] in
    def 16m : MulDivOpM<o, MemMRM, m, Xi16, WriteIMul16, []>, OpSize16;
  let Defs = [EAX, EDX, EFLAGS], Uses = [EAX] in
    def 32m : MulDivOpM<o, MemMRM, m, Xi32, WriteIMul32, []>, OpSize32;
  let Defs = [RAX, RDX, EFLAGS], Uses = [RAX] in
    def 64m : MulDivOpM<o, MemMRM, m, Xi64, WriteIMul64, []>, Requires<[In64BitMode]>;

  let Predicates = [In64BitMode] in {
    let Defs = [AL, AX], Uses = [AL] in
      def 8r_NF : MulDivOpR<o, RegMRM, m, Xi8, WriteIMul8, []>, NF;
    let Defs = [AX, DX], Uses = [AX] in
      def 16r_NF : MulDivOpR<o, RegMRM, m, Xi16, WriteIMul16, []>, NF, PD;
    let Defs = [EAX, EDX], Uses = [EAX] in
      def 32r_NF : MulDivOpR<o, RegMRM, m, Xi32, WriteIMul32, []>, NF;
    let Defs = [RAX, RDX], Uses = [RAX] in
      def 64r_NF : MulDivOpR<o, RegMRM, m, Xi64, WriteIMul64, []>, NF;
    let Defs = [AL, AX], Uses = [AL] in
      def 8m_NF : MulDivOpM<o, MemMRM, m, Xi8, WriteIMul8, []>, NF;
    let Defs = [AX, DX], Uses = [AX] in
      def 16m_NF : MulDivOpM<o, MemMRM, m, Xi16, WriteIMul16, []>, NF, PD;
    let Defs = [EAX, EDX], Uses = [EAX] in
      def 32m_NF : MulDivOpM<o, MemMRM, m, Xi32, WriteIMul32, []>, NF;
    let Defs = [RAX, RDX], Uses = [RAX] in
      def 64m_NF : MulDivOpM<o, MemMRM, m, Xi64, WriteIMul64, []>, NF;

    let Defs = [AL, EFLAGS, AX], Uses = [AL] in
      def 8r_EVEX : MulDivOpR<o, RegMRM, m, Xi8, WriteIMul8, []>, PL;
    let Defs = [AX, DX, EFLAGS], Uses = [AX] in
      def 16r_EVEX : MulDivOpR<o, RegMRM, m, Xi16, WriteIMul16, []>, PL, PD;
    let Defs = [EAX, EDX, EFLAGS], Uses = [EAX] in
      def 32r_EVEX : MulDivOpR<o, RegMRM, m, Xi32, WriteIMul32, []>, PL;
    let Defs = [RAX, RDX, EFLAGS], Uses = [RAX] in
      def 64r_EVEX : MulDivOpR<o, RegMRM, m, Xi64, WriteIMul64, []>, PL;
    let Defs = [AL, EFLAGS, AX], Uses = [AL] in
      def 8m_EVEX : MulDivOpM<o, MemMRM, m, Xi8, WriteIMul8, []>, PL;
    let Defs = [AX, DX, EFLAGS], Uses = [AX] in
      def 16m_EVEX : MulDivOpM<o, MemMRM, m, Xi16, WriteIMul16, []>, PL, PD;
    let Defs = [EAX, EDX, EFLAGS], Uses = [EAX] in
      def 32m_EVEX : MulDivOpM<o, MemMRM, m, Xi32, WriteIMul32, []>, PL;
    let Defs = [RAX, RDX, EFLAGS], Uses = [RAX] in
      def 64m_EVEX : MulDivOpM<o, MemMRM, m, Xi64, WriteIMul64, []>, PL;
  }
}

defm MUL : Mul<0xF7, "mul", MRM4r, MRM4m, mul>;
defm IMUL : Mul<0xF7, "imul", MRM5r, MRM5m, null_frag>;

multiclass Div<bits<8> o, string m, Format RegMRM, Format MemMRM> {
  defvar sched8 = !if(!eq(m, "div"), WriteDiv8, WriteIDiv8);
  defvar sched16 = !if(!eq(m, "div"), WriteDiv16, WriteIDiv16);
  defvar sched32 = !if(!eq(m, "div"), WriteDiv32, WriteIDiv32);
  defvar sched64 = !if(!eq(m, "div"), WriteDiv64, WriteIDiv64);
  let Defs = [AL, AH, EFLAGS], Uses = [AX] in
    def 8r  : MulDivOpR<o, RegMRM, m, Xi8, sched8, []>;
  let Defs = [AX, DX, EFLAGS], Uses = [AX, DX] in
    def 16r : MulDivOpR<o, RegMRM, m, Xi16, sched16, []>, OpSize16;
  let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EDX] in
    def 32r : MulDivOpR<o, RegMRM, m, Xi32, sched32, []>, OpSize32;
  let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RDX] in
    def 64r : MulDivOpR<o, RegMRM, m, Xi64, sched64, []>;
  let Defs = [AL, AH, EFLAGS], Uses = [AX] in
    def 8m  : MulDivOpM<o, MemMRM, m, Xi8, sched8, []>;
  let Defs = [AX, DX, EFLAGS], Uses = [AX, DX] in
    def 16m : MulDivOpM<o, MemMRM, m, Xi16, sched16, []>, OpSize16;
  let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EDX] in
    def 32m : MulDivOpM<o, MemMRM, m, Xi32, sched32, []>, OpSize32;
  let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RDX] in
    def 64m : MulDivOpM<o, MemMRM, m, Xi64, sched64, []>, Requires<[In64BitMode]>;

  let Predicates = [In64BitMode] in {
    let Defs = [AL, AH], Uses = [AX] in
      def 8r_NF  : MulDivOpR<o, RegMRM, m, Xi8, sched8, []>, NF;
    let Defs = [AX, DX], Uses = [AX, DX] in
      def 16r_NF : MulDivOpR<o, RegMRM, m, Xi16, sched16, []>, NF, PD;
    let Defs = [EAX, EDX], Uses = [EAX, EDX] in
      def 32r_NF : MulDivOpR<o, RegMRM, m, Xi32, sched32, []>, NF;
    let Defs = [RAX, RDX], Uses = [RAX, RDX] in
      def 64r_NF : MulDivOpR<o, RegMRM, m, Xi64, sched64, []>, NF;
    let Defs = [AL, AH], Uses = [AX] in
      def 8m_NF  : MulDivOpM<o, MemMRM, m, Xi8, sched8, []>, NF;
    let Defs = [AX, DX], Uses = [AX, DX] in
      def 16m_NF : MulDivOpM<o, MemMRM, m, Xi16, sched16, []>, NF, PD;
    let Defs = [EAX, EDX], Uses = [EAX, EDX] in
      def 32m_NF : MulDivOpM<o, MemMRM, m, Xi32, sched32, []>, NF;
    let Defs = [RAX, RDX], Uses = [RAX, RDX] in
      def 64m_NF : MulDivOpM<o, MemMRM, m, Xi64, sched64, []>, NF;

    let Defs = [AL, AH, EFLAGS], Uses = [AX] in
      def 8r_EVEX  : MulDivOpR<o, RegMRM, m, Xi8, sched8, []>, PL;
    let Defs = [AX, DX, EFLAGS], Uses = [AX, DX] in
      def 16r_EVEX : MulDivOpR<o, RegMRM, m, Xi16, sched16, []>, PL, PD;
    let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EDX] in
      def 32r_EVEX : MulDivOpR<o, RegMRM, m, Xi32, sched32, []>, PL;
    let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RDX] in
      def 64r_EVEX : MulDivOpR<o, RegMRM, m, Xi64, sched64, []>, PL;
    let Defs = [AL, AH, EFLAGS], Uses = [AX] in
      def 8m_EVEX  : MulDivOpM<o, MemMRM, m, Xi8, sched8, []>, PL;
    let Defs = [AX, DX, EFLAGS], Uses = [AX, DX] in
      def 16m_EVEX : MulDivOpM<o, MemMRM, m, Xi16, sched16, []>, PL, PD;
    let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EDX] in
      def 32m_EVEX : MulDivOpM<o, MemMRM, m, Xi32, sched32, []>, PL;
    let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RDX] in
      def 64m_EVEX : MulDivOpM<o, MemMRM, m, Xi64, sched64, []>, PL;
  }
}

let hasSideEffects = 1 in { // so that we don't speculatively execute
  defm DIV: Div<0xF7, "div", MRM6r, MRM6m>;
  defm IDIV: Div<0xF7, "idiv", MRM7r, MRM7m>;
}

class IMulOpRR_R<X86TypeInfo t, X86FoldableSchedWrite sched, bit ndd = 0>
  : BinOpRR_R<0xAF, "imul", t, ndd> {
  let Form = MRMSrcReg;
  let SchedRW = [sched];
  // X = IMUL Y, Z --> X = IMUL Z, Y
  let isCommutable = 1;
}
class IMulOpRR_RF<X86TypeInfo t, X86FoldableSchedWrite sched, bit ndd = 0>
  : BinOpRR_RF<0xAF, "imul", t, X86smul_flag, ndd> {
  let Form = MRMSrcReg;
  let SchedRW = [sched];
  // X = IMUL Y, Z --> X = IMUL Z, Y
  let isCommutable = 1;
}
class IMulOpRM_R<X86TypeInfo t, X86FoldableSchedWrite sched, bit ndd = 0>
  : BinOpRM_R<0xAF, "imul", t, ndd> {
  let Form = MRMSrcMem;
  let SchedRW = [sched.Folded, sched.ReadAfterFold];
}
class IMulOpRM_RF<X86TypeInfo t, X86FoldableSchedWrite sched, bit ndd = 0>
  : BinOpRM_RF<0xAF, "imul", t, X86smul_flag, ndd> {
  let Form = MRMSrcMem;
  let SchedRW = [sched.Folded, sched.ReadAfterFold];
}

let Predicates = [NoNDD] in {
  def IMUL16rr : IMulOpRR_RF<Xi16, WriteIMul16Reg>, TB, OpSize16;
  def IMUL32rr : IMulOpRR_RF<Xi32, WriteIMul32Reg>, TB, OpSize32;
  def IMUL64rr : IMulOpRR_RF<Xi64, WriteIMul64Reg>, TB;
  def IMUL16rm : IMulOpRM_RF<Xi16, WriteIMul16Reg>, TB, OpSize16;
  def IMUL32rm : IMulOpRM_RF<Xi32, WriteIMul32Reg>, TB, OpSize32;
  def IMUL64rm : IMulOpRM_RF<Xi64, WriteIMul64Reg>, TB;
}
let Predicates = [HasNDD, In64BitMode] in {
  def IMUL16rr_ND : IMulOpRR_RF<Xi16, WriteIMul16Reg, 1>, PD;
  def IMUL32rr_ND : IMulOpRR_RF<Xi32, WriteIMul32Reg, 1>;
  def IMUL64rr_ND : IMulOpRR_RF<Xi64, WriteIMul64Reg, 1>;
  def IMUL16rm_ND : IMulOpRM_RF<Xi16, WriteIMul16Reg, 1>, PD;
  def IMUL32rm_ND : IMulOpRM_RF<Xi32, WriteIMul32Reg, 1>;
  def IMUL64rm_ND : IMulOpRM_RF<Xi64, WriteIMul64Reg, 1>;
}

