aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86ISelLoweringCall.cpp
blob: a8c47471894943086e02eb38fee34376900d23a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
//===- llvm/lib/Target/X86/X86ISelCallLowering.cpp - Call lowering --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the lowering of LLVM calls to DAG nodes.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86CallingConv.h"
#include "X86FrameLowering.h"
#include "X86ISelLowering.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRBuilder.h"

#define DEBUG_TYPE "x86-isel"

using namespace llvm;

STATISTIC(NumTailCalls, "Number of tail calls");

/// Call this when the user attempts to do something unsupported, like
/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
/// report_fatal_error, so calling code should attempt to recover without
/// crashing.
static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
                             const char *Msg) {
  MachineFunction &MF = DAG.getMachineFunction();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc()));
}

/// Returns true if a CC can dynamically exclude a register from the list of
/// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on
/// the return registers.
static bool shouldDisableRetRegFromCSR(CallingConv::ID CC) {
  switch (CC) {
  default:
    return false;
  case CallingConv::X86_RegCall:
  case CallingConv::PreserveMost:
  case CallingConv::PreserveAll:
    return true;
  }
}

/// Returns true if a CC can dynamically exclude a register from the list of
/// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on
/// the parameters.
static bool shouldDisableArgRegFromCSR(CallingConv::ID CC) {
  return CC == CallingConv::X86_RegCall;
}

static std::pair<MVT, unsigned>
handleMaskRegisterForCallingConv(unsigned NumElts, CallingConv::ID CC,
                                 const X86Subtarget &Subtarget) {
  // v2i1/v4i1/v8i1/v16i1 all pass in xmm registers unless the calling
  // convention is one that uses k registers.
  if (NumElts == 2)
    return {MVT::v2i64, 1};
  if (NumElts == 4)
    return {MVT::v4i32, 1};
  if (NumElts == 8 && CC != CallingConv::X86_RegCall &&
      CC != CallingConv::Intel_OCL_BI)
    return {MVT::v8i16, 1};
  if (NumElts == 16 && CC != CallingConv::X86_RegCall &&
      CC != CallingConv::Intel_OCL_BI)
    return {MVT::v16i8, 1};
  // v32i1 passes in ymm unless we have BWI and the calling convention is
  // regcall.
  if (NumElts == 32 && (!Subtarget.hasBWI() || CC != CallingConv::X86_RegCall))
    return {MVT::v32i8, 1};
  // Split v64i1 vectors if we don't have v64i8 available.
  if (NumElts == 64 && Subtarget.hasBWI() && CC != CallingConv::X86_RegCall) {
    if (Subtarget.useAVX512Regs())
      return {MVT::v64i8, 1};
    return {MVT::v32i8, 2};
  }

  // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
  if (!isPowerOf2_32(NumElts) || (NumElts == 64 && !Subtarget.hasBWI()) ||
      NumElts > 64)
    return {MVT::i8, NumElts};

  return {MVT::INVALID_SIMPLE_VALUE_TYPE, 0};
}

MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
                                                     CallingConv::ID CC,
                                                     EVT VT) const {
  if (VT.isVector()) {
    if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) {
      unsigned NumElts = VT.getVectorNumElements();

      MVT RegisterVT;
      unsigned NumRegisters;
      std::tie(RegisterVT, NumRegisters) =
          handleMaskRegisterForCallingConv(NumElts, CC, Subtarget);
      if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
        return RegisterVT;
    }

    if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8)
      return MVT::v8f16;
  }

  // We will use more GPRs for f64 and f80 on 32 bits when x87 is disabled.
  if ((VT == MVT::f64 || VT == MVT::f80) && !Subtarget.is64Bit() &&
      !Subtarget.hasX87())
    return MVT::i32;

  if (VT.isVector() && VT.getVectorElementType() == MVT::bf16)
    return getRegisterTypeForCallingConv(Context, CC,
                                         VT.changeVectorElementType(MVT::f16));

  if (VT == MVT::bf16)
    return MVT::f16;

  return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}

unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
                                                          CallingConv::ID CC,
                                                          EVT VT) const {
  if (VT.isVector()) {
    if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) {
      unsigned NumElts = VT.getVectorNumElements();

      MVT RegisterVT;
      unsigned NumRegisters;
      std::tie(RegisterVT, NumRegisters) =
          handleMaskRegisterForCallingConv(NumElts, CC, Subtarget);
      if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
        return NumRegisters;
    }

    if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8)
      return 1;
  }

  // We have to split f64 to 2 registers and f80 to 3 registers on 32 bits if
  // x87 is disabled.
  if (!Subtarget.is64Bit() && !Subtarget.hasX87()) {
    if (VT == MVT::f64)
      return 2;
    if (VT == MVT::f80)
      return 3;
  }

  if (VT.isVector() && VT.getVectorElementType() == MVT::bf16)
    return getNumRegistersForCallingConv(Context, CC,
                                         VT.changeVectorElementType(MVT::f16));

  return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
}

unsigned X86TargetLowering::getVectorTypeBreakdownForCallingConv(
    LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
    unsigned &NumIntermediates, MVT &RegisterVT) const {
  // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
  if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
      Subtarget.hasAVX512() &&
      (!isPowerOf2_32(VT.getVectorNumElements()) ||
       (VT.getVectorNumElements() == 64 && !Subtarget.hasBWI()) ||
       VT.getVectorNumElements() > 64)) {
    RegisterVT = MVT::i8;
    IntermediateVT = MVT::i1;
    NumIntermediates = VT.getVectorNumElements();
    return NumIntermediates;
  }

  // Split v64i1 vectors if we don't have v64i8 available.
  if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
      CC != CallingConv::X86_RegCall) {
    RegisterVT = MVT::v32i8;
    IntermediateVT = MVT::v32i1;
    NumIntermediates = 2;
    return 2;
  }

  // Split vNbf16 vectors according to vNf16.
  if (VT.isVector() && VT.getVectorElementType() == MVT::bf16)
    VT = VT.changeVectorElementType(MVT::f16);

  return TargetLowering::getVectorTypeBreakdownForCallingConv(Context, CC, VT, IntermediateVT,
                                              NumIntermediates, RegisterVT);
}

EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
                                          LLVMContext& Context,
                                          EVT VT) const {
  if (!VT.isVector())
    return MVT::i8;

  if (Subtarget.hasAVX512()) {
    // Figure out what this type will be legalized to.
    EVT LegalVT = VT;
    while (getTypeAction(Context, LegalVT) != TypeLegal)
      LegalVT = getTypeToTransformTo(Context, LegalVT);

    // If we got a 512-bit vector then we'll definitely have a vXi1 compare.
    if (LegalVT.getSimpleVT().is512BitVector())
      return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());

    if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
      // If we legalized to less than a 512-bit vector, then we will use a vXi1
      // compare for vXi32/vXi64 for sure. If we have BWI we will also support
      // vXi16/vXi8.
      MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
      if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
        return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
    }
  }

  return VT.changeVectorElementTypeToInteger();
}

/// Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, Align &MaxAlign) {
  if (MaxAlign == 16)
    return;
  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    if (VTy->getPrimitiveSizeInBits().getFixedValue() == 128)
      MaxAlign = Align(16);
  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Align EltAlign;
    getMaxByValAlign(ATy->getElementType(), EltAlign);
    if (EltAlign > MaxAlign)
      MaxAlign = EltAlign;
  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    for (auto *EltTy : STy->elements()) {
      Align EltAlign;
      getMaxByValAlign(EltTy, EltAlign);
      if (EltAlign > MaxAlign)
        MaxAlign = EltAlign;
      if (MaxAlign == 16)
        break;
    }
  }
}

/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
uint64_t X86TargetLowering::getByValTypeAlignment(Type *Ty,
                                                  const DataLayout &DL) const {
  if (Subtarget.is64Bit()) {
    // Max of 8 and alignment of type.
    Align TyAlign = DL.getABITypeAlign(Ty);
    if (TyAlign > 8)
      return TyAlign.value();
    return 8;
  }

  Align Alignment(4);
  if (Subtarget.hasSSE1())
    getMaxByValAlign(Ty, Alignment);
  return Alignment.value();
}

/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
/// For vector ops we check that the overall size isn't larger than our
/// preferred vector width.
EVT X86TargetLowering::getOptimalMemOpType(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  if (!FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
    if (Op.size() >= 16 &&
        (!Subtarget.isUnalignedMem16Slow() || Op.isAligned(Align(16)))) {
      // FIXME: Check if unaligned 64-byte accesses are slow.
      if (Op.size() >= 64 && Subtarget.hasAVX512() && Subtarget.hasEVEX512() &&
          (Subtarget.getPreferVectorWidth() >= 512)) {
        return Subtarget.hasBWI() ? MVT::v64i8 : MVT::v16i32;
      }
      // FIXME: Check if unaligned 32-byte accesses are slow.
      if (Op.size() >= 32 && Subtarget.hasAVX() &&
          Subtarget.useLight256BitInstructions()) {
        // Although this isn't a well-supported type for AVX1, we'll let
        // legalization and shuffle lowering produce the optimal codegen. If we
        // choose an optimal type with a vector element larger than a byte,
        // getMemsetStores() may create an intermediate splat (using an integer
        // multiply) before we splat as a vector.
        return MVT::v32i8;
      }
      if (Subtarget.hasSSE2() && (Subtarget.getPreferVectorWidth() >= 128))
        return MVT::v16i8;
      // TODO: Can SSE1 handle a byte vector?
      // If we have SSE1 registers we should be able to use them.
      if (Subtarget.hasSSE1() && (Subtarget.is64Bit() || Subtarget.hasX87()) &&
          (Subtarget.getPreferVectorWidth() >= 128))
        return MVT::v4f32;
    } else if (((Op.isMemcpy() && !Op.isMemcpyStrSrc()) || Op.isZeroMemset()) &&
               Op.size() >= 8 && !Subtarget.is64Bit() && Subtarget.hasSSE2()) {
      // Do not use f64 to lower memcpy if source is string constant. It's
      // better to use i32 to avoid the loads.
      // Also, do not use f64 to lower memset unless this is a memset of zeros.
      // The gymnastics of splatting a byte value into an XMM register and then
      // only using 8-byte stores (because this is a CPU with slow unaligned
      // 16-byte accesses) makes that a loser.
      return MVT::f64;
    }
  }
  // This is a compromise. If we reach here, unaligned accesses may be slow on
  // this target. However, creating smaller, aligned accesses could be even
  // slower and would certainly be a lot more code.
  if (Subtarget.is64Bit() && Op.size() >= 8)
    return MVT::i64;
  return MVT::i32;
}

bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
  if (VT == MVT::f32)
    return Subtarget.hasSSE1();
  if (VT == MVT::f64)
    return Subtarget.hasSSE2();
  return true;
}

static bool isBitAligned(Align Alignment, uint64_t SizeInBits) {
  return (8 * Alignment.value()) % SizeInBits == 0;
}

bool X86TargetLowering::isMemoryAccessFast(EVT VT, Align Alignment) const {
  if (isBitAligned(Alignment, VT.getSizeInBits()))
    return true;
  switch (VT.getSizeInBits()) {
  default:
    // 8-byte and under are always assumed to be fast.
    return true;
  case 128:
    return !Subtarget.isUnalignedMem16Slow();
  case 256:
    return !Subtarget.isUnalignedMem32Slow();
    // TODO: What about AVX-512 (512-bit) accesses?
  }
}

bool X86TargetLowering::allowsMisalignedMemoryAccesses(
    EVT VT, unsigned, Align Alignment, MachineMemOperand::Flags Flags,
    unsigned *Fast) const {
  if (Fast)
    *Fast = isMemoryAccessFast(VT, Alignment);
  // NonTemporal vector memory ops must be aligned.
  if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
    // NT loads can only be vector aligned, so if its less aligned than the
    // minimum vector size (which we can split the vector down to), we might as
    // well use a regular unaligned vector load.
    // We don't have any NT loads pre-SSE41.
    if (!!(Flags & MachineMemOperand::MOLoad))
      return (Alignment < 16 || !Subtarget.hasSSE41());
    return false;
  }
  // Misaligned accesses of any size are always allowed.
  return true;
}

bool X86TargetLowering::allowsMemoryAccess(LLVMContext &Context,
                                           const DataLayout &DL, EVT VT,
                                           unsigned AddrSpace, Align Alignment,
                                           MachineMemOperand::Flags Flags,
                                           unsigned *Fast) const {
  if (Fast)
    *Fast = isMemoryAccessFast(VT, Alignment);
  if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
    if (allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags,
                                       /*Fast=*/nullptr))
      return true;
    // NonTemporal vector memory ops are special, and must be aligned.
    if (!isBitAligned(Alignment, VT.getSizeInBits()))
      return false;
    switch (VT.getSizeInBits()) {
    case 128:
      if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasSSE41())
        return true;
      if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasSSE2())
        return true;
      return false;
    case 256:
      if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasAVX2())
        return true;
      if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasAVX())
        return true;
      return false;
    case 512:
      if (Subtarget.hasAVX512() && Subtarget.hasEVEX512())
        return true;
      return false;
    default:
      return false; // Don't have NonTemporal vector memory ops of this size.
    }
  }
  return true;
}