let Predicates = [In64BitMode], Pattern = [(null_frag)] in {
  def IMUL16rr_NF : IMulOpRR_R<Xi16, WriteIMul16Reg>, NF, PD;
  def IMUL32rr_NF : IMulOpRR_R<Xi32, WriteIMul32Reg>, NF;
  def IMUL64rr_NF : IMulOpRR_R<Xi64, WriteIMul64Reg>, NF;
  def IMUL16rm_NF : IMulOpRM_R<Xi16, WriteIMul16Reg>, NF, PD;
  def IMUL32rm_NF : IMulOpRM_R<Xi32, WriteIMul32Reg>, NF;
  def IMUL64rm_NF : IMulOpRM_R<Xi64, WriteIMul64Reg>, NF;

  def IMUL16rr_NF_ND : IMulOpRR_R<Xi16, WriteIMul16Reg, 1>, EVEX_NF, PD;
  def IMUL32rr_NF_ND : IMulOpRR_R<Xi32, WriteIMul32Reg, 1>, EVEX_NF;
  def IMUL64rr_NF_ND : IMulOpRR_R<Xi64, WriteIMul64Reg, 1>, EVEX_NF;
  def IMUL16rm_NF_ND : IMulOpRM_R<Xi16, WriteIMul16Reg, 1>, EVEX_NF, PD;
  def IMUL32rm_NF_ND : IMulOpRM_R<Xi32, WriteIMul32Reg, 1>, EVEX_NF;
  def IMUL64rm_NF_ND : IMulOpRM_R<Xi64, WriteIMul64Reg, 1>, EVEX_NF;

  def IMUL16rr_EVEX : IMulOpRR_RF<Xi16, WriteIMul16Reg>, PL, PD;
  def IMUL32rr_EVEX : IMulOpRR_RF<Xi32, WriteIMul32Reg>, PL;
  def IMUL64rr_EVEX : IMulOpRR_RF<Xi64, WriteIMul64Reg>, PL;
  def IMUL16rm_EVEX : IMulOpRM_RF<Xi16, WriteIMul16Reg>, PL, PD;
  def IMUL32rm_EVEX : IMulOpRM_RF<Xi32, WriteIMul32Reg>, PL;
  def IMUL64rm_EVEX : IMulOpRM_RF<Xi64, WriteIMul64Reg>, PL;
}

class IMulOpRI8_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpRI8<0x6B, "imul", binop_ndd_args, t, MRMSrcReg,
             (outs t.RegClass:$dst)> {
  let SchedRW = [sched];
}
class IMulOpRI_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpRI<0x69, "imul", binop_ndd_args, t, MRMSrcReg,
            (outs t.RegClass:$dst), []> {
  let SchedRW = [sched];
}
class IMulOpRI_RF<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpRI<0x69, "imul", binop_ndd_args, t, MRMSrcReg,
            (outs t.RegClass:$dst),
            [(set t.RegClass:$dst, EFLAGS, (X86smul_flag t.RegClass:$src1,
             t.ImmNoSuOperator:$src2))]>, DefEFLAGS {
  let SchedRW = [sched];
}
class IMulOpMI8_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpMI8<"imul", binop_ndd_args, t, MRMSrcMem, (outs t.RegClass:$dst)> {
  let Opcode = 0x6B;
  let SchedRW = [sched.Folded];
}
class IMulOpMI_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpMI<0x69, "imul", binop_ndd_args, t, MRMSrcMem,
            (outs t.RegClass:$dst), []> {
  let SchedRW = [sched.Folded];
}
class IMulOpMI_RF<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpMI<0x69, "imul", binop_ndd_args, t, MRMSrcMem,
            (outs t.RegClass:$dst),
            [(set t.RegClass:$dst, EFLAGS, (X86smul_flag (t.LoadNode addr:$src1),
             t.ImmNoSuOperator:$src2))]>,
    DefEFLAGS {
  let SchedRW = [sched.Folded];
}
def IMUL16rri8 : IMulOpRI8_R<Xi16, WriteIMul16Imm>, DefEFLAGS, OpSize16;
def IMUL32rri8 : IMulOpRI8_R<Xi32, WriteIMul32Imm>, DefEFLAGS, OpSize32;
def IMUL64rri8 : IMulOpRI8_R<Xi64, WriteIMul64Imm>, DefEFLAGS;
def IMUL16rri  : IMulOpRI_RF<Xi16, WriteIMul16Imm>, OpSize16;
def IMUL32rri  : IMulOpRI_RF<Xi32, WriteIMul32Imm>, OpSize32;
def IMUL64rri32 : IMulOpRI_RF<Xi64, WriteIMul64Imm>;
def IMUL16rmi8 : IMulOpMI8_R<Xi16, WriteIMul16Imm>, DefEFLAGS, OpSize16;
def IMUL32rmi8 : IMulOpMI8_R<Xi32, WriteIMul32Imm>, DefEFLAGS, OpSize32;
def IMUL64rmi8 : IMulOpMI8_R<Xi64, WriteIMul64Imm>, DefEFLAGS;
def IMUL16rmi  : IMulOpMI_RF<Xi16, WriteIMul16Imm>, OpSize16;
def IMUL32rmi  : IMulOpMI_RF<Xi32, WriteIMul32Imm>, OpSize32;
def IMUL64rmi32 : IMulOpMI_RF<Xi64, WriteIMul64Imm>;

let Predicates = [In64BitMode] in {
  def IMUL16rri8_NF : IMulOpRI8_R<Xi16, WriteIMul16Imm>, NF, PD;
  def IMUL32rri8_NF : IMulOpRI8_R<Xi32, WriteIMul32Imm>, NF;
  def IMUL64rri8_NF : IMulOpRI8_R<Xi64, WriteIMul64Imm>, NF;
  def IMUL16rri_NF  : IMulOpRI_R<Xi16, WriteIMul16Imm>, NF, PD;
  def IMUL32rri_NF  : IMulOpRI_R<Xi32, WriteIMul32Imm>, NF;
  def IMUL64rri32_NF : IMulOpRI_R<Xi64, WriteIMul64Imm>, NF;
  def IMUL16rmi8_NF : IMulOpMI8_R<Xi16, WriteIMul16Imm>, NF, PD;
  def IMUL32rmi8_NF : IMulOpMI8_R<Xi32, WriteIMul32Imm>, NF;
  def IMUL64rmi8_NF : IMulOpMI8_R<Xi64, WriteIMul64Imm>, NF;
  def IMUL16rmi_NF  : IMulOpMI_R<Xi16, WriteIMul16Imm>, NF, PD;
  def IMUL32rmi_NF  : IMulOpMI_R<Xi32, WriteIMul32Imm>, NF;
  def IMUL64rmi32_NF : IMulOpMI_R<Xi64, WriteIMul64Imm>, NF;

  def IMUL16rri8_EVEX : IMulOpRI8_R<Xi16, WriteIMul16Imm>, DefEFLAGS, PL, PD;
  def IMUL32rri8_EVEX : IMulOpRI8_R<Xi32, WriteIMul32Imm>, DefEFLAGS, PL;
  def IMUL64rri8_EVEX : IMulOpRI8_R<Xi64, WriteIMul64Imm>, DefEFLAGS, PL;
  def IMUL16rri_EVEX  : IMulOpRI_RF<Xi16, WriteIMul16Imm>, PL, PD;
  def IMUL32rri_EVEX  : IMulOpRI_RF<Xi32, WriteIMul32Imm>, PL;
  def IMUL64rri32_EVEX : IMulOpRI_RF<Xi64, WriteIMul64Imm>, PL;
  def IMUL16rmi8_EVEX : IMulOpMI8_R<Xi16, WriteIMul16Imm>, DefEFLAGS, PL, PD;
  def IMUL32rmi8_EVEX : IMulOpMI8_R<Xi32, WriteIMul32Imm>, DefEFLAGS, PL;
  def IMUL64rmi8_EVEX : IMulOpMI8_R<Xi64, WriteIMul64Imm>, DefEFLAGS, PL;
  def IMUL16rmi_EVEX  : IMulOpMI_RF<Xi16, WriteIMul16Imm>, PL, PD;
  def IMUL32rmi_EVEX  : IMulOpMI_RF<Xi32, WriteIMul32Imm>, PL;
  def IMUL64rmi32_EVEX : IMulOpMI_RF<Xi64, WriteIMul64Imm>, PL;
}

// IMULZU instructions
class IMulZUOpRI8_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpRI8<0x6B, "imulzu", binop_ndd_args, t, MRMSrcReg,
             (outs t.RegClass:$dst)> {
  let SchedRW = [sched];
}
class IMulZUOpRI_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpRI<0x69, "imulzu", binop_ndd_args, t, MRMSrcReg,
            (outs t.RegClass:$dst), []> {
  let SchedRW = [sched];
}
class IMulZUOpMI8_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpMI8<"imulzu", binop_ndd_args, t, MRMSrcMem, (outs t.RegClass:$dst)> {
  let Opcode = 0x6B;
  let SchedRW = [sched.Folded];
}
class IMulZUOpMI_R<X86TypeInfo t, X86FoldableSchedWrite sched>
  : BinOpMI<0x69, "imulzu", binop_ndd_args, t, MRMSrcMem,
            (outs t.RegClass:$dst), []> {
  let SchedRW = [sched.Folded];
}

let Defs = [EFLAGS], Predicates = [HasEGPR, In64BitMode] in {
  def IMULZU16rri8 : IMulZUOpRI8_R<Xi16, WriteIMul16Imm>, ZU, PD;
  def IMULZU16rmi8 : IMulZUOpMI8_R<Xi16, WriteIMul16Imm>, ZU, PD;
  def IMULZU16rri : IMulZUOpRI_R<Xi16, WriteIMul16Imm>, ZU, PD;
  def IMULZU16rmi : IMulZUOpMI_R<Xi16, WriteIMul16Imm>, ZU, PD;
  def IMULZU32rri8 : IMulZUOpRI8_R<Xi32, WriteIMul32Imm>, ZU;
  def IMULZU32rmi8 : IMulZUOpMI8_R<Xi32, WriteIMul32Imm>, ZU;
  def IMULZU32rri : IMulZUOpRI_R<Xi32, WriteIMul32Imm>, ZU;
  def IMULZU32rmi : IMulZUOpMI_R<Xi32, WriteIMul32Imm>, ZU;
  def IMULZU64rri8 : IMulZUOpRI8_R<Xi64, WriteIMul64Imm>, ZU;
  def IMULZU64rmi8 : IMulZUOpMI8_R<Xi64, WriteIMul64Imm>, ZU;
  def IMULZU64rri32 : IMulZUOpRI_R<Xi64, WriteIMul64Imm>, ZU;
  def IMULZU64rmi32 : IMulZUOpMI_R<Xi64, WriteIMul64Imm>, ZU;
}