/// Return the entry encoding for a jump table in the
/// current function.  The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
  // symbol.
  if (isPositionIndependent() && Subtarget.isPICStyleGOT())
    return MachineJumpTableInfo::EK_Custom32;
  if (isPositionIndependent() &&
      getTargetMachine().getCodeModel() == CodeModel::Large)
    return MachineJumpTableInfo::EK_LabelDifference64;

  // Otherwise, use the normal jump table encoding heuristics.
  return TargetLowering::getJumpTableEncoding();
}

bool X86TargetLowering::useSoftFloat() const {
  return Subtarget.useSoftFloat();
}

void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC,
                                              ArgListTy &Args) const {

  // Only relabel X86-32 for C / Stdcall CCs.
  if (Subtarget.is64Bit())
    return;
  if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
    return;
  unsigned ParamRegs = 0;
  if (auto *M = MF->getFunction().getParent())
    ParamRegs = M->getNumberRegisterParameters();

  // Mark the first N int arguments as having reg
  for (auto &Arg : Args) {
    Type *T = Arg.Ty;
    if (T->isIntOrPtrTy())
      if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
        unsigned numRegs = 1;
        if (MF->getDataLayout().getTypeAllocSize(T) > 4)
          numRegs = 2;
        if (ParamRegs < numRegs)
          return;
        ParamRegs -= numRegs;
        Arg.IsInReg = true;
      }
  }
}

const MCExpr *
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                                             const MachineBasicBlock *MBB,
                                             unsigned uid,MCContext &Ctx) const{
  assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
  // entries.
  return MCSymbolRefExpr::create(MBB->getSymbol(),
                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
}

/// Returns relocation base for the given PIC jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                    SelectionDAG &DAG) const {
  if (!Subtarget.is64Bit())
    // This doesn't have SDLoc associated with it, but is not really the
    // same as a Register.
    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
                       getPointerTy(DAG.getDataLayout()));
  return Table;
}

/// This returns the relocation base for the given PIC jumptable,
/// the same as getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
                             MCContext &Ctx) const {
  // X86-64 uses RIP relative addressing based on the jump table label.
  if (Subtarget.isPICStyleRIPRel() ||
      (Subtarget.is64Bit() &&
       getTargetMachine().getCodeModel() == CodeModel::Large))
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);

  // Otherwise, the reference is relative to the PIC base.
  return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}

std::pair<const TargetRegisterClass *, uint8_t>
X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
                                           MVT VT) const {
  const TargetRegisterClass *RRC = nullptr;
  uint8_t Cost = 1;
  switch (VT.SimpleTy) {
  default:
    return TargetLowering::findRepresentativeClass(TRI, VT);
  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
    RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
    break;
  case MVT::x86mmx:
    RRC = &X86::VR64RegClass;
    break;
  case MVT::f32: case MVT::f64:
  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
  case MVT::v4f32: case MVT::v2f64:
  case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
  case MVT::v8f32: case MVT::v4f64:
  case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
  case MVT::v16f32: case MVT::v8f64:
    RRC = &X86::VR128XRegClass;
    break;
  }
  return std::make_pair(RRC, Cost);
}

unsigned X86TargetLowering::getAddressSpace() const {
  if (Subtarget.is64Bit())
    return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
  return 256;
}

static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
  return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
         (TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17));
}

static Constant* SegmentOffset(IRBuilderBase &IRB,
                               int Offset, unsigned AddressSpace) {
  return ConstantExpr::getIntToPtr(
      ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
      IRB.getPtrTy(AddressSpace));
}

Value *X86TargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
  // glibc, bionic, and Fuchsia have a special slot for the stack guard in
  // tcbhead_t; use it instead of the usual global variable (see
  // sysdeps/{i386,x86_64}/nptl/tls.h)
  if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
    unsigned AddressSpace = getAddressSpace();

    // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
    if (Subtarget.isTargetFuchsia())
      return SegmentOffset(IRB, 0x10, AddressSpace);

    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
    // Specially, some users may customize the base reg and offset.
    int Offset = M->getStackProtectorGuardOffset();
    // If we don't set -stack-protector-guard-offset value:
    // %fs:0x28, unless we're using a Kernel code model, in which case
    // it's %gs:0x28.  gs:0x14 on i386.
    if (Offset == INT_MAX)
      Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;

    StringRef GuardReg = M->getStackProtectorGuardReg();
    if (GuardReg == "fs")
      AddressSpace = X86AS::FS;
    else if (GuardReg == "gs")
      AddressSpace = X86AS::GS;

    // Use symbol guard if user specify.
    StringRef GuardSymb = M->getStackProtectorGuardSymbol();
    if (!GuardSymb.empty()) {
      GlobalVariable *GV = M->getGlobalVariable(GuardSymb);
      if (!GV) {
        Type *Ty = Subtarget.is64Bit() ? Type::getInt64Ty(M->getContext())
                                       : Type::getInt32Ty(M->getContext());
        GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
                                nullptr, GuardSymb, nullptr,
                                GlobalValue::NotThreadLocal, AddressSpace);
        if (!Subtarget.isTargetDarwin())
          GV->setDSOLocal(M->getDirectAccessExternalData());
      }
      return GV;
    }

    return SegmentOffset(IRB, Offset, AddressSpace);
  }
  return TargetLowering::getIRStackGuard(IRB);
}

void X86TargetLowering::insertSSPDeclarations(Module &M) const {
  // MSVC CRT provides functionalities for stack protection.
  if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
      Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
    // MSVC CRT has a global variable holding security cookie.
    M.getOrInsertGlobal("__security_cookie",
                        PointerType::getUnqual(M.getContext()));

    // MSVC CRT has a function to validate security cookie.
    FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
        "__security_check_cookie", Type::getVoidTy(M.getContext()),
        PointerType::getUnqual(M.getContext()));
    if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
      F->setCallingConv(CallingConv::X86_FastCall);
      F->addParamAttr(0, Attribute::AttrKind::InReg);
    }
    return;
  }

  StringRef GuardMode = M.getStackProtectorGuard();

  // glibc, bionic, and Fuchsia have a special slot for the stack guard.
  if ((GuardMode == "tls" || GuardMode.empty()) &&
      hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
    return;
  TargetLowering::insertSSPDeclarations(M);
}

Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
  // MSVC CRT has a global variable holding security cookie.
  if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
      Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
    return M.getGlobalVariable("__security_cookie");
  }
  return TargetLowering::getSDagStackGuard(M);
}

Function *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
  // MSVC CRT has a function to validate security cookie.
  if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
      Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
    return M.getFunction("__security_check_cookie");
  }
  return TargetLowering::getSSPStackGuardCheck(M);
}

Value *
X86TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
  // Android provides a fixed TLS slot for the SafeStack pointer. See the
  // definition of TLS_SLOT_SAFESTACK in
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
  if (Subtarget.isTargetAndroid()) {
    // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
    // %gs:0x24 on i386
    int Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
    return SegmentOffset(IRB, Offset, getAddressSpace());
  }

  // Fuchsia is similar.
  if (Subtarget.isTargetFuchsia()) {
    // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
    return SegmentOffset(IRB, 0x18, getAddressSpace());
  }

  return TargetLowering::getSafeStackPointerLocation(IRB);
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

bool X86TargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC_X86);
}

const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
  return ScratchRegs;
}

ArrayRef<MCPhysReg> X86TargetLowering::getRoundingControlRegisters() const {
  static const MCPhysReg RCRegs[] = {X86::FPCW, X86::MXCSR};
  return RCRegs;
}

/// Lowers masks values (v*i1) to the local register values
/// \returns DAG node after lowering to register type
static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
                               const SDLoc &DL, SelectionDAG &DAG) {
  EVT ValVT = ValArg.getValueType();

  if (ValVT == MVT::v1i1)
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ValLoc, ValArg,
                       DAG.getIntPtrConstant(0, DL));

  if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
      (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
    // Two stage lowering might be required
    // bitcast:   v8i1 -> i8 / v16i1 -> i16
    // anyextend: i8   -> i32 / i16   -> i32
    EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
    SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
    if (ValLoc == MVT::i32)
      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, ValLoc, ValToCopy);
    return ValToCopy;
  }

  if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
      (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
    // One stage lowering is required
    // bitcast:   v32i1 -> i32 / v64i1 -> i64
    return DAG.getBitcast(ValLoc, ValArg);
  }

  return DAG.getNode(ISD::ANY_EXTEND, DL, ValLoc, ValArg);
}

/// Breaks v64i1 value into two registers and adds the new node to the DAG
static void Passv64i1ArgInRegs(
    const SDLoc &DL, SelectionDAG &DAG, SDValue &Arg,
    SmallVectorImpl<std::pair<Register, SDValue>> &RegsToPass, CCValAssign &VA,
    CCValAssign &NextVA, const X86Subtarget &Subtarget) {
  assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
  assert(Subtarget.is32Bit() && "Expecting 32 bit target");
  assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
  assert(VA.isRegLoc() && NextVA.isRegLoc() &&
         "The value should reside in two registers");

  // Before splitting the value we cast it to i64
  Arg = DAG.getBitcast(MVT::i64, Arg);

  // Splitting the value into two i32 types
  SDValue Lo, Hi;
  std::tie(Lo, Hi) = DAG.SplitScalar(Arg, DL, MVT::i32, MVT::i32);

  // Attach the two i32 types into corresponding registers
  RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
  RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
}

SDValue
X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &dl, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();

  // In some cases we need to disable registers from the default CSR list.
  // For example, when they are used as return registers (preserve_* and X86's
  // regcall) or for argument passing (X86's regcall).
  bool ShouldDisableCalleeSavedRegister =
      shouldDisableRetRegFromCSR(CallConv) ||
      MF.getFunction().hasFnAttribute("no_caller_saved_registers");

  if (CallConv == CallingConv::X86_INTR && !Outs.empty())
    report_fatal_error("X86 interrupts may not return any value");

  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
  CCInfo.AnalyzeReturn(Outs, RetCC_X86);

  SmallVector<std::pair<Register, SDValue>, 4> RetVals;
  for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
       ++I, ++OutsIndex) {
    CCValAssign &VA = RVLocs[I];
    assert(VA.isRegLoc() && "Can only return in registers!");

    // Add the register to the CalleeSaveDisableRegs list.
    if (ShouldDisableCalleeSavedRegister)
      MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg());

    SDValue ValToCopy = OutVals[OutsIndex];
    EVT ValVT = ValToCopy.getValueType();

    // Promote values to the appropriate types.
    if (VA.getLocInfo() == CCValAssign::SExt)
      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
    else if (VA.getLocInfo() == CCValAssign::ZExt)
      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
    else if (VA.getLocInfo() == CCValAssign::AExt) {
      if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
        ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
      else
        ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
    }
    else if (VA.getLocInfo() == CCValAssign::BCvt)
      ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);

    assert(VA.getLocInfo() != CCValAssign::FPExt &&
           "Unexpected FP-extend for return value.");

    // Report an error if we have attempted to return a value via an XMM
    // register and SSE was disabled.
    if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
      errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
      VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
    } else if (!Subtarget.hasSSE2() &&
               X86::FR64XRegClass.contains(VA.getLocReg()) &&
               ValVT == MVT::f64) {
      // When returning a double via an XMM register, report an error if SSE2 is
      // not enabled.
      errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
      VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
    }

    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
    // the RET instruction and handled by the FP Stackifier.
    if (VA.getLocReg() == X86::FP0 ||
        VA.getLocReg() == X86::FP1) {
      // If this is a copy from an xmm register to ST(0), use an FPExtend to
      // change the value to the FP stack register class.
      if (isScalarFPTypeInSSEReg(VA.getValVT()))
        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
      RetVals.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
      // Don't emit a copytoreg.
      continue;
    }

    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
    // which is returned in RAX / RDX.
    if (Subtarget.is64Bit()) {
      if (ValVT == MVT::x86mmx) {
        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
          ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
                                  ValToCopy);
          // If we don't have SSE2 available, convert to v4f32 so the generated
          // register is legal.
          if (!Subtarget.hasSSE2())
            ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
        }
      }
    }

    if (VA.needsCustom()) {
      assert(VA.getValVT() == MVT::v64i1 &&
             "Currently the only custom case is when we split v64i1 to 2 regs");

      Passv64i1ArgInRegs(dl, DAG, ValToCopy, RetVals, VA, RVLocs[++I],
                         Subtarget);

      // Add the second register to the CalleeSaveDisableRegs list.
      if (ShouldDisableCalleeSavedRegister)
        MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
    } else {
      RetVals.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
    }
  }

  SDValue Glue;
  SmallVector<SDValue, 6> RetOps;
  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
  // Operand #1 = Bytes To Pop
  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
                   MVT::i32));

  // Copy the result values into the output registers.
  for (auto &RetVal : RetVals) {
    if (RetVal.first == X86::FP0 || RetVal.first == X86::FP1) {
      RetOps.push_back(RetVal.second);
      continue; // Don't emit a copytoreg.
    }

    Chain = DAG.getCopyToReg(Chain, dl, RetVal.first, RetVal.second, Glue);
    Glue = Chain.getValue(1);
    RetOps.push_back(
        DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
  }

  // Swift calling convention does not require we copy the sret argument
  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.

  // All x86 ABIs require that for returning structs by value we copy
  // the sret argument into %rax/%eax (depending on ABI) for the return.
  // We saved the argument into a virtual register in the entry block,
  // so now we copy the value out and into %rax/%eax.
  //
  // Checking Function.hasStructRetAttr() here is insufficient because the IR
  // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
  // false, then an sret argument may be implicitly inserted in the SelDAG. In
  // either case FuncInfo->setSRetReturnReg() will have been called.
  if (Register SRetReg = FuncInfo->getSRetReturnReg()) {
    // When we have both sret and another return value, we should use the
    // original Chain stored in RetOps[0], instead of the current Chain updated
    // in the above loop. If we only have sret, RetOps[0] equals to Chain.

    // For the case of sret and another return value, we have
    //   Chain_0 at the function entry
    //   Chain_1 = getCopyToReg(Chain_0) in the above loop
    // If we use Chain_1 in getCopyFromReg, we will have
    //   Val = getCopyFromReg(Chain_1)
    //   Chain_2 = getCopyToReg(Chain_1, Val) from below

    // getCopyToReg(Chain_0) will be glued together with
    // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
    // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
    //   Data dependency from Unit B to Unit A due to usage of Val in
    //     getCopyToReg(Chain_1, Val)
    //   Chain dependency from Unit A to Unit B

    // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
    SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
                                     getPointerTy(MF.getDataLayout()));

    Register RetValReg
        = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
          X86::RAX : X86::EAX;
    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Glue);
    Glue = Chain.getValue(1);

    // RAX/EAX now acts like a return value.
    RetOps.push_back(
        DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));

    // Add the returned register to the CalleeSaveDisableRegs list. Don't do
    // this however for preserve_most/preserve_all to minimize the number of
    // callee-saved registers for these CCs.
    if (ShouldDisableCalleeSavedRegister &&
        CallConv != CallingConv::PreserveAll &&
        CallConv != CallingConv::PreserveMost)
      MF.getRegInfo().disableCalleeSavedRegister(RetValReg);
  }

  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
  const MCPhysReg *I =
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
  if (I) {
    for (; *I; ++I) {
      if (X86::GR64RegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
      else
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
    }
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the glue if we have it.
  if (Glue.getNode())
    RetOps.push_back(Glue);

  X86ISD::NodeType opcode = X86ISD::RET_GLUE;
  if (CallConv == CallingConv::X86_INTR)
    opcode = X86ISD::IRET;
  return DAG.getNode(opcode, dl, MVT::Other, RetOps);
}

bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
  if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
    return false;

  SDValue TCChain = Chain;
  SDNode *Copy = *N->use_begin();
  if (Copy->getOpcode() == ISD::CopyToReg) {
    // If the copy has a glue operand, we conservatively assume it isn't safe to
    // perform a tail call.
    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
      return false;
    TCChain = Copy->getOperand(0);
  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
    return false;

  bool HasRet = false;
  for (const SDNode *U : Copy->uses()) {
    if (U->getOpcode() != X86ISD::RET_GLUE)
      return false;
    // If we are returning more than one value, we can definitely
    // not make a tail call see PR19530
    if (U->getNumOperands() > 4)
      return false;
    if (U->getNumOperands() == 4 &&
        U->getOperand(U->getNumOperands() - 1).getValueType() != MVT::Glue)
      return false;
    HasRet = true;
  }

  if (!HasRet)
    return false;

  Chain = TCChain;
  return true;
}

EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
                                           ISD::NodeType ExtendKind) const {
  MVT ReturnMVT = MVT::i32;

  bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
  if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
    // The ABI does not require i1, i8 or i16 to be extended.
    //
    // On Darwin, there is code in the wild relying on Clang's old behaviour of
    // always extending i8/i16 return values, so keep doing that for now.
    // (PR26665).
    ReturnMVT = MVT::i8;
  }

  EVT MinVT = getRegisterType(Context, ReturnMVT);
  return VT.bitsLT(MinVT) ? MinVT : VT;
}

/// Reads two 32 bit registers and creates a 64 bit mask value.
/// \param VA The current 32 bit value that need to be assigned.
/// \param NextVA The next 32 bit value that need to be assigned.
/// \param Root The parent DAG node.
/// \param [in,out] InGlue Represents SDvalue in the parent DAG node for
///                        glue purposes. In the case the DAG is already using
///                        physical register instead of virtual, we should glue
///                        our new SDValue to InGlue SDvalue.
/// \return a new SDvalue of size 64bit.
static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
                                SDValue &Root, SelectionDAG &DAG,
                                const SDLoc &DL, const X86Subtarget &Subtarget,
                                SDValue *InGlue = nullptr) {
  assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
  assert(Subtarget.is32Bit() && "Expecting 32 bit target");
  assert(VA.getValVT() == MVT::v64i1 &&
         "Expecting first location of 64 bit width type");
  assert(NextVA.getValVT() == VA.getValVT() &&
         "The locations should have the same type");
  assert(VA.isRegLoc() && NextVA.isRegLoc() &&
         "The values should reside in two registers");

  SDValue Lo, Hi;
  SDValue ArgValueLo, ArgValueHi;

  MachineFunction &MF = DAG.getMachineFunction();
  const TargetRegisterClass *RC = &X86::GR32RegClass;

  // Read a 32 bit value from the registers.
  if (nullptr == InGlue) {
    // When no physical register is present,
    // create an intermediate virtual register.
    Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
    ArgValueLo = DAG.getCopyFromReg(Root, DL, Reg, MVT::i32);
    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
    ArgValueHi = DAG.getCopyFromReg(Root, DL, Reg, MVT::i32);
  } else {
    // When a physical register is available read the value from it and glue
    // the reads together.
    ArgValueLo =
      DAG.getCopyFromReg(Root, DL, VA.getLocReg(), MVT::i32, *InGlue);
    *InGlue = ArgValueLo.getValue(2);
    ArgValueHi =
      DAG.getCopyFromReg(Root, DL, NextVA.getLocReg(), MVT::i32, *InGlue);
    *InGlue = ArgValueHi.getValue(2);
  }

  // Convert the i32 type into v32i1 type.
  Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);

  // Convert the i32 type into v32i1 type.
  Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);

  // Concatenate the two values together.
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v64i1, Lo, Hi);
}

/// The function will lower a register of various sizes (8/16/32/64)
/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
/// \returns a DAG node contains the operand after lowering to mask type.
static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
                               const EVT &ValLoc, const SDLoc &DL,
                               SelectionDAG &DAG) {
  SDValue ValReturned = ValArg;

  if (ValVT == MVT::v1i1)
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, ValReturned);

  if (ValVT == MVT::v64i1) {
    // In 32 bit machine, this case is handled by getv64i1Argument
    assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
    // In 64 bit machine, There is no need to truncate the value only bitcast
  } else {
    MVT MaskLenVT;
    switch (ValVT.getSimpleVT().SimpleTy) {
    case MVT::v8i1:
      MaskLenVT = MVT::i8;
      break;
    case MVT::v16i1:
      MaskLenVT = MVT::i16;
      break;
    case MVT::v32i1:
      MaskLenVT = MVT::i32;
      break;
    default:
      llvm_unreachable("Expecting a vector of i1 types");
    }

    ValReturned = DAG.getNode(ISD::TRUNCATE, DL, MaskLenVT, ValReturned);
  }
  return DAG.getBitcast(ValVT, ValReturned);
}

/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue X86TargetLowering::LowerCallResult(
    SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    uint32_t *RegMask) const {

  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
       ++I, ++InsIndex) {
    CCValAssign &VA = RVLocs[I];
    EVT CopyVT = VA.getLocVT();

    // In some calling conventions we need to remove the used registers
    // from the register mask.
    if (RegMask) {
      for (MCPhysReg SubReg : TRI->subregs_inclusive(VA.getLocReg()))
        RegMask[SubReg / 32] &= ~(1u << (SubReg % 32));
    }

    // Report an error if there was an attempt to return FP values via XMM
    // registers.
    if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
      errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
      if (VA.getLocReg() == X86::XMM1)
        VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
      else
        VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
    } else if (!Subtarget.hasSSE2() &&
               X86::FR64XRegClass.contains(VA.getLocReg()) &&
               CopyVT == MVT::f64) {
      errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
      if (VA.getLocReg() == X86::XMM1)
        VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
      else
        VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
    }

    // If we prefer to use the value in xmm registers, copy it out as f80 and
    // use a truncate to move it from fp stack reg to xmm reg.
    bool RoundAfterCopy = false;
    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
        isScalarFPTypeInSSEReg(VA.getValVT())) {
      if (!Subtarget.hasX87())
        report_fatal_error("X87 register return with X87 disabled");
      CopyVT = MVT::f80;
      RoundAfterCopy = (CopyVT != VA.getLocVT());
    }

    SDValue Val;
    if (VA.needsCustom()) {
      assert(VA.getValVT() == MVT::v64i1 &&
             "Currently the only custom case is when we split v64i1 to 2 regs");
      Val =
          getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InGlue);
    } else {
      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InGlue)
                  .getValue(1);
      Val = Chain.getValue(0);
      InGlue = Chain.getValue(2);
    }

    if (RoundAfterCopy)
      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
                        // This truncation won't change the value.
                        DAG.getIntPtrConstant(1, dl, /*isTarget=*/true));

    if (VA.isExtInLoc()) {
      if (VA.getValVT().isVector() &&
          VA.getValVT().getScalarType() == MVT::i1 &&
          ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
           (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
        // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
        Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
      } else
        Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
    }

    if (VA.getLocInfo() == CCValAssign::BCvt)
      Val = DAG.getBitcast(VA.getValVT(), Val);

    InVals.push_back(Val);
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//                C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//  StdCall calling convention seems to be standard for many Windows' API
//  routines and around. It differs from C calling convention just a little:
//  callee should clean up the stack, not caller. Symbols should be also
//  decorated in some fancy way :) It doesn't support any vector arguments.
//  For info on fast calling convention see Fast Calling Convention (tail call)
//  implementation LowerX86_32FastCCCallTo.