//===----------------------------------------------------------------------===//
// INC and DEC Instructions
//
class IncOpR_RF<X86TypeInfo t, bit ndd = 0> : UnaryOpR_RF<0xFF, MRM0r, "inc", t, null_frag, ndd> {
  let Pattern = [(set t.RegClass:$dst, EFLAGS,
                 (X86add_flag_nocf t.RegClass:$src1, 1))];
}
class DecOpR_RF<X86TypeInfo t, bit ndd = 0> : UnaryOpR_RF<0xFF, MRM1r, "dec", t, null_frag, ndd> {
  let Pattern = [(set t.RegClass:$dst, EFLAGS,
                 (X86sub_flag_nocf t.RegClass:$src1, 1))];
}
class IncOpR_R<X86TypeInfo t, bit ndd = 0> : UnaryOpR_R<0xFF, MRM0r, "inc", t, null_frag, ndd>;
class DecOpR_R<X86TypeInfo t, bit ndd = 0> : UnaryOpR_R<0xFF, MRM1r, "dec", t, null_frag, ndd>;
class IncOpM_MF<X86TypeInfo t> : UnaryOpM_MF<0xFF, MRM0m, "inc", t, null_frag> {
  let Pattern = [(store (add (t.LoadNode addr:$src1), 1), addr:$src1),
                 (implicit EFLAGS)];
}
class DecOpM_MF<X86TypeInfo t> : UnaryOpM_MF<0xFF, MRM1m, "dec", t, null_frag> {
  let Pattern = [(store (add (t.LoadNode addr:$src1), -1), addr:$src1),
                 (implicit EFLAGS)];
}
class IncOpM_RF<X86TypeInfo t> : UnaryOpM_RF<0xFF, MRM0m, "inc", t, null_frag> {
  let Pattern = [(set t.RegClass:$dst, EFLAGS, (add (t.LoadNode addr:$src1), 1))];
}
class DecOpM_RF<X86TypeInfo t> : UnaryOpM_RF<0xFF, MRM1m, "dec", t, null_frag> {
  let Pattern = [(set t.RegClass:$dst, EFLAGS, (add (t.LoadNode addr:$src1), -1))];
}
class IncOpM_M<X86TypeInfo t> : UnaryOpM_M<0xFF, MRM0m, "inc", t, null_frag>;
class DecOpM_M<X86TypeInfo t> : UnaryOpM_M<0xFF, MRM1m, "dec", t, null_frag>;
class IncOpM_R<X86TypeInfo t> : UnaryOpM_R<0xFF, MRM0m, "inc", t, null_frag>;
class DecOpM_R<X86TypeInfo t> : UnaryOpM_R<0xFF, MRM1m, "dec", t, null_frag>;

// IncDec_Alt - Instructions like "inc reg" short forms.
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
class IncDec_Alt<bits<8> o, string m, X86TypeInfo t>
  : UnaryOpR_RF<o, AddRegFrm, m, t, null_frag>, Requires<[Not64BitMode]>;

let isConvertibleToThreeAddress = 1 in {
  def INC16r_alt : IncDec_Alt<0x40, "inc", Xi16>, OpSize16;
  def INC32r_alt : IncDec_Alt<0x40, "inc", Xi32>, OpSize32;
  def DEC16r_alt : IncDec_Alt<0x48, "dec", Xi16>, OpSize16;
  def DEC32r_alt : IncDec_Alt<0x48, "dec", Xi32>, OpSize32;
  let Predicates = [NoNDD] in {
    def INC8r  : IncOpR_RF<Xi8>;
    def INC16r : IncOpR_RF<Xi16>, OpSize16;
    def INC32r : IncOpR_RF<Xi32>, OpSize32;
    def INC64r : IncOpR_RF<Xi64>;
    def DEC8r  : DecOpR_RF<Xi8>;
    def DEC16r : DecOpR_RF<Xi16>, OpSize16;
    def DEC32r : DecOpR_RF<Xi32>, OpSize32;
    def DEC64r : DecOpR_RF<Xi64>;
  }
  let Predicates = [HasNDD, In64BitMode] in {
    def INC8r_ND  : IncOpR_RF<Xi8, 1>;
    def INC16r_ND : IncOpR_RF<Xi16, 1>, PD;
    def INC32r_ND : IncOpR_RF<Xi32, 1>;
    def INC64r_ND : IncOpR_RF<Xi64, 1>;
    def DEC8r_ND  : DecOpR_RF<Xi8, 1>;
    def DEC16r_ND : DecOpR_RF<Xi16, 1>, PD;
    def DEC32r_ND : DecOpR_RF<Xi32, 1>;
    def DEC64r_ND : DecOpR_RF<Xi64, 1>;
  }
  let Predicates = [In64BitMode], Pattern = [(null_frag)] in {
    def INC8r_NF  : IncOpR_R<Xi8>, NF;
    def INC16r_NF : IncOpR_R<Xi16>, NF, PD;
    def INC32r_NF : IncOpR_R<Xi32>, NF;
    def INC64r_NF : IncOpR_R<Xi64>, NF;
    def DEC8r_NF  : DecOpR_R<Xi8>, NF;
    def DEC16r_NF : DecOpR_R<Xi16>, NF, PD;
    def DEC32r_NF : DecOpR_R<Xi32>, NF;
    def DEC64r_NF : DecOpR_R<Xi64>, NF;
    def INC8r_NF_ND  : IncOpR_R<Xi8, 1>, NF;
    def INC16r_NF_ND : IncOpR_R<Xi16, 1>, NF, PD;
    def INC32r_NF_ND : IncOpR_R<Xi32, 1>, NF;
    def INC64r_NF_ND : IncOpR_R<Xi64, 1>, NF;
    def DEC8r_NF_ND  : DecOpR_R<Xi8, 1>, NF;
    def DEC16r_NF_ND : DecOpR_R<Xi16, 1>, NF, PD;
    def DEC32r_NF_ND : DecOpR_R<Xi32, 1>, NF;
    def DEC64r_NF_ND : DecOpR_R<Xi64, 1>, NF;
    def INC8r_EVEX  : IncOpR_RF<Xi8>, PL;
    def INC16r_EVEX : IncOpR_RF<Xi16>, PL, PD;
    def INC32r_EVEX : IncOpR_RF<Xi32>, PL;
    def INC64r_EVEX : IncOpR_RF<Xi64>, PL;
    def DEC8r_EVEX  : DecOpR_RF<Xi8>, PL;
    def DEC16r_EVEX : DecOpR_RF<Xi16>, PL, PD;
    def DEC32r_EVEX : DecOpR_RF<Xi32>, PL;
    def DEC64r_EVEX : DecOpR_RF<Xi64>, PL;
  }
}
let Predicates = [UseIncDec] in {
  def INC8m  : IncOpM_MF<Xi8>;
  def INC16m : IncOpM_MF<Xi16>, OpSize16;
  def INC32m : IncOpM_MF<Xi32>, OpSize32;
  def DEC8m  : DecOpM_MF<Xi8>;
  def DEC16m : DecOpM_MF<Xi16>, OpSize16;
  def DEC32m : DecOpM_MF<Xi32>, OpSize32;
}
let Predicates = [UseIncDec, In64BitMode] in {
  def INC64m : IncOpM_MF<Xi64>;
  def DEC64m : DecOpM_MF<Xi64>;
}
let Predicates = [HasNDD, In64BitMode, UseIncDec] in {
  def INC8m_ND  : IncOpM_RF<Xi8>;
  def INC16m_ND : IncOpM_RF<Xi16>, PD;
  def INC32m_ND : IncOpM_RF<Xi32>;
  def DEC8m_ND  : DecOpM_RF<Xi8>;
  def DEC16m_ND : DecOpM_RF<Xi16>, PD;
  def DEC32m_ND : DecOpM_RF<Xi32>;
  def INC64m_ND : IncOpM_RF<Xi64>;
  def DEC64m_ND : DecOpM_RF<Xi64>;
}
let Predicates = [In64BitMode], Pattern = [(null_frag)] in {
  def INC8m_NF  : IncOpM_M<Xi8>, NF;
  def INC16m_NF : IncOpM_M<Xi16>, NF, PD;
  def INC32m_NF : IncOpM_M<Xi32>, NF;
  def INC64m_NF : IncOpM_M<Xi64>, NF;
  def DEC8m_NF  : DecOpM_M<Xi8>, NF;
  def DEC16m_NF : DecOpM_M<Xi16>, NF, PD;
  def DEC32m_NF : DecOpM_M<Xi32>, NF;
  def DEC64m_NF : DecOpM_M<Xi64>, NF;
  def INC8m_NF_ND  : IncOpM_R<Xi8>, NF;
  def INC16m_NF_ND : IncOpM_R<Xi16>, NF, PD;
  def INC32m_NF_ND : IncOpM_R<Xi32>, NF;
  def INC64m_NF_ND : IncOpM_R<Xi64>, NF;
  def DEC8m_NF_ND  : DecOpM_R<Xi8>, NF;
  def DEC16m_NF_ND : DecOpM_R<Xi16>, NF, PD;
  def DEC32m_NF_ND : DecOpM_R<Xi32>, NF;
  def DEC64m_NF_ND : DecOpM_R<Xi64>, NF;
  def INC8m_EVEX  : IncOpM_MF<Xi8>, PL;
  def INC16m_EVEX : IncOpM_MF<Xi16>, PL, PD;
  def INC32m_EVEX : IncOpM_MF<Xi32>, PL;
  def INC64m_EVEX : IncOpM_MF<Xi64>, PL;
  def DEC8m_EVEX  : DecOpM_MF<Xi8>, PL;
  def DEC16m_EVEX : DecOpM_MF<Xi16>, PL, PD;
  def DEC32m_EVEX : DecOpM_MF<Xi32>, PL;
  def DEC64m_EVEX : DecOpM_MF<Xi64>, PL;
}

//===----------------------------------------------------------------------===//
// NEG and NOT Instructions
//
class NegOpR_R<X86TypeInfo t, bit ndd = 0>
  : UnaryOpR_R<0xF7, MRM3r, "neg", t, ineg, ndd>;
class NegOpR_RF<X86TypeInfo t, bit ndd = 0>
  : UnaryOpR_RF<0xF7, MRM3r, "neg", t, ineg, ndd>;
class NegOpM_M<X86TypeInfo t> : UnaryOpM_M<0xF7, MRM3m, "neg", t, null_frag>;
class NegOpM_MF<X86TypeInfo t> : UnaryOpM_MF<0xF7, MRM3m, "neg", t, ineg>;
class NegOpM_R<X86TypeInfo t> : UnaryOpM_R<0xF7, MRM3m, "neg", t, null_frag>;
class NegOpM_RF<X86TypeInfo t> : UnaryOpM_RF<0xF7, MRM3m, "neg", t, ineg>;

class NotOpR_R<X86TypeInfo t, bit ndd = 0>
  : UnaryOpR_R<0xF7, MRM2r, "not", t, not, ndd>;
class NotOpM_M<X86TypeInfo t> : UnaryOpM_M<0xF7, MRM2m, "not", t, not>;
class NotOpM_R<X86TypeInfo t> : UnaryOpM_R<0xF7, MRM2m, "not", t, not>;

let Predicates = [NoNDD] in {
def NEG8r  : NegOpR_RF<Xi8>;
def NEG16r : NegOpR_RF<Xi16>, OpSize16;
def NEG32r : NegOpR_RF<Xi32>, OpSize32;
def NEG64r : NegOpR_RF<Xi64>;
def NOT8r  : NotOpR_R<Xi8>;
def NOT16r : NotOpR_R<Xi16>, OpSize16;
def NOT32r : NotOpR_R<Xi32>, OpSize32;
def NOT64r : NotOpR_R<Xi64>;
}

let Predicates = [HasNDD, In64BitMode] in {
def NEG8r_ND  : NegOpR_RF<Xi8, 1>;
def NEG16r_ND : NegOpR_RF<Xi16, 1>, PD;
def NEG32r_ND : NegOpR_RF<Xi32, 1>;
def NEG64r_ND : NegOpR_RF<Xi64, 1>;

def NOT8r_ND  : NotOpR_R<Xi8, 1>;
def NOT16r_ND : NotOpR_R<Xi16, 1>, PD;
def NOT32r_ND : NotOpR_R<Xi32, 1>;
def NOT64r_ND : NotOpR_R<Xi64, 1>;

def NEG8r_NF_ND  : NegOpR_R<Xi8, 1>, EVEX_NF;
def NEG16r_NF_ND : NegOpR_R<Xi16, 1>, EVEX_NF, PD;
def NEG32r_NF_ND : NegOpR_R<Xi32, 1>, EVEX_NF;
def NEG64r_NF_ND : NegOpR_R<Xi64, 1>, EVEX_NF;
}