/// Determines whether Args, either a set of outgoing arguments to a call, or a
/// set of incoming args of a call, contains an sret pointer that the callee
/// pops
template <typename T>
static bool hasCalleePopSRet(const SmallVectorImpl<T> &Args,
                             const X86Subtarget &Subtarget) {
  // Not C++20 (yet), so no concepts available.
  static_assert(std::is_same_v<T, ISD::OutputArg> ||
                    std::is_same_v<T, ISD::InputArg>,
                "requires ISD::OutputArg or ISD::InputArg");

  // Only 32-bit pops the sret.  It's a 64-bit world these days, so early-out
  // for most compilations.
  if (!Subtarget.is32Bit())
    return false;

  if (Args.empty())
    return false;

  // Most calls do not have an sret argument, check the arg next.
  const ISD::ArgFlagsTy &Flags = Args[0].Flags;
  if (!Flags.isSRet() || Flags.isInReg())
    return false;

  // The MSVCabi does not pop the sret.
  if (Subtarget.getTargetTriple().isOSMSVCRT())
    return false;

  // MCUs don't pop the sret
  if (Subtarget.isTargetMCU())
    return false;

  // Callee pops argument
  return true;
}

/// Make a copy of an aggregate at address specified by "Src" to address
/// "Dst" with size and alignment information specified by the specific
/// parameter attribute. The copy will be passed as a byval function parameter.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
                                         SelectionDAG &DAG, const SDLoc &dl) {
  SDValue SizeNode = DAG.getIntPtrConstant(Flags.getByValSize(), dl);

  return DAG.getMemcpy(
      Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
      /*isVolatile*/ false, /*AlwaysInline=*/true,
      /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
          CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
          CC == CallingConv::Tail || CC == CallingConv::SwiftTail);
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  // C calling conventions:
  case CallingConv::C:
  case CallingConv::Win64:
  case CallingConv::X86_64_SysV:
  case CallingConv::PreserveNone:
  // Callee pop conventions:
  case CallingConv::X86_ThisCall:
  case CallingConv::X86_StdCall:
  case CallingConv::X86_VectorCall:
  case CallingConv::X86_FastCall:
  // Swift:
  case CallingConv::Swift:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

/// Return true if the function is being made into a tailcall target by
/// changing its ABI.
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
  return (GuaranteedTailCallOpt && canGuaranteeTCO(CC)) ||
         CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}

bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  if (!CI->isTailCall())
    return false;

  CallingConv::ID CalleeCC = CI->getCallingConv();
  if (!mayTailCallThisCC(CalleeCC))
    return false;

  return true;
}

SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                    const SDLoc &dl, SelectionDAG &DAG,
                                    const CCValAssign &VA,
                                    MachineFrameInfo &MFI, unsigned i) const {
  // Create the nodes corresponding to a load from this parameter slot.
  ISD::ArgFlagsTy Flags = Ins[i].Flags;
  bool AlwaysUseMutable = shouldGuaranteeTCO(
      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
  EVT ValVT;
  MVT PtrVT = getPointerTy(DAG.getDataLayout());

  // If value is passed by pointer we have address passed instead of the value
  // itself. No need to extend if the mask value and location share the same
  // absolute size.
  bool ExtendedInMem =
      VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
      VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();

  if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
    ValVT = VA.getLocVT();
  else
    ValVT = VA.getValVT();

  // FIXME: For now, all byval parameter objects are marked mutable. This can be
  // changed with more analysis.
  // In case of tail call optimization mark all arguments mutable. Since they
  // could be overwritten by lowering of arguments in case of a tail call.
  if (Flags.isByVal()) {
    unsigned Bytes = Flags.getByValSize();
    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.

    // FIXME: For now, all byval parameter objects are marked as aliasing. This
    // can be improved with deeper analysis.
    int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable,
                                   /*isAliased=*/true);
    return DAG.getFrameIndex(FI, PtrVT);
  }

  EVT ArgVT = Ins[i].ArgVT;

  // If this is a vector that has been split into multiple parts, don't elide
  // the copy. The layout on the stack may not match the packed in-memory
  // layout.
  bool ScalarizedVector = ArgVT.isVector() && !VA.getLocVT().isVector();

  // This is an argument in memory. We might be able to perform copy elision.
  // If the argument is passed directly in memory without any extension, then we
  // can perform copy elision. Large vector types, for example, may be passed
  // indirectly by pointer.
  if (Flags.isCopyElisionCandidate() &&
      VA.getLocInfo() != CCValAssign::Indirect && !ExtendedInMem &&
      !ScalarizedVector) {
    SDValue PartAddr;
    if (Ins[i].PartOffset == 0) {
      // If this is a one-part value or the first part of a multi-part value,
      // create a stack object for the entire argument value type and return a
      // load from our portion of it. This assumes that if the first part of an
      // argument is in memory, the rest will also be in memory.
      int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
                                     /*IsImmutable=*/false);
      PartAddr = DAG.getFrameIndex(FI, PtrVT);
      return DAG.getLoad(
          ValVT, dl, Chain, PartAddr,
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
    }

    // This is not the first piece of an argument in memory. See if there is
    // already a fixed stack object including this offset. If so, assume it
    // was created by the PartOffset == 0 branch above and create a load from
    // the appropriate offset into it.
    int64_t PartBegin = VA.getLocMemOffset();
    int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
    int FI = MFI.getObjectIndexBegin();
    for (; MFI.isFixedObjectIndex(FI); ++FI) {
      int64_t ObjBegin = MFI.getObjectOffset(FI);
      int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
      if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
        break;
    }
    if (MFI.isFixedObjectIndex(FI)) {
      SDValue Addr =
          DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
                      DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
      return DAG.getLoad(ValVT, dl, Chain, Addr,
                         MachinePointerInfo::getFixedStack(
                             DAG.getMachineFunction(), FI, Ins[i].PartOffset));
    }
  }

  int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
                                 VA.getLocMemOffset(), isImmutable);

  // Set SExt or ZExt flag.
  if (VA.getLocInfo() == CCValAssign::ZExt) {
    MFI.setObjectZExt(FI, true);
  } else if (VA.getLocInfo() == CCValAssign::SExt) {
    MFI.setObjectSExt(FI, true);
  }

  MaybeAlign Alignment;
  if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() &&
      ValVT != MVT::f80)
    Alignment = MaybeAlign(4);
  SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
  SDValue Val = DAG.getLoad(
      ValVT, dl, Chain, FIN,
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
      Alignment);
  return ExtendedInMem
             ? (VA.getValVT().isVector()
                    ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
                    : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
             : Val;
}

// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
                                                const X86Subtarget &Subtarget) {
  assert(Subtarget.is64Bit());

  if (Subtarget.isCallingConvWin64(CallConv)) {
    static const MCPhysReg GPR64ArgRegsWin64[] = {
      X86::RCX, X86::RDX, X86::R8,  X86::R9
    };
    return ArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
  }

  static const MCPhysReg GPR64ArgRegs64Bit[] = {
    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
  };
  return ArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
}

// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
                                                CallingConv::ID CallConv,
                                                const X86Subtarget &Subtarget) {
  assert(Subtarget.is64Bit());
  if (Subtarget.isCallingConvWin64(CallConv)) {
    // The XMM registers which might contain var arg parameters are shadowed
    // in their paired GPR.  So we only need to save the GPR to their home
    // slots.
    // TODO: __vectorcall will change this.
    return std::nullopt;
  }

  bool isSoftFloat = Subtarget.useSoftFloat();
  if (isSoftFloat || !Subtarget.hasSSE1())
    // Kernel mode asks for SSE to be disabled, so there are no XMM argument
    // registers.
    return std::nullopt;

  static const MCPhysReg XMMArgRegs64Bit[] = {
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
  };
  return ArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
}

#ifndef NDEBUG
static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) {
  return llvm::is_sorted(
      ArgLocs, [](const CCValAssign &A, const CCValAssign &B) -> bool {
        return A.getValNo() < B.getValNo();
      });
}
#endif

namespace {
/// This is a helper class for lowering variable arguments parameters.
class VarArgsLoweringHelper {
public:
  VarArgsLoweringHelper(X86MachineFunctionInfo *FuncInfo, const SDLoc &Loc,
                        SelectionDAG &DAG, const X86Subtarget &Subtarget,
                        CallingConv::ID CallConv, CCState &CCInfo)
      : FuncInfo(FuncInfo), DL(Loc), DAG(DAG), Subtarget(Subtarget),
        TheMachineFunction(DAG.getMachineFunction()),
        TheFunction(TheMachineFunction.getFunction()),
        FrameInfo(TheMachineFunction.getFrameInfo()),
        FrameLowering(*Subtarget.getFrameLowering()),
        TargLowering(DAG.getTargetLoweringInfo()), CallConv(CallConv),
        CCInfo(CCInfo) {}

  // Lower variable arguments parameters.
  void lowerVarArgsParameters(SDValue &Chain, unsigned StackSize);

private:
  void createVarArgAreaAndStoreRegisters(SDValue &Chain, unsigned StackSize);

  void forwardMustTailParameters(SDValue &Chain);

  bool is64Bit() const { return Subtarget.is64Bit(); }
  bool isWin64() const { return Subtarget.isCallingConvWin64(CallConv); }

  X86MachineFunctionInfo *FuncInfo;
  const SDLoc &DL;
  SelectionDAG &DAG;
  const X86Subtarget &Subtarget;
  MachineFunction &TheMachineFunction;
  const Function &TheFunction;
  MachineFrameInfo &FrameInfo;
  const TargetFrameLowering &FrameLowering;
  const TargetLowering &TargLowering;
  CallingConv::ID CallConv;
  CCState &CCInfo;
};
} // namespace

void VarArgsLoweringHelper::createVarArgAreaAndStoreRegisters(
    SDValue &Chain, unsigned StackSize) {
  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start. We
  // can skip this if there are no va_start calls.
  if (is64Bit() || (CallConv != CallingConv::X86_FastCall &&
                    CallConv != CallingConv::X86_ThisCall)) {
    FuncInfo->setVarArgsFrameIndex(
        FrameInfo.CreateFixedObject(1, StackSize, true));
  }

  // 64-bit calling conventions support varargs and register parameters, so we
  // have to do extra work to spill them in the prologue.
  if (is64Bit()) {
    // Find the first unallocated argument registers.
    ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
    ArrayRef<MCPhysReg> ArgXMMs =
        get64BitArgumentXMMs(TheMachineFunction, CallConv, Subtarget);
    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);

    assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
           "SSE register cannot be used when SSE is disabled!");

    if (isWin64()) {
      // Get to the caller-allocated home save location.  Add 8 to account
      // for the return address.
      int HomeOffset = FrameLowering.getOffsetOfLocalArea() + 8;
      FuncInfo->setRegSaveFrameIndex(
          FrameInfo.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
      // Fixup to set vararg frame on shadow area (4 x i64).
      if (NumIntRegs < 4)
        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
    } else {
      // For X86-64, if there are vararg parameters that are passed via
      // registers, then we must store them to their spots on the stack so
      // they may be loaded by dereferencing the result of va_next.
      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
      FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
      FuncInfo->setRegSaveFrameIndex(FrameInfo.CreateStackObject(
          ArgGPRs.size() * 8 + ArgXMMs.size() * 16, Align(16), false));
    }