def NEG8m  : NegOpM_MF<Xi8>;
def NEG16m : NegOpM_MF<Xi16>, OpSize16;
def NEG32m : NegOpM_MF<Xi32>, OpSize32;
def NEG64m : NegOpM_MF<Xi64>, Requires<[In64BitMode]>;

let Predicates = [HasNDD, In64BitMode] in {
def NEG8m_ND  : NegOpM_RF<Xi8>;
def NEG16m_ND : NegOpM_RF<Xi16>, PD;
def NEG32m_ND : NegOpM_RF<Xi32>;
def NEG64m_ND : NegOpM_RF<Xi64>;

def NEG8m_NF_ND  : NegOpM_R<Xi8>, EVEX_NF;
def NEG16m_NF_ND : NegOpM_R<Xi16>, EVEX_NF, PD;
def NEG32m_NF_ND : NegOpM_R<Xi32>, EVEX_NF;
def NEG64m_NF_ND : NegOpM_R<Xi64>, EVEX_NF;
}

def NOT8m  : NotOpM_M<Xi8>;
def NOT16m : NotOpM_M<Xi16>, OpSize16;
def NOT32m : NotOpM_M<Xi32>, OpSize32;
def NOT64m : NotOpM_M<Xi64>, Requires<[In64BitMode]>;

let Predicates = [HasNDD, In64BitMode] in {
def NOT8m_ND  : NotOpM_R<Xi8>;
def NOT16m_ND : NotOpM_R<Xi16>, PD;
def NOT32m_ND : NotOpM_R<Xi32>;
def NOT64m_ND : NotOpM_R<Xi64>;
}

let Predicates = [In64BitMode], Pattern = [(null_frag)] in {
def NEG8r_NF  : NegOpR_R<Xi8>, NF;
def NEG16r_NF : NegOpR_R<Xi16>, NF, PD;
def NEG32r_NF : NegOpR_R<Xi32>, NF;
def NEG64r_NF : NegOpR_R<Xi64>, NF;
def NEG8m_NF  : NegOpM_M<Xi8>, NF;
def NEG16m_NF : NegOpM_M<Xi16>, NF, PD;
def NEG32m_NF : NegOpM_M<Xi32>, NF;
def NEG64m_NF : NegOpM_M<Xi64>, NF;

def NEG8r_EVEX  : NegOpR_RF<Xi8>, PL;
def NEG16r_EVEX : NegOpR_RF<Xi16>, PL, PD;
def NEG32r_EVEX : NegOpR_RF<Xi32>, PL;
def NEG64r_EVEX : NegOpR_RF<Xi64>, PL;

def NOT8r_EVEX  : NotOpR_R<Xi8>, PL;
def NOT16r_EVEX : NotOpR_R<Xi16>, PL, PD;
def NOT32r_EVEX : NotOpR_R<Xi32>, PL;
def NOT64r_EVEX : NotOpR_R<Xi64>, PL;

def NEG8m_EVEX  : NegOpM_MF<Xi8>, PL;
def NEG16m_EVEX : NegOpM_MF<Xi16>, PL, PD;
def NEG32m_EVEX : NegOpM_MF<Xi32>, PL;
def NEG64m_EVEX : NegOpM_MF<Xi64>, PL;

def NOT8m_EVEX  : NotOpM_M<Xi8>, PL;
def NOT16m_EVEX : NotOpM_M<Xi16>, PL, PD;
def NOT32m_EVEX : NotOpM_M<Xi32>, PL;
def NOT64m_EVEX : NotOpM_M<Xi64>, PL;
}

/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (...".
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
                         string mnemonic, Format RegMRM, Format MemMRM,
                         SDNode opnodeflag, SDNode opnode,
                         bit CommutableRR, bit ConvertibleToThreeAddress,
                         bit ConvertibleToThreeAddressRR> {
  let isCommutable = CommutableRR,
      isConvertibleToThreeAddress = ConvertibleToThreeAddressRR in {
    let Predicates = [NoNDD] in {
      def 8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
      def 16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>, OpSize16;
      def 32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>, OpSize32;
      def 64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
    }
    let Predicates = [HasNDD, In64BitMode] in {
      def 8rr_ND  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag, 1>;
      def 16rr_ND : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag, 1>, PD;
      def 32rr_ND : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag, 1>;
      def 64rr_ND : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag, 1>;
      def 8rr_NF_ND  : BinOpRR_R<BaseOpc, mnemonic, Xi8, 1>, EVEX_NF;
      def 16rr_NF_ND : BinOpRR_R<BaseOpc, mnemonic, Xi16, 1>, EVEX_NF, PD;
      def 32rr_NF_ND : BinOpRR_R<BaseOpc, mnemonic, Xi32, 1>, EVEX_NF;
      def 64rr_NF_ND : BinOpRR_R<BaseOpc, mnemonic, Xi64, 1>, EVEX_NF;
    }
    let Predicates = [In64BitMode] in {
      def 8rr_NF  : BinOpRR_R<BaseOpc, mnemonic, Xi8>, NF;
      def 16rr_NF : BinOpRR_R<BaseOpc, mnemonic, Xi16>, NF, PD;
      def 32rr_NF : BinOpRR_R<BaseOpc, mnemonic, Xi32>, NF;
      def 64rr_NF : BinOpRR_R<BaseOpc, mnemonic, Xi64>, NF;
      def 8rr_EVEX  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , null_frag>, PL;
      def 16rr_EVEX : BinOpRR_RF<BaseOpc, mnemonic, Xi16, null_frag>, PL, PD;
      def 32rr_EVEX : BinOpRR_RF<BaseOpc, mnemonic, Xi32, null_frag>, PL;
      def 64rr_EVEX : BinOpRR_RF<BaseOpc, mnemonic, Xi64, null_frag>, PL;
    }
  }

    def 8rr_REV  : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi8>;
    def 16rr_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi16>, OpSize16;
    def 32rr_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi32>, OpSize32;
    def 64rr_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi64>;
    let Predicates = [In64BitMode] in {
      def 8rr_EVEX_REV  : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi8>, PL;
      def 16rr_EVEX_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi16>, PL, PD;
      def 32rr_EVEX_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi32>, PL;
      def 64rr_EVEX_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi64>, PL;
      def 8rr_ND_REV  : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi8, 1>;
      def 16rr_ND_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi16, 1>, PD;
      def 32rr_ND_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi32, 1>;
      def 64rr_ND_REV : BinOpRR_RF_Rev<BaseOpc2, mnemonic, Xi64, 1>;
      def 8rr_NF_REV  : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi8>, NF;
      def 16rr_NF_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi16>, NF, PD;
      def 32rr_NF_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi32>, NF;
      def 64rr_NF_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi64>, NF;
      def 8rr_NF_ND_REV  : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi8, 1>, EVEX_NF;
      def 16rr_NF_ND_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi16, 1>, EVEX_NF, PD;
      def 32rr_NF_ND_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi32, 1>, EVEX_NF;
      def 64rr_NF_ND_REV : BinOpRR_R_Rev<BaseOpc2, mnemonic, Xi64, 1>, EVEX_NF;
    }

    let Predicates = [NoNDD] in {
      def 8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
      def 16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>, OpSize16;
      def 32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>, OpSize32;
      def 64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
    }
    let Predicates = [HasNDD, In64BitMode] in {
      def 8rm_ND  : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag, 1>;
      def 16rm_ND : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag, 1>, PD;
      def 32rm_ND : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag, 1>;
      def 64rm_ND : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag, 1>;
      def 8rm_NF_ND  : BinOpRM_R<BaseOpc2, mnemonic, Xi8, 1>, EVEX_NF;
      def 16rm_NF_ND : BinOpRM_R<BaseOpc2, mnemonic, Xi16, 1>, EVEX_NF, PD;
      def 32rm_NF_ND : BinOpRM_R<BaseOpc2, mnemonic, Xi32, 1>, EVEX_NF;
      def 64rm_NF_ND : BinOpRM_R<BaseOpc2, mnemonic, Xi64, 1>, EVEX_NF;
    }
    let Predicates = [In64BitMode] in {
      def 8rm_NF  : BinOpRM_R<BaseOpc2, mnemonic, Xi8>, NF;
      def 16rm_NF : BinOpRM_R<BaseOpc2, mnemonic, Xi16>, NF, PD;
      def 32rm_NF : BinOpRM_R<BaseOpc2, mnemonic, Xi32>, NF;
      def 64rm_NF : BinOpRM_R<BaseOpc2, mnemonic, Xi64>, NF;
      def 8rm_EVEX  : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , null_frag>, PL;
      def 16rm_EVEX : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, null_frag>, PL, PD;
      def 32rm_EVEX : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, null_frag>, PL;
      def 64rm_EVEX : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, null_frag>, PL;
    }

    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
      let Predicates = [NoNDD] in {
        // NOTE: These are order specific, we want the ri8 forms to be listed
        // first so that they are slightly preferred to the ri forms.
        def 16ri8 : BinOpRI8_RF<0x83, mnemonic, Xi16, RegMRM>, OpSize16;
        def 32ri8 : BinOpRI8_RF<0x83, mnemonic, Xi32, RegMRM>, OpSize32;
        def 64ri8 : BinOpRI8_RF<0x83, mnemonic, Xi64, RegMRM>;
        def 8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
        def 16ri  : BinOpRI_RF<0x81, mnemonic, Xi16, opnodeflag, RegMRM>, OpSize16;
        def 32ri  : BinOpRI_RF<0x81, mnemonic, Xi32, opnodeflag, RegMRM>, OpSize32;
        def 64ri32: BinOpRI_RF<0x81, mnemonic, Xi64, opnodeflag, RegMRM>;
      }
      let Predicates = [HasNDD, In64BitMode] in {
        def 16ri8_ND : BinOpRI8_RF<0x83, mnemonic, Xi16, RegMRM, 1>, PD;
        def 32ri8_ND : BinOpRI8_RF<0x83, mnemonic, Xi32, RegMRM, 1>;
        def 64ri8_ND : BinOpRI8_RF<0x83, mnemonic, Xi64, RegMRM, 1>;
        def 8ri_ND   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM, 1>;
        def 16ri_ND  : BinOpRI_RF<0x81, mnemonic, Xi16, opnodeflag, RegMRM, 1>, PD;
        def 32ri_ND  : BinOpRI_RF<0x81, mnemonic, Xi32, opnodeflag, RegMRM, 1>;
        def 64ri32_ND: BinOpRI_RF<0x81, mnemonic, Xi64, opnodeflag, RegMRM, 1>;
        def 16ri8_NF_ND : BinOpRI8_R<0x83, mnemonic, Xi16, RegMRM, 1>, EVEX_NF, PD;
        def 32ri8_NF_ND : BinOpRI8_R<0x83, mnemonic, Xi32, RegMRM, 1>, EVEX_NF;
        def 64ri8_NF_ND : BinOpRI8_R<0x83, mnemonic, Xi64, RegMRM, 1>, EVEX_NF;
        def 8ri_NF_ND  : BinOpRI_R<0x80, mnemonic, Xi8, RegMRM, 1>, EVEX_NF;
        def 16ri_NF_ND : BinOpRI_R<0x81, mnemonic, Xi16, RegMRM, 1>, EVEX_NF, PD;
        def 32ri_NF_ND : BinOpRI_R<0x81, mnemonic, Xi32, RegMRM, 1>, EVEX_NF;
        def 64ri32_NF_ND : BinOpRI_R<0x81, mnemonic, Xi64, RegMRM, 1>, EVEX_NF;
      }
      let Predicates = [In64BitMode] in {
        def 16ri8_NF : BinOpRI8_R<0x83, mnemonic, Xi16, RegMRM>, NF, PD;
        def 32ri8_NF : BinOpRI8_R<0x83, mnemonic, Xi32, RegMRM>, NF;
        def 64ri8_NF : BinOpRI8_R<0x83, mnemonic, Xi64, RegMRM>, NF;
        def 8ri_NF  : BinOpRI_R<0x80, mnemonic, Xi8, RegMRM>, NF;
        def 16ri_NF : BinOpRI_R<0x81, mnemonic, Xi16, RegMRM>, NF, PD;
        def 32ri_NF : BinOpRI_R<0x81, mnemonic, Xi32, RegMRM>, NF;
        def 64ri32_NF : BinOpRI_R<0x81, mnemonic, Xi64, RegMRM>, NF;
        def 16ri8_EVEX : BinOpRI8_RF<0x83, mnemonic, Xi16, RegMRM>, PL, PD;
        def 32ri8_EVEX : BinOpRI8_RF<0x83, mnemonic, Xi32, RegMRM>, PL;
        def 64ri8_EVEX : BinOpRI8_RF<0x83, mnemonic, Xi64, RegMRM>, PL;
        def 8ri_EVEX   : BinOpRI_RF<0x80, mnemonic, Xi8 , null_frag, RegMRM>, PL;
        def 16ri_EVEX  : BinOpRI_RF<0x81, mnemonic, Xi16, null_frag, RegMRM>, PL, PD;
        def 32ri_EVEX  : BinOpRI_RF<0x81, mnemonic, Xi32, null_frag, RegMRM>, PL;
        def 64ri32_EVEX: BinOpRI_RF<0x81, mnemonic, Xi64, null_frag, RegMRM>, PL;
      }
    }

    def 8mr    : BinOpMR_MF<BaseOpc, mnemonic, Xi8 , opnode>;
    def 16mr   : BinOpMR_MF<BaseOpc, mnemonic, Xi16, opnode>, OpSize16;
    def 32mr   : BinOpMR_MF<BaseOpc, mnemonic, Xi32, opnode>, OpSize32;
    def 64mr   : BinOpMR_MF<BaseOpc, mnemonic, Xi64, opnode>;
    let Predicates = [HasNDD, In64BitMode] in {
    def 8mr_ND    : BinOpMR_RF<BaseOpc, mnemonic, Xi8 , opnode>;
    def 16mr_ND   : BinOpMR_RF<BaseOpc, mnemonic, Xi16, opnode>, PD;
    def 32mr_ND   : BinOpMR_RF<BaseOpc, mnemonic, Xi32, opnode>;
    def 64mr_ND   : BinOpMR_RF<BaseOpc, mnemonic, Xi64, opnode>;
    def 8mr_NF_ND    : BinOpMR_R<BaseOpc, mnemonic, Xi8>, EVEX_NF;
    def 16mr_NF_ND   : BinOpMR_R<BaseOpc, mnemonic, Xi16>, EVEX_NF, PD;
    def 32mr_NF_ND   : BinOpMR_R<BaseOpc, mnemonic, Xi32>, EVEX_NF;
    def 64mr_NF_ND   : BinOpMR_R<BaseOpc, mnemonic, Xi64>, EVEX_NF;
  }
  let Predicates = [In64BitMode] in {
    def 8mr_NF    : BinOpMR_M<BaseOpc, mnemonic, Xi8>, NF;
    def 16mr_NF   : BinOpMR_M<BaseOpc, mnemonic, Xi16>, NF, PD;
    def 32mr_NF   : BinOpMR_M<BaseOpc, mnemonic, Xi32>, NF;
    def 64mr_NF   : BinOpMR_M<BaseOpc, mnemonic, Xi64>, NF;
    def 8mr_EVEX    : BinOpMR_MF<BaseOpc, mnemonic, Xi8 , null_frag>, PL;
    def 16mr_EVEX   : BinOpMR_MF<BaseOpc, mnemonic, Xi16, null_frag>, PL, PD;
    def 32mr_EVEX   : BinOpMR_MF<BaseOpc, mnemonic, Xi32, null_frag>, PL;
    def 64mr_EVEX   : BinOpMR_MF<BaseOpc, mnemonic, Xi64, null_frag>, PL;
  }

  // NOTE: These are order specific, we want the mi8 forms to be listed
  // first so that they are slightly preferred to the mi forms.
  def 16mi8  : BinOpMI8_MF<mnemonic, Xi16, MemMRM>, OpSize16;
  def 32mi8  : BinOpMI8_MF<mnemonic, Xi32, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
    def 64mi8  : BinOpMI8_MF<mnemonic, Xi64, MemMRM>;
  def 8mi    : BinOpMI_MF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
  def 16mi   : BinOpMI_MF<0x81, mnemonic, Xi16, opnode, MemMRM>, OpSize16;
  def 32mi   : BinOpMI_MF<0x81, mnemonic, Xi32, opnode, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
    def 64mi32 : BinOpMI_MF<0x81, mnemonic, Xi64, opnode, MemMRM>;
  let Predicates = [HasNDD, In64BitMode] in {
    def 16mi8_ND  : BinOpMI8_RF<mnemonic, Xi16, MemMRM>, PD;
    def 32mi8_ND  : BinOpMI8_RF<mnemonic, Xi32, MemMRM>;
    def 64mi8_ND  : BinOpMI8_RF<mnemonic, Xi64, MemMRM>;
    def 8mi_ND    : BinOpMI_RF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
    def 16mi_ND   : BinOpMI_RF<0x81, mnemonic, Xi16, opnode, MemMRM>, PD;
    def 32mi_ND   : BinOpMI_RF<0x81, mnemonic, Xi32, opnode, MemMRM>;
    def 64mi32_ND : BinOpMI_RF<0x81, mnemonic, Xi64, opnode, MemMRM>;
    def 16mi8_NF_ND  : BinOpMI8_R<mnemonic, Xi16, MemMRM>, NF, PD;
    def 32mi8_NF_ND  : BinOpMI8_R<mnemonic, Xi32, MemMRM>, NF;
    def 64mi8_NF_ND  : BinOpMI8_R<mnemonic, Xi64, MemMRM>, NF;
    def 8mi_NF_ND    : BinOpMI_R<0x80, mnemonic, Xi8, MemMRM>, NF;
    def 16mi_NF_ND   : BinOpMI_R<0x81, mnemonic, Xi16, MemMRM>, NF, PD;
    def 32mi_NF_ND   : BinOpMI_R<0x81, mnemonic, Xi32, MemMRM>, NF;
    def 64mi32_NF_ND : BinOpMI_R<0x81, mnemonic, Xi64, MemMRM>, NF;
  }
  let Predicates = [In64BitMode] in {
    def 16mi8_NF  : BinOpMI8_M<mnemonic, Xi16, MemMRM>, NF, PD;
    def 32mi8_NF  : BinOpMI8_M<mnemonic, Xi32, MemMRM>, NF;
    def 64mi8_NF  : BinOpMI8_M<mnemonic, Xi64, MemMRM>, NF;
    def 8mi_NF    : BinOpMI_M<0x80, mnemonic, Xi8, MemMRM>, NF;
    def 16mi_NF   : BinOpMI_M<0x81, mnemonic, Xi16, MemMRM>, NF, PD;
    def 32mi_NF   : BinOpMI_M<0x81, mnemonic, Xi32, MemMRM>, NF;
    def 64mi32_NF : BinOpMI_M<0x81, mnemonic, Xi64, MemMRM>, NF;
    def 16mi8_EVEX  : BinOpMI8_MF<mnemonic, Xi16, MemMRM>, PL, PD;
    def 32mi8_EVEX  : BinOpMI8_MF<mnemonic, Xi32, MemMRM>, PL;
    def 64mi8_EVEX  : BinOpMI8_MF<mnemonic, Xi64, MemMRM>, PL;
    def 8mi_EVEX    : BinOpMI_MF<0x80, mnemonic, Xi8 , null_frag, MemMRM>, PL;
    def 16mi_EVEX   : BinOpMI_MF<0x81, mnemonic, Xi16, null_frag, MemMRM>, PL, PD;
    def 32mi_EVEX   : BinOpMI_MF<0x81, mnemonic, Xi32, null_frag, MemMRM>, PL;
    def 64mi32_EVEX : BinOpMI_MF<0x81, mnemonic, Xi64, null_frag, MemMRM>, PL;
  }

  // These are for the disassembler since 0x82 opcode behaves like 0x80, but
  // not in 64-bit mode.
  let Predicates = [Not64BitMode] in {
  def 8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, RegMRM>, DisassembleOnly;
  def 8mi8 : BinOpMI8_MF<mnemonic, Xi8, MemMRM>, DisassembleOnly;
  }

  def 8i8 : BinOpAI_AF<BaseOpc4, mnemonic, Xi8 , AL,
                            "{$src, %al|al, $src}">;
  def 16i16 : BinOpAI_AF<BaseOpc4, mnemonic, Xi16, AX,
                              "{$src, %ax|ax, $src}">, OpSize16;
  def 32i32 : BinOpAI_AF<BaseOpc4, mnemonic, Xi32, EAX,
                              "{$src, %eax|eax, $src}">, OpSize32;
  def 64i32 : BinOpAI_AF<BaseOpc4, mnemonic, Xi64, RAX,
                              "{$src, %rax|rax, $src}">;
}

/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
/// SBB.
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
                          string mnemonic, Format RegMRM, Format MemMRM,
                          SDNode opnode, bit CommutableRR,
                           bit ConvertibleToThreeAddress> {
  let isCommutable = CommutableRR in {
    let Predicates = [NoNDD] in {
      def 8rr  : BinOpRRF_RF<BaseOpc, mnemonic, Xi8 , opnode>;
      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
        def 16rr : BinOpRRF_RF<BaseOpc, mnemonic, Xi16, opnode>, OpSize16;
        def 32rr : BinOpRRF_RF<BaseOpc, mnemonic, Xi32, opnode>, OpSize32;
        def 64rr : BinOpRRF_RF<BaseOpc, mnemonic, Xi64, opnode>;
      }
    }
    let Predicates = [HasNDD, In64BitMode] in {
      def 8rr_ND  : BinOpRRF_RF<BaseOpc, mnemonic, Xi8 , opnode, 1>;
      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
        def 16rr_ND : BinOpRRF_RF<BaseOpc, mnemonic, Xi16, opnode, 1>, PD;
        def 32rr_ND : BinOpRRF_RF<BaseOpc, mnemonic, Xi32, opnode, 1>;
        def 64rr_ND : BinOpRRF_RF<BaseOpc, mnemonic, Xi64, opnode, 1>;
      }
    }
  } // isCommutable

  let Predicates = [In64BitMode] in {
    def 8rr_EVEX  : BinOpRRF_RF<BaseOpc, mnemonic, Xi8 , null_frag>, PL;
    def 16rr_EVEX : BinOpRRF_RF<BaseOpc, mnemonic, Xi16, null_frag>, PL, PD;
    def 32rr_EVEX : BinOpRRF_RF<BaseOpc, mnemonic, Xi32, null_frag>, PL;
    def 64rr_EVEX : BinOpRRF_RF<BaseOpc, mnemonic, Xi64, null_frag>, PL;
  }

  def 8rr_REV  : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi8>;
  def 16rr_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi16>, OpSize16;
  def 32rr_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi32>, OpSize32;
  def 64rr_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi64>;
  let Predicates = [In64BitMode] in {
    def 8rr_ND_REV  : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi8, 1>;
    def 16rr_ND_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi16, 1>, PD;
    def 32rr_ND_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi32, 1>;
    def 64rr_ND_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi64, 1>;
    def 8rr_EVEX_REV  : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi8>, PL;
    def 16rr_EVEX_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi16>, PL, PD;
    def 32rr_EVEX_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi32>, PL;
    def 64rr_EVEX_REV : BinOpRRF_RF_Rev<BaseOpc2, mnemonic, Xi64>, PL;
  }