    SmallVector<SDValue, 6>
        LiveGPRs; // list of SDValue for GPR registers keeping live input value
    SmallVector<SDValue, 8> LiveXMMRegs; // list of SDValue for XMM registers
                                         // keeping live input value
    SDValue ALVal; // if applicable keeps SDValue for %al register

    // Gather all the live in physical registers.
    for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
      Register GPR = TheMachineFunction.addLiveIn(Reg, &X86::GR64RegClass);
      LiveGPRs.push_back(DAG.getCopyFromReg(Chain, DL, GPR, MVT::i64));
    }
    const auto &AvailableXmms = ArgXMMs.slice(NumXMMRegs);
    if (!AvailableXmms.empty()) {
      Register AL = TheMachineFunction.addLiveIn(X86::AL, &X86::GR8RegClass);
      ALVal = DAG.getCopyFromReg(Chain, DL, AL, MVT::i8);
      for (MCPhysReg Reg : AvailableXmms) {
        // FastRegisterAllocator spills virtual registers at basic
        // block boundary. That leads to usages of xmm registers
        // outside of check for %al. Pass physical registers to
        // VASTART_SAVE_XMM_REGS to avoid unneccessary spilling.
        TheMachineFunction.getRegInfo().addLiveIn(Reg);
        LiveXMMRegs.push_back(DAG.getRegister(Reg, MVT::v4f32));
      }
    }

    // Store the integer parameter registers.
    SmallVector<SDValue, 8> MemOps;
    SDValue RSFIN =
        DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
                          TargLowering.getPointerTy(DAG.getDataLayout()));
    unsigned Offset = FuncInfo->getVarArgsGPOffset();
    for (SDValue Val : LiveGPRs) {
      SDValue FIN = DAG.getNode(ISD::ADD, DL,
                                TargLowering.getPointerTy(DAG.getDataLayout()),
                                RSFIN, DAG.getIntPtrConstant(Offset, DL));
      SDValue Store =
          DAG.getStore(Val.getValue(1), DL, Val, FIN,
                       MachinePointerInfo::getFixedStack(
                           DAG.getMachineFunction(),
                           FuncInfo->getRegSaveFrameIndex(), Offset));
      MemOps.push_back(Store);
      Offset += 8;
    }

    // Now store the XMM (fp + vector) parameter registers.
    if (!LiveXMMRegs.empty()) {
      SmallVector<SDValue, 12> SaveXMMOps;
      SaveXMMOps.push_back(Chain);
      SaveXMMOps.push_back(ALVal);
      SaveXMMOps.push_back(RSFIN);
      SaveXMMOps.push_back(
          DAG.getTargetConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32));
      llvm::append_range(SaveXMMOps, LiveXMMRegs);
      MachineMemOperand *StoreMMO =
          DAG.getMachineFunction().getMachineMemOperand(
              MachinePointerInfo::getFixedStack(
                  DAG.getMachineFunction(), FuncInfo->getRegSaveFrameIndex(),
                  Offset),
              MachineMemOperand::MOStore, 128, Align(16));
      MemOps.push_back(DAG.getMemIntrinsicNode(X86ISD::VASTART_SAVE_XMM_REGS,
                                               DL, DAG.getVTList(MVT::Other),
                                               SaveXMMOps, MVT::i8, StoreMMO));
    }

    if (!MemOps.empty())
      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
  }
}

void VarArgsLoweringHelper::forwardMustTailParameters(SDValue &Chain) {
  // Find the largest legal vector type.
  MVT VecVT = MVT::Other;
  // FIXME: Only some x86_32 calling conventions support AVX512.
  if (Subtarget.useAVX512Regs() &&
      (is64Bit() || (CallConv == CallingConv::X86_VectorCall ||
                     CallConv == CallingConv::Intel_OCL_BI)))
    VecVT = MVT::v16f32;
  else if (Subtarget.hasAVX())
    VecVT = MVT::v8f32;
  else if (Subtarget.hasSSE2())
    VecVT = MVT::v4f32;

  // We forward some GPRs and some vector types.
  SmallVector<MVT, 2> RegParmTypes;
  MVT IntVT = is64Bit() ? MVT::i64 : MVT::i32;
  RegParmTypes.push_back(IntVT);
  if (VecVT != MVT::Other)
    RegParmTypes.push_back(VecVT);

  // Compute the set of forwarded registers. The rest are scratch.
  SmallVectorImpl<ForwardedRegister> &Forwards =
      FuncInfo->getForwardedMustTailRegParms();
  CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);

  // Forward AL for SysV x86_64 targets, since it is used for varargs.
  if (is64Bit() && !isWin64() && !CCInfo.isAllocated(X86::AL)) {
    Register ALVReg = TheMachineFunction.addLiveIn(X86::AL, &X86::GR8RegClass);
    Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
  }

  // Copy all forwards from physical to virtual registers.
  for (ForwardedRegister &FR : Forwards) {
    // FIXME: Can we use a less constrained schedule?
    SDValue RegVal = DAG.getCopyFromReg(Chain, DL, FR.VReg, FR.VT);
    FR.VReg = TheMachineFunction.getRegInfo().createVirtualRegister(
        TargLowering.getRegClassFor(FR.VT));
    Chain = DAG.getCopyToReg(Chain, DL, FR.VReg, RegVal);
  }
}

void VarArgsLoweringHelper::lowerVarArgsParameters(SDValue &Chain,
                                                   unsigned StackSize) {
  // Set FrameIndex to the 0xAAAAAAA value to mark unset state.
  // If necessary, it would be set into the correct value later.
  FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
  FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);

  if (FrameInfo.hasVAStart())
    createVarArgAreaAndStoreRegisters(Chain, StackSize);

  if (FrameInfo.hasMustTailInVarArgFunc())
    forwardMustTailParameters(Chain);
}

SDValue X86TargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();

  const Function &F = MF.getFunction();
  if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
      F.getName() == "main")
    FuncInfo->setForceFramePointer(true);

  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool Is64Bit = Subtarget.is64Bit();
  bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);

  assert(
      !(IsVarArg && canGuaranteeTCO(CallConv)) &&
      "Var args not supported with calling conv' regcall, fastcc, ghc or hipe");

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  // Allocate shadow area for Win64.
  if (IsWin64)
    CCInfo.AllocateStack(32, Align(8));

  CCInfo.AnalyzeArguments(Ins, CC_X86);

  // In vectorcall calling convention a second pass is required for the HVA
  // types.
  if (CallingConv::X86_VectorCall == CallConv) {
    CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
  }

  // The next loop assumes that the locations are in the same order of the
  // input arguments.
  assert(isSortedByValueNo(ArgLocs) &&
         "Argument Location list must be sorted before lowering");

  SDValue ArgValue;
  for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
       ++I, ++InsIndex) {
    assert(InsIndex < Ins.size() && "Invalid Ins index");
    CCValAssign &VA = ArgLocs[I];

    if (VA.isRegLoc()) {
      EVT RegVT = VA.getLocVT();
      if (VA.needsCustom()) {
        assert(
            VA.getValVT() == MVT::v64i1 &&
            "Currently the only custom case is when we split v64i1 to 2 regs");

        // v64i1 values, in regcall calling convention, that are
        // compiled to 32 bit arch, are split up into two registers.
        ArgValue =
            getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
      } else {
        const TargetRegisterClass *RC;
        if (RegVT == MVT::i8)
          RC = &X86::GR8RegClass;
        else if (RegVT == MVT::i16)
          RC = &X86::GR16RegClass;
        else if (RegVT == MVT::i32)
          RC = &X86::GR32RegClass;
        else if (Is64Bit && RegVT == MVT::i64)
          RC = &X86::GR64RegClass;
        else if (RegVT == MVT::f16)
          RC = Subtarget.hasAVX512() ? &X86::FR16XRegClass : &X86::FR16RegClass;
        else if (RegVT == MVT::f32)
          RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
        else if (RegVT == MVT::f64)
          RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
        else if (RegVT == MVT::f80)
          RC = &X86::RFP80RegClass;
        else if (RegVT == MVT::f128)
          RC = &X86::VR128RegClass;
        else if (RegVT.is512BitVector())
          RC = &X86::VR512RegClass;
        else if (RegVT.is256BitVector())
          RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
        else if (RegVT.is128BitVector())
          RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
        else if (RegVT == MVT::x86mmx)
          RC = &X86::VR64RegClass;
        else if (RegVT == MVT::v1i1)
          RC = &X86::VK1RegClass;
        else if (RegVT == MVT::v8i1)
          RC = &X86::VK8RegClass;
        else if (RegVT == MVT::v16i1)
          RC = &X86::VK16RegClass;
        else if (RegVT == MVT::v32i1)
          RC = &X86::VK32RegClass;
        else if (RegVT == MVT::v64i1)
          RC = &X86::VK64RegClass;
        else
          llvm_unreachable("Unknown argument type!");

        Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
      }

      // If this is an 8 or 16-bit value, it is really passed promoted to 32
      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
      // right size.
      if (VA.getLocInfo() == CCValAssign::SExt)
        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
      else if (VA.getLocInfo() == CCValAssign::ZExt)
        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
      else if (VA.getLocInfo() == CCValAssign::BCvt)
        ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);

      if (VA.isExtInLoc()) {
        // Handle MMX values passed in XMM regs.
        if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
        else if (VA.getValVT().isVector() &&
                 VA.getValVT().getScalarType() == MVT::i1 &&
                 ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
                  (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
          // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
          ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
        } else
          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
      }
    } else {
      assert(VA.isMemLoc());
      ArgValue =
          LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
    }

    // If value is passed via pointer - do a load.
    if (VA.getLocInfo() == CCValAssign::Indirect &&
        !(Ins[I].Flags.isByVal() && VA.isRegLoc())) {
      ArgValue =
          DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
    }

    InVals.push_back(ArgValue);
  }

  for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
    if (Ins[I].Flags.isSwiftAsync()) {
      auto X86FI = MF.getInfo<X86MachineFunctionInfo>();
      if (X86::isExtendedSwiftAsyncFrameSupported(Subtarget, MF))
        X86FI->setHasSwiftAsyncContext(true);
      else {
        int PtrSize = Subtarget.is64Bit() ? 8 : 4;
        int FI =
            MF.getFrameInfo().CreateStackObject(PtrSize, Align(PtrSize), false);
        X86FI->setSwiftAsyncContextFrameIdx(FI);
        SDValue St = DAG.getStore(
            DAG.getEntryNode(), dl, InVals[I],
            DAG.getFrameIndex(FI, PtrSize == 8 ? MVT::i64 : MVT::i32),
            MachinePointerInfo::getFixedStack(MF, FI));
        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, St, Chain);
      }
    }

    // Swift calling convention does not require we copy the sret argument
    // into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
    if (CallConv == CallingConv::Swift || CallConv == CallingConv::SwiftTail)
      continue;

    // All x86 ABIs require that for returning structs by value we copy the
    // sret argument into %rax/%eax (depending on ABI) for the return. Save
    // the argument into a virtual register so that we can access it from the
    // return points.
    if (Ins[I].Flags.isSRet()) {
      assert(!FuncInfo->getSRetReturnReg() &&
             "SRet return has already been set");
      MVT PtrTy = getPointerTy(DAG.getDataLayout());
      Register Reg =
          MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
      FuncInfo->setSRetReturnReg(Reg);
      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
      break;
    }
  }

  unsigned StackSize = CCInfo.getStackSize();
  // Align stack specially for tail calls.
  if (shouldGuaranteeTCO(CallConv,
                         MF.getTarget().Options.GuaranteedTailCallOpt))
    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);

  if (IsVarArg)
    VarArgsLoweringHelper(FuncInfo, dl, DAG, Subtarget, CallConv, CCInfo)
        .lowerVarArgsParameters(Chain, StackSize);