  let Predicates = [NoNDD] in {
    def 8rm   : BinOpRMF_RF<BaseOpc2, mnemonic, Xi8 , opnode>;
    def 16rm  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi16, opnode>, OpSize16;
    def 32rm  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi32, opnode>, OpSize32;
    def 64rm  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi64, opnode>;
  }
  let Predicates = [HasNDD, In64BitMode] in {
    def 8rm_ND   : BinOpRMF_RF<BaseOpc2, mnemonic, Xi8 , opnode, 1>;
    def 16rm_ND  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi16, opnode, 1>, PD;
    def 32rm_ND  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi32, opnode, 1>;
    def 64rm_ND  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi64, opnode, 1>;
  }
  let Predicates = [In64BitMode] in {
    def 8rm_EVEX   : BinOpRMF_RF<BaseOpc2, mnemonic, Xi8 , opnode>, PL;
    def 16rm_EVEX  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi16, opnode>, PL, PD;
    def 32rm_EVEX  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi32, opnode>, PL;
    def 64rm_EVEX  : BinOpRMF_RF<BaseOpc2, mnemonic, Xi64, opnode>, PL;
  }

  let Predicates = [NoNDD] in {
    def 8ri   : BinOpRIF_RF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
      // NOTE: These are order specific, we want the ri8 forms to be listed
      // first so that they are slightly preferred to the ri forms.
      def 16ri8 : BinOpRI8F_RF<0x83, mnemonic, Xi16, RegMRM>, OpSize16;
      def 32ri8 : BinOpRI8F_RF<0x83, mnemonic, Xi32, RegMRM>, OpSize32;
      def 64ri8 : BinOpRI8F_RF<0x83, mnemonic, Xi64, RegMRM>;

      def 16ri  : BinOpRIF_RF<0x81, mnemonic, Xi16, opnode, RegMRM>, OpSize16;
      def 32ri  : BinOpRIF_RF<0x81, mnemonic, Xi32, opnode, RegMRM>, OpSize32;
      def 64ri32: BinOpRIF_RF<0x81, mnemonic, Xi64, opnode, RegMRM>;
    }
  }

  let Predicates = [HasNDD, In64BitMode] in {
    def 8ri_ND   : BinOpRIF_RF<0x80, mnemonic, Xi8 , opnode, RegMRM, 1>;
    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
      def 16ri8_ND : BinOpRI8F_RF<0x83, mnemonic, Xi16, RegMRM, 1>, PD;
      def 32ri8_ND : BinOpRI8F_RF<0x83, mnemonic, Xi32, RegMRM, 1>;
      def 64ri8_ND : BinOpRI8F_RF<0x83, mnemonic, Xi64, RegMRM, 1>;
      def 16ri_ND  : BinOpRIF_RF<0x81, mnemonic, Xi16, opnode, RegMRM, 1>, PD;
      def 32ri_ND  : BinOpRIF_RF<0x81, mnemonic, Xi32, opnode, RegMRM, 1>;
      def 64ri32_ND: BinOpRIF_RF<0x81, mnemonic, Xi64, opnode, RegMRM, 1>;
    }
  }
  let Predicates = [In64BitMode] in {
    def 8ri_EVEX   : BinOpRIF_RF<0x80, mnemonic, Xi8 , opnode, RegMRM>, PL;
    def 16ri8_EVEX : BinOpRI8F_RF<0x83, mnemonic, Xi16, RegMRM>, PL, PD;
    def 32ri8_EVEX : BinOpRI8F_RF<0x83, mnemonic, Xi32, RegMRM>, PL;
    def 64ri8_EVEX : BinOpRI8F_RF<0x83, mnemonic, Xi64, RegMRM>, PL;
    def 16ri_EVEX  : BinOpRIF_RF<0x81, mnemonic, Xi16, opnode, RegMRM>, PL, PD;
    def 32ri_EVEX  : BinOpRIF_RF<0x81, mnemonic, Xi32, opnode, RegMRM>, PL;
    def 64ri32_EVEX: BinOpRIF_RF<0x81, mnemonic, Xi64, opnode, RegMRM>, PL;
  }

  def 8mr    : BinOpMRF_MF<BaseOpc, mnemonic, Xi8 , opnode>;
  def 16mr   : BinOpMRF_MF<BaseOpc, mnemonic, Xi16, opnode>, OpSize16;
  def 32mr   : BinOpMRF_MF<BaseOpc, mnemonic, Xi32, opnode>, OpSize32;
  def 64mr   : BinOpMRF_MF<BaseOpc, mnemonic, Xi64, opnode>;
  let Predicates = [HasNDD, In64BitMode] in {
    def 8mr_ND    : BinOpMRF_RF<BaseOpc, mnemonic, Xi8 , opnode>;
    def 16mr_ND   : BinOpMRF_RF<BaseOpc, mnemonic, Xi16, opnode>, PD;
    def 32mr_ND   : BinOpMRF_RF<BaseOpc, mnemonic, Xi32, opnode>;
    def 64mr_ND   : BinOpMRF_RF<BaseOpc, mnemonic, Xi64, opnode>;
  }
  let Predicates = [In64BitMode] in {
    def 8mr_EVEX    : BinOpMRF_MF<BaseOpc, mnemonic, Xi8 , null_frag>, PL;
    def 16mr_EVEX   : BinOpMRF_MF<BaseOpc, mnemonic, Xi16, null_frag>, PL, PD;
    def 32mr_EVEX   : BinOpMRF_MF<BaseOpc, mnemonic, Xi32, null_frag>, PL;
    def 64mr_EVEX   : BinOpMRF_MF<BaseOpc, mnemonic, Xi64, null_frag>, PL;
  }

  // NOTE: These are order specific, we want the mi8 forms to be listed
  // first so that they are slightly preferred to the mi forms.
  def 8mi    : BinOpMIF_MF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
  def 16mi8  : BinOpMI8F_MF<mnemonic, Xi16, MemMRM>, OpSize16;
  def 32mi8  : BinOpMI8F_MF<mnemonic, Xi32, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
    def 64mi8  : BinOpMI8F_MF<mnemonic, Xi64, MemMRM>;
  def 16mi   : BinOpMIF_MF<0x81, mnemonic, Xi16, opnode, MemMRM>, OpSize16;
  def 32mi   : BinOpMIF_MF<0x81, mnemonic, Xi32, opnode, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
    def 64mi32 : BinOpMIF_MF<0x81, mnemonic, Xi64, opnode, MemMRM>;

  let Predicates = [HasNDD, In64BitMode] in {
    def 8mi_ND    : BinOpMIF_RF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
    def 16mi8_ND  : BinOpMI8F_RF<mnemonic, Xi16, MemMRM>, PD;
    def 32mi8_ND  : BinOpMI8F_RF<mnemonic, Xi32, MemMRM>;
    def 64mi8_ND  : BinOpMI8F_RF<mnemonic, Xi64, MemMRM>;
    def 16mi_ND   : BinOpMIF_RF<0x81, mnemonic, Xi16, opnode, MemMRM>, PD;
    def 32mi_ND   : BinOpMIF_RF<0x81, mnemonic, Xi32, opnode, MemMRM>;
    def 64mi32_ND : BinOpMIF_RF<0x81, mnemonic, Xi64, opnode, MemMRM>;
  }
  let Predicates = [In64BitMode] in {
    def 8mi_EVEX    : BinOpMIF_MF<0x80, mnemonic, Xi8 , opnode, MemMRM>, PL;
    def 16mi8_EVEX  : BinOpMI8F_MF<mnemonic, Xi16, MemMRM>, PL, PD;
    def 32mi8_EVEX  : BinOpMI8F_MF<mnemonic, Xi32, MemMRM>, PL;
    def 64mi8_EVEX  : BinOpMI8F_MF<mnemonic, Xi64, MemMRM>, PL;
    def 16mi_EVEX   : BinOpMIF_MF<0x81, mnemonic, Xi16, opnode, MemMRM>, PL, PD;
    def 32mi_EVEX   : BinOpMIF_MF<0x81, mnemonic, Xi32, opnode, MemMRM>, PL;
    def 64mi32_EVEX : BinOpMIF_MF<0x81, mnemonic, Xi64, opnode, MemMRM>, PL;
  }

  // These are for the disassembler since 0x82 opcode behaves like 0x80, but
  // not in 64-bit mode.
  let Predicates = [Not64BitMode]  in {
    def 8ri8 : BinOpRI8F_RF<0x82, mnemonic, Xi8, RegMRM>, DisassembleOnly;
  def 8mi8 : BinOpMI8F_MF<mnemonic, Xi8, MemMRM>, DisassembleOnly;
  }

  def 8i8 : BinOpAIF_AF<BaseOpc4, mnemonic, Xi8 , AL,
                             "{$src, %al|al, $src}">;
  def 16i16 : BinOpAIF_AF<BaseOpc4, mnemonic, Xi16, AX,
                               "{$src, %ax|ax, $src}">, OpSize16;
  def 32i32 : BinOpAIF_AF<BaseOpc4, mnemonic, Xi32, EAX,
                               "{$src, %eax|eax, $src}">, OpSize32;
  def 64i32 : BinOpAIF_AF<BaseOpc4, mnemonic, Xi64, RAX,
                               "{$src, %rax|rax, $src}">;
}

/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
/// defined with "(set EFLAGS, (...".  It would be really nice to find a way
/// to factor this with the other ArithBinOp_*.
///
multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
                        string mnemonic, Format RegMRM, Format MemMRM,
                        SDNode opnode, bit CommutableRR,
                        bit ConvertibleToThreeAddress> {
  let isCommutable = CommutableRR in {
  def 8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    def 16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>, OpSize16;
    def 32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>, OpSize32;
    def 64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
    } // isConvertibleToThreeAddress
  } // isCommutable

  def 8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
  def 16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, OpSize16;
  def 32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, OpSize32;
  def 64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;

  def 8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
  def 16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>, OpSize16;
  def 32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>, OpSize32;
  def 64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;

  def 8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;

  let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
  // NOTE: These are order specific, we want the ri8 forms to be listed
  // first so that they are slightly preferred to the ri forms.
  def 16ri8 : BinOpRI8_F<0x83, mnemonic, Xi16, RegMRM>, OpSize16;
  def 32ri8 : BinOpRI8_F<0x83, mnemonic, Xi32, RegMRM>, OpSize32;
  def 64ri8 : BinOpRI8_F<0x83, mnemonic, Xi64, RegMRM>;

  def 16ri  : BinOpRI_F<0x81, mnemonic, Xi16, opnode, RegMRM>, OpSize16;
  def 32ri  : BinOpRI_F<0x81, mnemonic, Xi32, opnode, RegMRM>, OpSize32;
  def 64ri32: BinOpRI_F<0x81, mnemonic, Xi64, opnode, RegMRM>;
  }

  def 8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
  def 16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>, OpSize16;
  def 32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>, OpSize32;
  def 64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;

  // NOTE: These are order specific, we want the mi8 forms to be listed
  // first so that they are slightly preferred to the mi forms.
  def 16mi8  : BinOpMI8_F<mnemonic, Xi16, MemMRM>, OpSize16;
  def 32mi8  : BinOpMI8_F<mnemonic, Xi32, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
  def 64mi8  : BinOpMI8_F<mnemonic, Xi64, MemMRM>;

  def 8mi    : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
  def 16mi   : BinOpMI_F<0x81, mnemonic, Xi16, opnode, MemMRM>, OpSize16;
  def 32mi   : BinOpMI_F<0x81, mnemonic, Xi32, opnode, MemMRM>, OpSize32;
  let Predicates = [In64BitMode] in
  def 64mi32 : BinOpMI_F<0x81, mnemonic, Xi64, opnode, MemMRM>;

  // These are for the disassembler since 0x82 opcode behaves like 0x80, but
  // not in 64-bit mode.
  let Predicates = [Not64BitMode] in {
  def 8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, RegMRM>, DisassembleOnly;
    let mayLoad = 1 in
    def 8mi8 : BinOpMI8_F<mnemonic, Xi8, MemMRM>;
  }

  def 8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
                           "{$src, %al|al, $src}">;
  def 16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
                           "{$src, %ax|ax, $src}">, OpSize16;
  def 32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
                           "{$src, %eax|eax, $src}">, OpSize32;
  def 64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
                           "{$src, %rax|rax, $src}">;
}


defm AND : ArithBinOp_RF<0x21, 0x23, 0x25, "and", MRM4r, MRM4m,
                         X86and_flag, and, 1, 0, 0>;
defm OR  : ArithBinOp_RF<0x09, 0x0B, 0x0D, "or", MRM1r, MRM1m,
                         X86or_flag, or, 1, 0, 0>;
defm XOR : ArithBinOp_RF<0x31, 0x33, 0x35, "xor", MRM6r, MRM6m,
                         X86xor_flag, xor, 1, 0, 0>;
defm ADD : ArithBinOp_RF<0x01, 0x03, 0x05, "add", MRM0r, MRM0m,
                         X86add_flag, add, 1, 1, 1>;
let isCompare = 1 in {
defm SUB : ArithBinOp_RF<0x29, 0x2B, 0x2D, "sub", MRM5r, MRM5m,
                         X86sub_flag, sub, 0, 1, 0>;
}

// Version of XOR8rr_NOREX that use GR8_NOREX. This is used by the handling of
// __builtin_parity where the last step xors an h-register with an l-register.
let isCodeGenOnly = 1, hasSideEffects = 0, Constraints = "$src1 = $dst",
    Defs = [EFLAGS], isCommutable = 1 in
def XOR8rr_NOREX : I<0x30, MRMDestReg, (outs GR8_NOREX:$dst),
                     (ins GR8_NOREX:$src1, GR8_NOREX:$src2),
                     "xor{b}\t{$src2, $dst|$dst, $src2}", []>,
                     Sched<[WriteALU]>;

// Arithmetic.
defm ADC : ArithBinOp_RFF<0x11, 0x13, 0x15, "adc", MRM2r, MRM2m, X86adc_flag,
                          1, 0>;
defm SBB : ArithBinOp_RFF<0x19, 0x1B, 0x1D, "sbb", MRM3r, MRM3m, X86sbb_flag,
                          0, 0>;

let isCompare = 1 in {
defm CMP : ArithBinOp_F<0x39, 0x3B, 0x3D, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
}

// Patterns to recognize loads on the LHS of an ADC. We can't make X86adc_flag
// commutable since it has EFLAGs as an input.
def : Pat<(X86adc_flag (loadi8 addr:$src2), GR8:$src1, EFLAGS),
          (ADC8rm GR8:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi16 addr:$src2), GR16:$src1, EFLAGS),
          (ADC16rm GR16:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi32 addr:$src2), GR32:$src1, EFLAGS),
          (ADC32rm GR32:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi64 addr:$src2), GR64:$src1, EFLAGS),
          (ADC64rm GR64:$src1, addr:$src2)>;

// Patterns to recognize RMW ADC with loads in operand 1.
def : Pat<(store (X86adc_flag GR8:$src, (loadi8 addr:$dst), EFLAGS),
                 addr:$dst),
          (ADC8mr addr:$dst, GR8:$src)>;
def : Pat<(store (X86adc_flag GR16:$src, (loadi16 addr:$dst), EFLAGS),
                 addr:$dst),
          (ADC16mr addr:$dst, GR16:$src)>;
def : Pat<(store (X86adc_flag GR32:$src, (loadi32 addr:$dst), EFLAGS),
                 addr:$dst),
          (ADC32mr addr:$dst, GR32:$src)>;
def : Pat<(store (X86adc_flag GR64:$src, (loadi64 addr:$dst), EFLAGS),
                 addr:$dst),
          (ADC64mr addr:$dst, GR64:$src)>;

// Patterns for basic arithmetic ops with relocImm for the immediate field.
multiclass ArithBinOp_RF_relocImm_Pats<SDNode OpNodeFlag, SDNode OpNode> {
  let Predicates = [NoNDD] in {
    def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
              (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
    def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
              (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
    def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
              (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
    def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
              (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;

    def : Pat<(store (OpNode (load addr:$dst), relocImm8_su:$src), addr:$dst),
              (!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
    def : Pat<(store (OpNode (load addr:$dst), relocImm16_su:$src), addr:$dst),
              (!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
    def : Pat<(store (OpNode (load addr:$dst), relocImm32_su:$src), addr:$dst),
              (!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
    def : Pat<(store (OpNode (load addr:$dst), i64relocImmSExt32_su:$src), addr:$dst),
              (!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
  }
  let Predicates = [HasNDD] in {
    def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
              (!cast<Instruction>(NAME#"8ri_ND") GR8:$src1, relocImm8_su:$src2)>;
    def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
              (!cast<Instruction>(NAME#"16ri_ND") GR16:$src1, relocImm16_su:$src2)>;
    def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
              (!cast<Instruction>(NAME#"32ri_ND") GR32:$src1, relocImm32_su:$src2)>;
    def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
              (!cast<Instruction>(NAME#"64ri32_ND") GR64:$src1, i64relocImmSExt32_su:$src2)>;

    def : Pat<(OpNode (load addr:$dst), relocImm8_su:$src),
              (!cast<Instruction>(NAME#"8mi_ND") addr:$dst, relocImm8_su:$src)>;
    def : Pat<(OpNode (load addr:$dst), relocImm16_su:$src),
              (!cast<Instruction>(NAME#"16mi_ND") addr:$dst, relocImm16_su:$src)>;
    def : Pat<(OpNode (load addr:$dst), relocImm32_su:$src),
              (!cast<Instruction>(NAME#"32mi_ND") addr:$dst, relocImm32_su:$src)>;
    def : Pat<(OpNode (load addr:$dst), i64relocImmSExt32_su:$src),
              (!cast<Instruction>(NAME#"64mi32_ND") addr:$dst, i64relocImmSExt32_su:$src)>;
  }
}

multiclass ArithBinOp_RFF_relocImm_Pats<SDNode OpNodeFlag> {
  let Predicates = [NoNDD] in {
    def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
    def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
    def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
    def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;

    def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm8_su:$src, EFLAGS), addr:$dst),
              (!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
    def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm16_su:$src, EFLAGS), addr:$dst),
              (!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
    def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm32_su:$src, EFLAGS), addr:$dst),
              (!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
    def : Pat<(store (OpNodeFlag (load addr:$dst), i64relocImmSExt32_su:$src, EFLAGS), addr:$dst),
              (!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
  }
  let Predicates = [HasNDD] in {
    def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"8ri_ND") GR8:$src1, relocImm8_su:$src2)>;
    def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"16ri_ND") GR16:$src1, relocImm16_su:$src2)>;
    def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"32ri_ND") GR32:$src1, relocImm32_su:$src2)>;
    def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2, EFLAGS),
              (!cast<Instruction>(NAME#"64ri32_ND") GR64:$src1, i64relocImmSExt32_su:$src2)>;

    def : Pat<(OpNodeFlag (load addr:$dst), relocImm8_su:$src, EFLAGS),
              (!cast<Instruction>(NAME#"8mi_ND") addr:$dst, relocImm8_su:$src)>;
    def : Pat<(OpNodeFlag (load addr:$dst), relocImm16_su:$src, EFLAGS),
              (!cast<Instruction>(NAME#"16mi_ND") addr:$dst, relocImm16_su:$src)>;
    def : Pat<(OpNodeFlag (load addr:$dst), relocImm32_su:$src, EFLAGS),
              (!cast<Instruction>(NAME#"32mi_ND") addr:$dst, relocImm32_su:$src)>;
    def : Pat<(OpNodeFlag (load addr:$dst), i64relocImmSExt32_su:$src, EFLAGS),
              (!cast<Instruction>(NAME#"64mi32_ND") addr:$dst, i64relocImmSExt32_su:$src)>;
  }
}

multiclass ArithBinOp_F_relocImm_Pats<SDNode OpNodeFlag> {
  def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
            (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
  def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
            (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
  def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
            (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
  def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
            (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;

  def : Pat<(OpNodeFlag (loadi8 addr:$src1), relocImm8_su:$src2),
            (!cast<Instruction>(NAME#"8mi") addr:$src1, relocImm8_su:$src2)>;
  def : Pat<(OpNodeFlag (loadi16 addr:$src1), relocImm16_su:$src2),
            (!cast<Instruction>(NAME#"16mi") addr:$src1, relocImm16_su:$src2)>;
  def : Pat<(OpNodeFlag (loadi32 addr:$src1), relocImm32_su:$src2),
            (!cast<Instruction>(NAME#"32mi") addr:$src1, relocImm32_su:$src2)>;
  def : Pat<(OpNodeFlag (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
            (!cast<Instruction>(NAME#"64mi32") addr:$src1, i64relocImmSExt32_su:$src2)>;
}

defm AND : ArithBinOp_RF_relocImm_Pats<X86and_flag, and>;
defm OR  : ArithBinOp_RF_relocImm_Pats<X86or_flag, or>;
defm XOR : ArithBinOp_RF_relocImm_Pats<X86xor_flag, xor>;
defm ADD : ArithBinOp_RF_relocImm_Pats<X86add_flag, add>;
defm SUB : ArithBinOp_RF_relocImm_Pats<X86sub_flag, sub>;

defm ADC : ArithBinOp_RFF_relocImm_Pats<X86adc_flag>;
defm SBB : ArithBinOp_RFF_relocImm_Pats<X86sbb_flag>;

defm CMP : ArithBinOp_F_relocImm_Pats<X86cmp>;

// ADC is commutable, but we can't indicate that to tablegen. So manually
// reverse the operands.
def : Pat<(X86adc_flag GR8:$src1, relocImm8_su:$src2, EFLAGS),
          (ADC8ri relocImm8_su:$src2, GR8:$src1)>;
def : Pat<(X86adc_flag i16relocImmSExt8_su:$src2, GR16:$src1, EFLAGS),
          (ADC16ri8 GR16:$src1, i16relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm16_su:$src2, GR16:$src1, EFLAGS),
          (ADC16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86adc_flag i32relocImmSExt8_su:$src2, GR32:$src1, EFLAGS),
          (ADC32ri8 GR32:$src1, i32relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm32_su:$src2, GR32:$src1, EFLAGS),
          (ADC32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt8_su:$src2, GR64:$src1, EFLAGS),
          (ADC64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt32_su:$src2, GR64:$src1, EFLAGS),
          (ADC64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;

def : Pat<(store (X86adc_flag relocImm8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC8mi addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (X86adc_flag i16relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC16mi8 addr:$dst, i16relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm16_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC16mi addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (X86adc_flag i32relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC32mi8 addr:$dst, i32relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC32mi addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC64mi8 addr:$dst, i64relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
          (ADC64mi32 addr:$dst, i64relocImmSExt32_su:$src)>;