  // Some CCs need callee pop.
  if (X86::isCalleePop(CallConv, Is64Bit, IsVarArg,
                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
  } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
    // X86 interrupts must pop the error code (and the alignment padding) if
    // present.
    FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
  } else {
    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
    // If this is an sret function, the return should pop the hidden pointer.
    if (!canGuaranteeTCO(CallConv) && hasCalleePopSRet(Ins, Subtarget))
      FuncInfo->setBytesToPopOnReturn(4);
  }

  if (!Is64Bit) {
    // RegSaveFrameIndex is X86-64 only.
    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
  }

  FuncInfo->setArgumentStackSize(StackSize);

  if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
    EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
    if (Personality == EHPersonality::CoreCLR) {
      assert(Is64Bit);
      // TODO: Add a mechanism to frame lowering that will allow us to indicate
      // that we'd prefer this slot be allocated towards the bottom of the frame
      // (i.e. near the stack pointer after allocating the frame).  Every
      // funclet needs a copy of this slot in its (mostly empty) frame, and the
      // offset from the bottom of this and each funclet's frame must be the
      // same, so the size of funclets' (mostly empty) frames is dictated by
      // how far this slot is from the bottom (since they allocate just enough
      // space to accommodate holding this slot at the correct offset).
      int PSPSymFI = MFI.CreateStackObject(8, Align(8), /*isSpillSlot=*/false);
      EHInfo->PSPSymFrameIdx = PSPSymFI;
    }
  }

  if (shouldDisableArgRegFromCSR(CallConv) ||
      F.hasFnAttribute("no_caller_saved_registers")) {
    MachineRegisterInfo &MRI = MF.getRegInfo();
    for (std::pair<Register, Register> Pair : MRI.liveins())
      MRI.disableCalleeSavedRegister(Pair.first);
  }

  if (CallingConv::PreserveNone == CallConv)
    for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
      if (Ins[I].Flags.isSwiftSelf() || Ins[I].Flags.isSwiftAsync() ||
          Ins[I].Flags.isSwiftError()) {
        errorUnsupported(DAG, dl,
                         "Swift attributes can't be used with preserve_none");
        break;
      }
    }

  return Chain;
}

SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
                                            SDValue Arg, const SDLoc &dl,
                                            SelectionDAG &DAG,
                                            const CCValAssign &VA,
                                            ISD::ArgFlagsTy Flags,
                                            bool isByVal) const {
  unsigned LocMemOffset = VA.getLocMemOffset();
  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
                       StackPtr, PtrOff);
  if (isByVal)
    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);

  MaybeAlign Alignment;
  if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() &&
      Arg.getSimpleValueType() != MVT::f80)
    Alignment = MaybeAlign(4);
  return DAG.getStore(
      Chain, dl, Arg, PtrOff,
      MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
      Alignment);
}

/// Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
    SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
    bool Is64Bit, int FPDiff, const SDLoc &dl) const {
  // Adjust the Return address stack slot.
  EVT VT = getPointerTy(DAG.getDataLayout());
  OutRetAddr = getReturnAddressFrameIndex(DAG);

  // Load the "old" Return address.
  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
  return SDValue(OutRetAddr.getNode(), 1);
}

/// Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
                                        SDValue Chain, SDValue RetAddrFrIdx,
                                        EVT PtrVT, unsigned SlotSize,
                                        int FPDiff, const SDLoc &dl) {
  // Store the return address to the appropriate stack slot.
  if (!FPDiff) return Chain;
  // Calculate the new stack slot for the return address.
  int NewReturnAddrFI =
    MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
                                         false);
  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
                       MachinePointerInfo::getFixedStack(
                           DAG.getMachineFunction(), NewReturnAddrFI));
  return Chain;
}

/// Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
SDValue X86TargetLowering::getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
                                   SDValue V1, SDValue V2) const {
  unsigned NumElems = VT.getVectorNumElements();
  SmallVector<int, 8> Mask;
  Mask.push_back(NumElems);
  for (unsigned i = 1; i != NumElems; ++i)
    Mask.push_back(i);
  return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}

SDValue
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                             SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool &isTailCall                      = CLI.IsTailCall;
  bool isVarArg                         = CLI.IsVarArg;
  const auto *CB                        = CLI.CB;

  MachineFunction &MF = DAG.getMachineFunction();
  bool Is64Bit        = Subtarget.is64Bit();
  bool IsWin64        = Subtarget.isCallingConvWin64(CallConv);
  bool IsSibcall      = false;
  bool IsGuaranteeTCO = MF.getTarget().Options.GuaranteedTailCallOpt ||
      CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
  bool IsCalleePopSRet = !IsGuaranteeTCO && hasCalleePopSRet(Outs, Subtarget);
  X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
  bool HasNCSR = (CB && isa<CallInst>(CB) &&
                  CB->hasFnAttr("no_caller_saved_registers"));
  bool HasNoCfCheck = (CB && CB->doesNoCfCheck());
  bool IsIndirectCall = (CB && isa<CallInst>(CB) && CB->isIndirectCall());
  bool IsCFICall = IsIndirectCall && CLI.CFIType;
  const Module *M = MF.getMMI().getModule();
  Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");

  MachineFunction::CallSiteInfo CSInfo;
  if (CallConv == CallingConv::X86_INTR)
    report_fatal_error("X86 interrupts may not be called directly");

  // Set type id for call site info.
  if (MF.getTarget().Options.EmitCallGraphSection && CB && CB->isIndirectCall())
    CSInfo = MachineFunction::CallSiteInfo(*CB);

  bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall();
  if (Subtarget.isPICStyleGOT() && !IsGuaranteeTCO && !IsMustTail) {
    // If we are using a GOT, disable tail calls to external symbols with
    // default visibility. Tail calling such a symbol requires using a GOT
    // relocation, which forces early binding of the symbol. This breaks code
    // that require lazy function symbol resolution. Using musttail or
    // GuaranteedTailCallOpt will override this.
    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
    if (!G || (!G->getGlobal()->hasLocalLinkage() &&
               G->getGlobal()->hasDefaultVisibility()))
      isTailCall = false;
  }

  if (isTailCall && !IsMustTail) {
    // Check if it's really possible to do a tail call.
    isTailCall = IsEligibleForTailCallOptimization(
        Callee, CallConv, IsCalleePopSRet, isVarArg, CLI.RetTy, Outs, OutVals,
        Ins, DAG);

    // Sibcalls are automatically detected tailcalls which do not require
    // ABI changes.
    if (!IsGuaranteeTCO && isTailCall)
      IsSibcall = true;

    if (isTailCall)
      ++NumTailCalls;
  }

  if (IsMustTail && !isTailCall)
    report_fatal_error("failed to perform tail call elimination on a call "
                       "site marked musttail");

  assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
         "Var args not supported with calling convention fastcc, ghc or hipe");

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());

  // Allocate shadow area for Win64.
  if (IsWin64)
    CCInfo.AllocateStack(32, Align(8));

  CCInfo.AnalyzeArguments(Outs, CC_X86);

  // In vectorcall calling convention a second pass is required for the HVA
  // types.
  if (CallingConv::X86_VectorCall == CallConv) {
    CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
  }

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
  if (IsSibcall)
    // This is a sibcall. The memory operands are available in caller's
    // own caller's stack.
    NumBytes = 0;
  else if (IsGuaranteeTCO && canGuaranteeTCO(CallConv))
    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);

  int FPDiff = 0;
  if (isTailCall &&
      shouldGuaranteeTCO(CallConv,
                         MF.getTarget().Options.GuaranteedTailCallOpt)) {
    // Lower arguments at fp - stackoffset + fpdiff.
    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();

    FPDiff = NumBytesCallerPushed - NumBytes;

    // Set the delta of movement of the returnaddr stackslot.
    // But only set if delta is greater than previous delta.
    if (FPDiff < X86Info->getTCReturnAddrDelta())
      X86Info->setTCReturnAddrDelta(FPDiff);
  }

  unsigned NumBytesToPush = NumBytes;
  unsigned NumBytesToPop = NumBytes;

  // If we have an inalloca argument, all stack space has already been allocated
  // for us and be right at the top of the stack.  We don't support multiple
  // arguments passed in memory when using inalloca.
  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
    NumBytesToPush = 0;
    if (!ArgLocs.back().isMemLoc())
      report_fatal_error("cannot use inalloca attribute on a register "
                         "parameter");
    if (ArgLocs.back().getLocMemOffset() != 0)
      report_fatal_error("any parameter with the inalloca attribute must be "
                         "the only memory argument");
  } else if (CLI.IsPreallocated) {
    assert(ArgLocs.back().isMemLoc() &&
           "cannot use preallocated attribute on a register "
           "parameter");
    SmallVector<size_t, 4> PreallocatedOffsets;
    for (size_t i = 0; i < CLI.OutVals.size(); ++i) {
      if (CLI.CB->paramHasAttr(i, Attribute::Preallocated)) {
        PreallocatedOffsets.push_back(ArgLocs[i].getLocMemOffset());
      }
    }
    auto *MFI = DAG.getMachineFunction().getInfo<X86MachineFunctionInfo>();
    size_t PreallocatedId = MFI->getPreallocatedIdForCallSite(CLI.CB);
    MFI->setPreallocatedStackSize(PreallocatedId, NumBytes);
    MFI->setPreallocatedArgOffsets(PreallocatedId, PreallocatedOffsets);
    NumBytesToPush = 0;
  }

  if (!IsSibcall && !IsMustTail)
    Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
                                 NumBytes - NumBytesToPush, dl);

  SDValue RetAddrFrIdx;
  // Load return address for tail calls.
  if (isTailCall && FPDiff)
    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
                                    Is64Bit, FPDiff, dl);

  SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;
  SDValue StackPtr;

  // The next loop assumes that the locations are in the same order of the
  // input arguments.
  assert(isSortedByValueNo(ArgLocs) &&
         "Argument Location list must be sorted before lowering");

  // Walk the register/memloc assignments, inserting copies/loads.  In the case
  // of tail call optimization arguments are handle later.
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
       ++I, ++OutIndex) {
    assert(OutIndex < Outs.size() && "Invalid Out index");
    // Skip inalloca/preallocated arguments, they have already been written.
    ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
    if (Flags.isInAlloca() || Flags.isPreallocated())
      continue;

    CCValAssign &VA = ArgLocs[I];
    EVT RegVT = VA.getLocVT();
    SDValue Arg = OutVals[OutIndex];
    bool isByVal = Flags.isByVal();