//===----------------------------------------------------------------------===//
// Semantically, test instructions are similar like AND, except they don't
// generate a result.  From an encoding perspective, they are very different:
// they don't have all the usual imm8 and REV forms, and are encoded into a
// different space.
let isCompare = 1 in {
  let isCommutable = 1 in {
  // Avoid selecting these and instead use a test+and. Post processing will
  // combine them. This gives bunch of other patterns that start with
  // and a chance to match.
  def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , null_frag>;
  def TEST16rr : BinOpRR_F<0x85, "test", Xi16, null_frag>, OpSize16;
  def TEST32rr : BinOpRR_F<0x85, "test", Xi32, null_frag>, OpSize32;
  def TEST64rr : BinOpRR_F<0x85, "test", Xi64, null_frag>;
  } // isCommutable

def TEST8mr    : BinOpMR_F<0x84, "test", Xi8 , null_frag>;
def TEST16mr   : BinOpMR_F<0x85, "test", Xi16, null_frag>, OpSize16;
def TEST32mr   : BinOpMR_F<0x85, "test", Xi32, null_frag>, OpSize32;
def TEST64mr   : BinOpMR_F<0x85, "test", Xi64, null_frag>;

def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
def TEST16ri   : BinOpRI_F<0xF7, "test", Xi16, X86testpat, MRM0r>, OpSize16;
def TEST32ri   : BinOpRI_F<0xF7, "test", Xi32, X86testpat, MRM0r>, OpSize32;
def TEST64ri32 : BinOpRI_F<0xF7, "test", Xi64, X86testpat, MRM0r>;

def TEST8mi    : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
def TEST16mi   : BinOpMI_F<0xF7, "test", Xi16, X86testpat, MRM0m>, OpSize16;
def TEST32mi   : BinOpMI_F<0xF7, "test", Xi32, X86testpat, MRM0m>, OpSize32;

  let Predicates = [In64BitMode] in
  def TEST64mi32 : BinOpMI_F<0xF7, "test", Xi64, X86testpat, MRM0m>;

def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL, "{$src, %al|al, $src}">;
def TEST16i16 : BinOpAI_F<0xA9, "test", Xi16, AX, "{$src, %ax|ax, $src}">, OpSize16;
def TEST32i32 : BinOpAI_F<0xA9, "test", Xi32, EAX, "{$src, %eax|eax, $src}">, OpSize32;
def TEST64i32 : BinOpAI_F<0xA9, "test", Xi64, RAX, "{$src, %rax|rax, $src}">;
} // isCompare

// Patterns to match a relocImm into the immediate field.
def : Pat<(X86testpat GR8:$src1, relocImm8_su:$src2),
          (TEST8ri GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat GR16:$src1, relocImm16_su:$src2),
          (TEST16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat GR32:$src1, relocImm32_su:$src2),
          (TEST32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat GR64:$src1, i64relocImmSExt32_su:$src2),
          (TEST64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;

def : Pat<(X86testpat (loadi8 addr:$src1), relocImm8_su:$src2),
          (TEST8mi addr:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat (loadi16 addr:$src1), relocImm16_su:$src2),
          (TEST16mi addr:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat (loadi32 addr:$src1), relocImm32_su:$src2),
          (TEST32mi addr:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
          (TEST64mi32 addr:$src1, i64relocImmSExt32_su:$src2)>;

//===----------------------------------------------------------------------===//
// ANDN Instruction
//
multiclass AndN<X86TypeInfo t, SDPatternOperator node, string suffix = ""> {
  defvar andn_rr_p =
    [(set t.RegClass:$dst, EFLAGS, (node (not t.RegClass:$src1),
     t.RegClass:$src2))];
  defvar andn_rm_p =
    [(set t.RegClass:$dst, EFLAGS, (node (not t.RegClass:$src1),
     (t.LoadNode addr:$src2)))];
  def rr#suffix : ITy<0xF2, MRMSrcReg, t, (outs t.RegClass:$dst),
                      (ins t.RegClass:$src1, t.RegClass:$src2), "andn",
                      binop_ndd_args, andn_rr_p>, VVVV, Sched<[WriteALU]>, T8;
  def rm#suffix : ITy<0xF2, MRMSrcMem, t, (outs t.RegClass:$dst),
                       (ins t.RegClass:$src1, t.MemOperand:$src2), "andn",
                       binop_ndd_args, andn_rm_p>, VVVV,
                       Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>, T8;
}

// Complexity is reduced to give and with immediate a chance to match first.
let AddedComplexity = -6 in {
defm ANDN32 : AndN<Xi32, X86and_flag>, VEX, Requires<[HasBMI, NoEGPR]>, DefEFLAGS;
defm ANDN64 : AndN<Xi64, X86and_flag>, VEX, Requires<[HasBMI, NoEGPR]>, DefEFLAGS;
defm ANDN32 : AndN<Xi32, X86and_flag, "_EVEX">, EVEX, Requires<[HasBMI, HasEGPR, In64BitMode]>, DefEFLAGS;
defm ANDN64 : AndN<Xi64, X86and_flag, "_EVEX">, EVEX, Requires<[HasBMI, HasEGPR, In64BitMode]>, DefEFLAGS;
defm ANDN32 : AndN<Xi32, null_frag, "_NF">, EVEX, EVEX_NF, Requires<[In64BitMode]>;
defm ANDN64 : AndN<Xi64, null_frag, "_NF">, EVEX, EVEX_NF, Requires<[In64BitMode]>;
}

multiclass Andn_Pats<string suffix> {
  def : Pat<(and (not GR32:$src1), GR32:$src2),
            (!cast<Instruction>(ANDN32rr#suffix) GR32:$src1, GR32:$src2)>;
  def : Pat<(and (not GR64:$src1), GR64:$src2),
            (!cast<Instruction>(ANDN64rr#suffix) GR64:$src1, GR64:$src2)>;
  def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
            (!cast<Instruction>(ANDN32rm#suffix) GR32:$src1, addr:$src2)>;
  def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
            (!cast<Instruction>(ANDN64rm#suffix) GR64:$src1, addr:$src2)>;
}

let Predicates = [HasBMI, NoEGPR], AddedComplexity = -6 in
  defm : Andn_Pats<"">;

let Predicates = [HasBMI, HasEGPR], AddedComplexity = -6 in
  defm : Andn_Pats<"_EVEX">;

//===----------------------------------------------------------------------===//
// MULX Instruction
//
multiclass MulX<X86TypeInfo t, X86FoldableSchedWrite sched> {
  defvar mulx_args = "{$src, $dst2, $dst1|$dst1, $dst2, $src}";
  defvar mulx_rm_sched =
    [WriteIMulHLd, sched.Folded,
     // Memory operand.
     ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
     // Implicit read of EDX/RDX
     sched.ReadAfterFold];

  def rr : ITy<0xF6, MRMSrcReg, t, (outs t.RegClass:$dst1, t.RegClass:$dst2),
               (ins t.RegClass:$src), "mulx", mulx_args, []>, T8, XD, VEX,
           VVVV, Sched<[WriteIMulH, sched]>;
  let mayLoad = 1 in
  def rm : ITy<0xF6, MRMSrcMem, t, (outs t.RegClass:$dst1, t.RegClass:$dst2),
               (ins t.MemOperand:$src), "mulx", mulx_args, []>, T8, XD, VEX,
               VVVV, Sched<mulx_rm_sched>;

  let Predicates = [In64BitMode] in {
  def rr_EVEX : ITy<0xF6, MRMSrcReg, t,
                    (outs t.RegClass:$dst1, t.RegClass:$dst2),
                    (ins t.RegClass:$src), "mulx", mulx_args, []>, T8, XD,
                EVEX, VVVV, Sched<[WriteIMulH, sched]>;
    let mayLoad = 1 in
    def rm_EVEX : ITy<0xF6, MRMSrcMem, t,
                      (outs t.RegClass:$dst1, t.RegClass:$dst2),
                      (ins t.MemOperand:$src), "mulx", mulx_args, []>, T8, XD,
                  EVEX, VVVV, Sched<mulx_rm_sched>;
  }
  // Pseudo instructions to be used when the low result isn't used. The
  // instruction is defined to keep the high if both destinations are the same.
  def Hrr : PseudoI<(outs t.RegClass:$dst), (ins t.RegClass:$src), []>,
            Sched<[sched]>;
  let mayLoad = 1 in
  def Hrm : PseudoI<(outs t.RegClass:$dst), (ins t.MemOperand:$src), []>,
            Sched<[sched.Folded]>;
}

let Uses = [EDX] in
defm MULX32 : MulX<Xi32, WriteMULX32>;

let Uses = [RDX] in
defm MULX64 : MulX<Xi64, WriteMULX64>, REX_W;

//===----------------------------------------------------------------------===//
// ADCX and ADOX Instructions
//
// We don't have patterns for these as there is no advantage over ADC for
// most code.
let Form = MRMSrcReg in {
  def ADCX32rr : BinOpRRF_RF<0xF6, "adcx", Xi32>, T8, PD;
  def ADCX64rr : BinOpRRF_RF<0xF6, "adcx", Xi64>, T8, PD;
  def ADOX32rr : BinOpRRF_RF<0xF6, "adox", Xi32>, T8, XS;
  def ADOX64rr : BinOpRRF_RF<0xF6, "adox", Xi64>, T8, XS;
  let Predicates =[In64BitMode] in {
    def ADCX32rr_EVEX : BinOpRRF_RF<0x66, "adcx", Xi32>, EVEX, T_MAP4, PD;
    def ADCX64rr_EVEX : BinOpRRF_RF<0x66, "adcx", Xi64>, EVEX, T_MAP4, PD;
    def ADOX32rr_EVEX : BinOpRRF_RF<0x66, "adox", Xi32>, EVEX, T_MAP4, XS;
    def ADOX64rr_EVEX : BinOpRRF_RF<0x66, "adox", Xi64>, EVEX, T_MAP4, XS;
    def ADCX32rr_ND : BinOpRRF_RF<0x66, "adcx", Xi32, null_frag, 1>, PD;
    def ADCX64rr_ND : BinOpRRF_RF<0x66, "adcx", Xi64, null_frag, 1>, PD;
    def ADOX32rr_ND : BinOpRRF_RF<0x66, "adox", Xi32, null_frag, 1>, XS;
    def ADOX64rr_ND : BinOpRRF_RF<0x66, "adox", Xi64, null_frag, 1>, XS;
  }
}
let Form = MRMSrcMem in {
  def ADCX32rm : BinOpRMF_RF<0xF6, "adcx", Xi32>, T8, PD;
  def ADCX64rm : BinOpRMF_RF<0xF6, "adcx", Xi64>, T8, PD;
  def ADOX32rm : BinOpRMF_RF<0xF6, "adox", Xi32>, T8, XS;
  def ADOX64rm : BinOpRMF_RF<0xF6, "adox", Xi64>, T8, XS;
  let Predicates =[In64BitMode] in {
    def ADCX32rm_EVEX : BinOpRMF_RF<0x66, "adcx", Xi32>, EVEX, T_MAP4, PD;
    def ADCX64rm_EVEX : BinOpRMF_RF<0x66, "adcx", Xi64>, EVEX, T_MAP4, PD;
    def ADOX32rm_EVEX : BinOpRMF_RF<0x66, "adox", Xi32>, EVEX, T_MAP4, XS;
    def ADOX64rm_EVEX : BinOpRMF_RF<0x66, "adox", Xi64>, EVEX, T_MAP4, XS;
    def ADCX32rm_ND : BinOpRMF_RF<0x66, "adcx", Xi32, null_frag, 1>, PD;
    def ADCX64rm_ND : BinOpRMF_RF<0x66, "adcx", Xi64, null_frag, 1>, PD;
    def ADOX32rm_ND : BinOpRMF_RF<0x66, "adox", Xi32, null_frag, 1>, XS;
    def ADOX64rm_ND : BinOpRMF_RF<0x66, "adox", Xi64, null_frag, 1>, XS;
  }
}