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
      break;
    case CCValAssign::AExt:
      if (Arg.getValueType().isVector() &&
          Arg.getValueType().getVectorElementType() == MVT::i1)
        Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
      else if (RegVT.is128BitVector()) {
        // Special case: passing MMX values in XMM registers.
        Arg = DAG.getBitcast(MVT::i64, Arg);
        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
      } else
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getBitcast(RegVT, Arg);
      break;
    case CCValAssign::Indirect: {
      if (isByVal) {
        // Memcpy the argument to a temporary stack slot to prevent
        // the caller from seeing any modifications the callee may make
        // as guaranteed by the `byval` attribute.
        int FrameIdx = MF.getFrameInfo().CreateStackObject(
            Flags.getByValSize(),
            std::max(Align(16), Flags.getNonZeroByValAlign()), false);
        SDValue StackSlot =
            DAG.getFrameIndex(FrameIdx, getPointerTy(DAG.getDataLayout()));
        Chain =
            CreateCopyOfByValArgument(Arg, StackSlot, Chain, Flags, DAG, dl);
        // From now on treat this as a regular pointer
        Arg = StackSlot;
        isByVal = false;
      } else {
        // Store the argument.
        SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
        int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
        Chain = DAG.getStore(
            Chain, dl, Arg, SpillSlot,
            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
        Arg = SpillSlot;
      }
      break;
    }
    }

    if (VA.needsCustom()) {
      assert(VA.getValVT() == MVT::v64i1 &&
             "Currently the only custom case is when we split v64i1 to 2 regs");
      // Split v64i1 value into two registers
      Passv64i1ArgInRegs(dl, DAG, Arg, RegsToPass, VA, ArgLocs[++I], Subtarget);
    } else if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      const TargetOptions &Options = DAG.getTarget().Options;
      if (Options.EmitCallSiteInfo)
        CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), I);
      if (isVarArg && IsWin64) {
        // Win64 ABI requires argument XMM reg to be copied to the corresponding
        // shadow reg if callee is a varargs function.
        Register ShadowReg;
        switch (VA.getLocReg()) {
        case X86::XMM0: ShadowReg = X86::RCX; break;
        case X86::XMM1: ShadowReg = X86::RDX; break;
        case X86::XMM2: ShadowReg = X86::R8; break;
        case X86::XMM3: ShadowReg = X86::R9; break;
        }
        if (ShadowReg)
          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
      }
    } else if (!IsSibcall && (!isTailCall || isByVal)) {
      assert(VA.isMemLoc());
      if (!StackPtr.getNode())
        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
                                      getPointerTy(DAG.getDataLayout()));
      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
                                             dl, DAG, VA, Flags, isByVal));
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  if (Subtarget.isPICStyleGOT()) {
    // ELF / PIC requires GOT in the EBX register before function calls via PLT
    // GOT pointer (except regcall).
    if (!isTailCall) {
      // Indirect call with RegCall calling convertion may use up all the
      // general registers, so it is not suitable to bind EBX reister for
      // GOT address, just let register allocator handle it.
      if (CallConv != CallingConv::X86_RegCall)
        RegsToPass.push_back(std::make_pair(
          Register(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
                                          getPointerTy(DAG.getDataLayout()))));
    } else {
      // If we are tail calling and generating PIC/GOT style code load the
      // address of the callee into ECX. The value in ecx is used as target of
      // the tail jump. This is done to circumvent the ebx/callee-saved problem
      // for tail calls on PIC/GOT architectures. Normally we would just put the
      // address of GOT into ebx and then call target@PLT. But for tail calls
      // ebx would be restored (since ebx is callee saved) before jumping to the
      // target@PLT.

      // Note: The actual moving to ECX is done further down.
      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
      if (G && !G->getGlobal()->hasLocalLinkage() &&
          G->getGlobal()->hasDefaultVisibility())
        Callee = LowerGlobalAddress(Callee, DAG);
      else if (isa<ExternalSymbolSDNode>(Callee))
        Callee = LowerExternalSymbol(Callee, DAG);
    }
  }

  if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail &&
      (Subtarget.hasSSE1() || !M->getModuleFlag("SkipRaxSetup"))) {
    // From AMD64 ABI document:
    // For calls that may call functions that use varargs or stdargs
    // (prototype-less calls or calls to functions containing ellipsis (...) in
    // the declaration) %al is used as hidden argument to specify the number
    // of SSE registers used. The contents of %al do not need to match exactly
    // the number of registers, but must be an ubound on the number of SSE
    // registers used and is in the range 0 - 8 inclusive.

    // Count the number of XMM registers allocated.
    static const MCPhysReg XMMArgRegs[] = {
      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
    };
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
    assert((Subtarget.hasSSE1() || !NumXMMRegs)
           && "SSE registers cannot be used when SSE is disabled");
    RegsToPass.push_back(std::make_pair(Register(X86::AL),
                                        DAG.getConstant(NumXMMRegs, dl,
                                                        MVT::i8)));
  }

  if (isVarArg && IsMustTail) {
    const auto &Forwards = X86Info->getForwardedMustTailRegParms();
    for (const auto &F : Forwards) {
      SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
      RegsToPass.push_back(std::make_pair(F.PReg, Val));
    }
  }

  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
  // don't need this because the eligibility check rejects calls that require
  // shuffling arguments passed in memory.
  if (!IsSibcall && isTailCall) {
    // Force all the incoming stack arguments to be loaded from the stack
    // before any new outgoing arguments are stored to the stack, because the
    // outgoing stack slots may alias the incoming argument stack slots, and
    // the alias isn't otherwise explicit. This is slightly more conservative
    // than necessary, because it means that each store effectively depends
    // on every argument instead of just those arguments it would clobber.
    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);

    SmallVector<SDValue, 8> MemOpChains2;
    SDValue FIN;
    int FI = 0;
    for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
         ++I, ++OutsIndex) {
      CCValAssign &VA = ArgLocs[I];

      if (VA.isRegLoc()) {
        if (VA.needsCustom()) {
          assert((CallConv == CallingConv::X86_RegCall) &&
                 "Expecting custom case only in regcall calling convention");
          // This means that we are in special case where one argument was
          // passed through two register locations - Skip the next location
          ++I;
        }

        continue;
      }

      assert(VA.isMemLoc());
      SDValue Arg = OutVals[OutsIndex];
      ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
      // Skip inalloca/preallocated arguments.  They don't require any work.
      if (Flags.isInAlloca() || Flags.isPreallocated())
        continue;
      // Create frame index.
      int32_t Offset = VA.getLocMemOffset()+FPDiff;
      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
      FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
      FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));

      if (Flags.isByVal()) {
        // Copy relative to framepointer.
        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
        if (!StackPtr.getNode())
          StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
                                        getPointerTy(DAG.getDataLayout()));
        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
                             StackPtr, Source);

        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
                                                         ArgChain,
                                                         Flags, DAG, dl));
      } else {
        // Store relative to framepointer.
        MemOpChains2.push_back(DAG.getStore(
            ArgChain, dl, Arg, FIN,
            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
      }
    }

    if (!MemOpChains2.empty())
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);

    // Store the return address to the appropriate stack slot.
    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
                                     getPointerTy(DAG.getDataLayout()),
                                     RegInfo->getSlotSize(), FPDiff, dl);
  }

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and glue operands which copy the outgoing args into registers.
  SDValue InGlue;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InGlue);
    InGlue = Chain.getValue(1);
  }

  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
    // In the 64-bit large code model, we have to make all calls
    // through a register, since the call instruction's 32-bit
    // pc-relative offset may not be large enough to hold the whole
    // address.
  } else if (Callee->getOpcode() == ISD::GlobalAddress ||
             Callee->getOpcode() == ISD::ExternalSymbol) {
    // Lower direct calls to global addresses and external symbols. Setting
    // ForCall to true here has the effect of removing WrapperRIP when possible
    // to allow direct calls to be selected without first materializing the
    // address into a register.
    Callee = LowerGlobalOrExternal(Callee, DAG, /*ForCall=*/true);
  } else if (Subtarget.isTarget64BitILP32() &&
             Callee.getValueType() == MVT::i32) {
    // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
    Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
  }

  // Returns a chain & a glue for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;

  if (!IsSibcall && isTailCall && !IsMustTail) {
    Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, 0, InGlue, dl);
    InGlue = Chain.getValue(1);
  }

  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (isTailCall)
    Ops.push_back(DAG.getTargetConstant(FPDiff, dl, MVT::i32));

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const uint32_t *Mask = [&]() {
    auto AdaptedCC = CallConv;
    // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists),
    // use X86_INTR calling convention because it has the same CSR mask
    // (same preserved registers).
    if (HasNCSR)
      AdaptedCC = (CallingConv::ID)CallingConv::X86_INTR;
    // If NoCalleeSavedRegisters is requested, than use GHC since it happens
    // to use the CSR_NoRegs_RegMask.
    if (CB && CB->hasFnAttr("no_callee_saved_registers"))
      AdaptedCC = (CallingConv::ID)CallingConv::GHC;
    return RegInfo->getCallPreservedMask(MF, AdaptedCC);
  }();
  assert(Mask && "Missing call preserved mask for calling convention");

  // If this is an invoke in a 32-bit function using a funclet-based
  // personality, assume the function clobbers all registers. If an exception
  // is thrown, the runtime will not restore CSRs.
  // FIXME: Model this more precisely so that we can register allocate across
  // the normal edge and spill and fill across the exceptional edge.
  if (!Is64Bit && CLI.CB && isa<InvokeInst>(CLI.CB)) {
    const Function &CallerFn = MF.getFunction();
    EHPersonality Pers =
        CallerFn.hasPersonalityFn()
            ? classifyEHPersonality(CallerFn.getPersonalityFn())
            : EHPersonality::Unknown;
    if (isFuncletEHPersonality(Pers))
      Mask = RegInfo->getNoPreservedMask();
  }

  // Define a new register mask from the existing mask.
  uint32_t *RegMask = nullptr;

  // In some calling conventions we need to remove the used physical registers
  // from the reg mask. Create a new RegMask for such calling conventions.
  // RegMask for calling conventions that disable only return registers (e.g.
  // preserve_most) will be modified later in LowerCallResult.
  bool ShouldDisableArgRegs = shouldDisableArgRegFromCSR(CallConv) || HasNCSR;
  if (ShouldDisableArgRegs || shouldDisableRetRegFromCSR(CallConv)) {
    const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();

    // Allocate a new Reg Mask and copy Mask.
    RegMask = MF.allocateRegMask();
    unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
    memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize);

    // Make sure all sub registers of the argument registers are reset
    // in the RegMask.
    if (ShouldDisableArgRegs) {
      for (auto const &RegPair : RegsToPass)
        for (MCPhysReg SubReg : TRI->subregs_inclusive(RegPair.first))
          RegMask[SubReg / 32] &= ~(1u << (SubReg % 32));
    }

    // Create the RegMask Operand according to our updated mask.
    Ops.push_back(DAG.getRegisterMask(RegMask));
  } else {
    // Create the RegMask Operand according to the static mask.
    Ops.push_back(DAG.getRegisterMask(Mask));
  }

  if (InGlue.getNode())
    Ops.push_back(InGlue);

  if (isTailCall) {
    // We used to do:
    //// If this is the first return lowered for this function, add the regs
    //// to the liveout set for the function.
    // This isn't right, although it's probably harmless on x86; liveouts
    // should be computed from returns not tail calls.  Consider a void
    // function making a tail call to a function returning int.
    MF.getFrameInfo().setHasTailCall();
    SDValue Ret = DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);

    if (IsCFICall)
      Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue());

    DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
    return Ret;
  }

  if (HasNoCfCheck && IsCFProtectionSupported && IsIndirectCall) {
    Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops);
  } else if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) {
    // Calls with a "clang.arc.attachedcall" bundle are special. They should be
    // expanded to the call, directly followed by a special marker sequence and
    // a call to a ObjC library function. Use the CALL_RVMARKER to do that.
    assert(!isTailCall &&
           "tail calls cannot be marked with clang.arc.attachedcall");
    assert(Is64Bit && "clang.arc.attachedcall is only supported in 64bit mode");

    // Add a target global address for the retainRV/claimRV runtime function
    // just before the call target.
    Function *ARCFn = *objcarc::getAttachedARCFunction(CLI.CB);
    auto PtrVT = getPointerTy(DAG.getDataLayout());
    auto GA = DAG.getTargetGlobalAddress(ARCFn, dl, PtrVT);
    Ops.insert(Ops.begin() + 1, GA);
    Chain = DAG.getNode(X86ISD::CALL_RVMARKER, dl, NodeTys, Ops);
  } else {
    Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
  }

  if (IsCFICall)
    Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue());

  InGlue = Chain.getValue(1);
  DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));

  // Save heapallocsite metadata.
  if (CLI.CB)
    if (MDNode *HeapAlloc = CLI.CB->getMetadata("heapallocsite"))
      DAG.addHeapAllocSite(Chain.getNode(), HeapAlloc);

  // Create the CALLSEQ_END node.
  unsigned NumBytesForCalleeToPop = 0; // Callee pops nothing.
  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
                       DAG.getTarget().Options.GuaranteedTailCallOpt))
    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
  else if (!canGuaranteeTCO(CallConv) && IsCalleePopSRet)
    // If this call passes a struct-return pointer, the callee
    // pops that struct pointer.
    NumBytesForCalleeToPop = 4;

  // Returns a glue for retval copy to use.
  if (!IsSibcall) {
    Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, NumBytesForCalleeToPop,
                               InGlue, dl);
    InGlue = Chain.getValue(1);
  }

  if (CallingConv::PreserveNone == CallConv)
    for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
      if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftAsync() ||
          Outs[I].Flags.isSwiftError()) {
        errorUnsupported(DAG, dl,
                         "Swift attributes can't be used with preserve_none");
        break;
      }
    }

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
                         InVals, RegMask);
}

//===----------------------------------------------------------------------===//
//                Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//

//  Like std call, callee cleans arguments, convention except that ECX is
//  reserved for storing the tail called function address. Only 2 registers are
//  free for argument passing (inreg). Tail call optimization is performed
//  provided:
//                * tailcallopt is enabled
//                * caller/callee are fastcc
//  On X86_64 architecture with GOT-style position independent code only local
//  (within module) calls are supported at the moment.
//  To keep the stack aligned according to platform abi the function
//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
//  of stack alignment. (Dynamic linkers need this - Darwin's dyld for example)
//  If a tail called function callee has more arguments than the caller the
//  caller needs to make sure that there is room to move the RETADDR to. This is
//  achieved by reserving an area the size of the argument delta right after the
//  original RETADDR, but before the saved framepointer or the spilled registers
//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
//  stack layout:
//    arg1
//    arg2
//    RETADDR
//    [ new RETADDR
//      move area ]
//    (possible EBP)
//    ESI
//    EDI
//    local1 ..

/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
/// requirement.
unsigned
X86TargetLowering::GetAlignedArgumentStackSize(const unsigned StackSize,
                                               SelectionDAG &DAG) const {
  const Align StackAlignment = Subtarget.getFrameLowering()->getStackAlign();
  const uint64_t SlotSize = Subtarget.getRegisterInfo()->getSlotSize();
  assert(StackSize % SlotSize == 0 &&
         "StackSize must be a multiple of SlotSize");
  return alignTo(StackSize + SlotSize, StackAlignment) - SlotSize;
}

/// Return true if the given stack call argument is already available in the
/// same position (relatively) of the caller's incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
                         MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
                         const X86InstrInfo *TII, const CCValAssign &VA) {
  unsigned Bytes = Arg.getValueSizeInBits() / 8;

  for (;;) {
    // Look through nodes that don't alter the bits of the incoming value.
    unsigned Op = Arg.getOpcode();
    if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST ||
        Op == ISD::AssertZext) {
      Arg = Arg.getOperand(0);
      continue;
    }
    if (Op == ISD::TRUNCATE) {
      const SDValue &TruncInput = Arg.getOperand(0);
      if (TruncInput.getOpcode() == ISD::AssertZext &&
          cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
              Arg.getValueType()) {
        Arg = TruncInput.getOperand(0);
        continue;
      }
    }
    break;
  }

  int FI = INT_MAX;
  if (Arg.getOpcode() == ISD::CopyFromReg) {
    Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
    if (!VR.isVirtual())
      return false;
    MachineInstr *Def = MRI->getVRegDef(VR);
    if (!Def)
      return false;
    if (!Flags.isByVal()) {
      if (!TII->isLoadFromStackSlot(*Def, FI))
        return false;
    } else {
      unsigned Opcode = Def->getOpcode();
      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
           Opcode == X86::LEA64_32r) &&
          Def->getOperand(1).isFI()) {
        FI = Def->getOperand(1).getIndex();
        Bytes = Flags.getByValSize();
      } else
        return false;
    }
  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
    if (Flags.isByVal())
      // ByVal argument is passed in as a pointer but it's now being
      // dereferenced. e.g.
      // define @foo(%struct.X* %A) {
      //   tail call @bar(%struct.X* byval %A)
      // }
      return false;
    SDValue Ptr = Ld->getBasePtr();
    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
    if (!FINode)
      return false;
    FI = FINode->getIndex();
  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
    FI = FINode->getIndex();
    Bytes = Flags.getByValSize();
  } else
    return false;

  assert(FI != INT_MAX);
  if (!MFI.isFixedObjectIndex(FI))
    return false;

  if (Offset != MFI.getObjectOffset(FI))
    return false;

  // If this is not byval, check that the argument stack object is immutable.
  // inalloca and argument copy elision can create mutable argument stack
  // objects. Byval objects can be mutated, but a byval call intends to pass the
  // mutated memory.
  if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
    return false;

  if (VA.getLocVT().getFixedSizeInBits() >
      Arg.getValueSizeInBits().getFixedValue()) {
    // If the argument location is wider than the argument type, check that any
    // extension flags match.
    if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
        Flags.isSExt() != MFI.isObjectSExt(FI)) {
      return false;
    }
  }

  return Bytes == MFI.getObjectSize(FI);
}

/// Check whether the call is eligible for tail call optimization. Targets
/// that want to do tail call optimization should implement this function.
bool X86TargetLowering::IsEligibleForTailCallOptimization(
    SDValue Callee, CallingConv::ID CalleeCC, bool IsCalleePopSRet,
    bool isVarArg, Type *RetTy, const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
  if (!mayTailCallThisCC(CalleeCC))
    return false;

  // If -tailcallopt is specified, make fastcc functions tail-callable.
  MachineFunction &MF = DAG.getMachineFunction();
  const Function &CallerF = MF.getFunction();

  // If the function return type is x86_fp80 and the callee return type is not,
  // then the FP_EXTEND of the call result is not a nop. It's not safe to
  // perform a tailcall optimization here.
  if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
    return false;

  CallingConv::ID CallerCC = CallerF.getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;
  bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
  bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
  bool IsGuaranteeTCO = DAG.getTarget().Options.GuaranteedTailCallOpt ||
      CalleeCC == CallingConv::Tail || CalleeCC == CallingConv::SwiftTail;

  // Win64 functions have extra shadow space for argument homing. Don't do the
  // sibcall if the caller and callee have mismatched expectations for this
  // space.
  if (IsCalleeWin64 != IsCallerWin64)
    return false;

  if (IsGuaranteeTCO) {
    if (canGuaranteeTCO(CalleeCC) && CCMatch)
      return true;
    return false;
  }

  // Look for obvious safe cases to perform tail call optimization that do not
  // require ABI changes. This is what gcc calls sibcall.

  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
  // emit a special epilogue.
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  if (RegInfo->hasStackRealignment(MF))
    return false;

  // Also avoid sibcall optimization if we're an sret return fn and the callee
  // is incompatible. See comment in LowerReturn about why hasStructRetAttr is
  // insufficient.
  if (MF.getInfo<X86MachineFunctionInfo>()->getSRetReturnReg()) {
    // For a compatible tail call the callee must return our sret pointer. So it
    // needs to be (a) an sret function itself and (b) we pass our sret as its
    // sret. Condition #b is harder to determine.
    return false;
  } else if (IsCalleePopSRet)
    // The callee pops an sret, so we cannot tail-call, as our caller doesn't
    // expect that.
    return false;

  // Do not sibcall optimize vararg calls unless all arguments are passed via
  // registers.
  LLVMContext &C = *DAG.getContext();
  if (isVarArg && !Outs.empty()) {
    // Optimizing for varargs on Win64 is unlikely to be safe without
    // additional testing.
    if (IsCalleeWin64 || IsCallerWin64)
      return false;

    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
    for (const auto &VA : ArgLocs)
      if (!VA.isRegLoc())
        return false;
  }

  // If the call result is in ST0 / ST1, it needs to be popped off the x87
  // stack.  Therefore, if it's not used by the call it is not safe to optimize
  // this into a sibcall.
  bool Unused = false;
  for (const auto &In : Ins) {
    if (!In.Used) {
      Unused = true;
      break;
    }
  }
  if (Unused) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
    for (const auto &VA : RVLocs) {
      if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
        return false;
    }
  }

  // Check that the call results are passed in the same way.
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
                                  RetCC_X86, RetCC_X86))
    return false;
  // The callee has to preserve all registers the caller needs to preserve.
  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  if (!CCMatch) {
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
      return false;
  }

  unsigned StackArgsSize = 0;

  // If the callee takes no arguments then go on to check the results of the
  // call.
  if (!Outs.empty()) {
    // Check if stack adjustment is needed. For now, do not do this if any
    // argument is passed on the stack.
    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);

    // Allocate shadow area for Win64
    if (IsCalleeWin64)
      CCInfo.AllocateStack(32, Align(8));

    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
    StackArgsSize = CCInfo.getStackSize();

    if (CCInfo.getStackSize()) {
      // Check if the arguments are already laid out in the right way as
      // the caller's fixed stack objects.
      MachineFrameInfo &MFI = MF.getFrameInfo();
      const MachineRegisterInfo *MRI = &MF.getRegInfo();
      const X86InstrInfo *TII = Subtarget.getInstrInfo();
      for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
        const CCValAssign &VA = ArgLocs[I];
        SDValue Arg = OutVals[I];
        ISD::ArgFlagsTy Flags = Outs[I].Flags;
        if (VA.getLocInfo() == CCValAssign::Indirect)
          return false;
        if (!VA.isRegLoc()) {
          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI,
                                   TII, VA))
            return false;
        }
      }
    }

    bool PositionIndependent = isPositionIndependent();
    // If the tailcall address may be in a register, then make sure it's
    // possible to register allocate for it. In 32-bit, the call address can
    // only target EAX, EDX, or ECX since the tail call must be scheduled after
    // callee-saved registers are restored. These happen to be the same
    // registers used to pass 'inreg' arguments so watch out for those.
    if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
                                  !isa<ExternalSymbolSDNode>(Callee)) ||
                                 PositionIndependent)) {
      unsigned NumInRegs = 0;
      // In PIC we need an extra register to formulate the address computation
      // for the callee.
      unsigned MaxInRegs = PositionIndependent ? 2 : 3;

      for (const auto &VA : ArgLocs) {
        if (!VA.isRegLoc())
          continue;
        Register Reg = VA.getLocReg();
        switch (Reg) {
        default: break;
        case X86::EAX: case X86::EDX: case X86::ECX:
          if (++NumInRegs == MaxInRegs)
            return false;
          break;
        }
      }
    }

    const MachineRegisterInfo &MRI = MF.getRegInfo();
    if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
      return false;
  }

  bool CalleeWillPop =
      X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
                       MF.getTarget().Options.GuaranteedTailCallOpt);

  if (unsigned BytesToPop =
          MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
    // If we have bytes to pop, the callee must pop them.
    bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
    if (!CalleePopMatches)
      return false;
  } else if (CalleeWillPop && StackArgsSize > 0) {
    // If we don't have bytes to pop, make sure the callee doesn't pop any.
    return false;
  }

  return true;
}

/// Determines whether the callee is required to pop its own arguments.
/// Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
                      bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
  // If GuaranteeTCO is true, we force some calls to be callee pop so that we
  // can guarantee TCO.
  if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
    return true;

  switch (CallingConv) {
  default:
    return false;
  case CallingConv::X86_StdCall:
  case CallingConv::X86_FastCall:
  case CallingConv::X86_ThisCall:
  case CallingConv::X86_VectorCall:
    return !is64Bit;
  }
}