aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp
blob: 6a48848e2022016aa1b2c4e16fb6c03ffaa55125 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//===-- RISCVRegisterInfo.cpp - RISC-V Register Information -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISC-V implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//

#include "RISCVRegisterInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/ErrorHandling.h"

#define GET_REGINFO_TARGET_DESC
#include "RISCVGenRegisterInfo.inc"

using namespace llvm;

static cl::opt<bool> DisableCostPerUse("riscv-disable-cost-per-use",
                                       cl::init(false), cl::Hidden);
static cl::opt<bool>
    DisableRegAllocHints("riscv-disable-regalloc-hints", cl::Hidden,
                         cl::init(false),
                         cl::desc("Disable two address hints for register "
                                  "allocation"));

static_assert(RISCV::X1 == RISCV::X0 + 1, "Register list not consecutive");
static_assert(RISCV::X31 == RISCV::X0 + 31, "Register list not consecutive");
static_assert(RISCV::F1_H == RISCV::F0_H + 1, "Register list not consecutive");
static_assert(RISCV::F31_H == RISCV::F0_H + 31,
              "Register list not consecutive");
static_assert(RISCV::F1_F == RISCV::F0_F + 1, "Register list not consecutive");
static_assert(RISCV::F31_F == RISCV::F0_F + 31,
              "Register list not consecutive");
static_assert(RISCV::F1_D == RISCV::F0_D + 1, "Register list not consecutive");
static_assert(RISCV::F31_D == RISCV::F0_D + 31,
              "Register list not consecutive");
static_assert(RISCV::V1 == RISCV::V0 + 1, "Register list not consecutive");
static_assert(RISCV::V31 == RISCV::V0 + 31, "Register list not consecutive");

RISCVRegisterInfo::RISCVRegisterInfo(unsigned HwMode)
    : RISCVGenRegisterInfo(RISCV::X1, /*DwarfFlavour*/0, /*EHFlavor*/0,
                           /*PC*/0, HwMode) {}

const MCPhysReg *
RISCVRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  auto &Subtarget = MF->getSubtarget<RISCVSubtarget>();
  if (MF->getFunction().getCallingConv() == CallingConv::GHC)
    return CSR_NoRegs_SaveList;
  if (MF->getFunction().hasFnAttribute("interrupt")) {
    if (Subtarget.hasStdExtD())
      return CSR_XLEN_F64_Interrupt_SaveList;
    if (Subtarget.hasStdExtF())
      return Subtarget.hasStdExtE() ? CSR_XLEN_F32_Interrupt_RVE_SaveList
                                    : CSR_XLEN_F32_Interrupt_SaveList;
    return Subtarget.hasStdExtE() ? CSR_Interrupt_RVE_SaveList
                                  : CSR_Interrupt_SaveList;
  }

  bool HasVectorCSR =
      MF->getFunction().getCallingConv() == CallingConv::RISCV_VectorCall;

  switch (Subtarget.getTargetABI()) {
  default:
    llvm_unreachable("Unrecognized ABI");
  case RISCVABI::ABI_ILP32E:
  case RISCVABI::ABI_LP64E:
    return CSR_ILP32E_LP64E_SaveList;
  case RISCVABI::ABI_ILP32:
  case RISCVABI::ABI_LP64:
    if (HasVectorCSR)
      return CSR_ILP32_LP64_V_SaveList;
    return CSR_ILP32_LP64_SaveList;
  case RISCVABI::ABI_ILP32F:
  case RISCVABI::ABI_LP64F:
    if (HasVectorCSR)
      return CSR_ILP32F_LP64F_V_SaveList;
    return CSR_ILP32F_LP64F_SaveList;
  case RISCVABI::ABI_ILP32D:
  case RISCVABI::ABI_LP64D:
    if (HasVectorCSR)
      return CSR_ILP32D_LP64D_V_SaveList;
    return CSR_ILP32D_LP64D_SaveList;
  }
}

BitVector RISCVRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  const RISCVFrameLowering *TFI = getFrameLowering(MF);
  BitVector Reserved(getNumRegs());
  auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();

  // Mark any registers requested to be reserved as such
  for (size_t Reg = 0; Reg < getNumRegs(); Reg++) {
    if (Subtarget.isRegisterReservedByUser(Reg))
      markSuperRegs(Reserved, Reg);
  }

  // Use markSuperRegs to ensure any register aliases are also reserved
  markSuperRegs(Reserved, RISCV::X0); // zero
  markSuperRegs(Reserved, RISCV::X2); // sp
  markSuperRegs(Reserved, RISCV::X3); // gp
  markSuperRegs(Reserved, RISCV::X4); // tp
  if (TFI->hasFP(MF))
    markSuperRegs(Reserved, RISCV::X8); // fp
  // Reserve the base register if we need to realign the stack and allocate
  // variable-sized objects at runtime.
  if (TFI->hasBP(MF))
    markSuperRegs(Reserved, RISCVABI::getBPReg()); // bp

  // Additionally reserve dummy register used to form the register pair
  // beginning with 'x0' for instructions that take register pairs.
  markSuperRegs(Reserved, RISCV::DUMMY_REG_PAIR_WITH_X0);

  // There are only 16 GPRs for RVE.
  if (Subtarget.hasStdExtE())
    for (MCPhysReg Reg = RISCV::X16; Reg <= RISCV::X31; Reg++)
      markSuperRegs(Reserved, Reg);

  // V registers for code generation. We handle them manually.
  markSuperRegs(Reserved, RISCV::VL);
  markSuperRegs(Reserved, RISCV::VTYPE);
  markSuperRegs(Reserved, RISCV::VXSAT);
  markSuperRegs(Reserved, RISCV::VXRM);
  markSuperRegs(Reserved, RISCV::VLENB); // vlenb (constant)

  // Floating point environment registers.
  markSuperRegs(Reserved, RISCV::FRM);
  markSuperRegs(Reserved, RISCV::FFLAGS);

  // SiFive VCIX state registers.
  markSuperRegs(Reserved, RISCV::VCIX_STATE);

  if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) {
    if (Subtarget.hasStdExtE())
      report_fatal_error("Graal reserved registers do not exist in RVE");
    markSuperRegs(Reserved, RISCV::X23);
    markSuperRegs(Reserved, RISCV::X27);
  }

  // Shadow stack pointer.
  markSuperRegs(Reserved, RISCV::SSP);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool RISCVRegisterInfo::isAsmClobberable(const MachineFunction &MF,
                                         MCRegister PhysReg) const {
  return !MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(PhysReg);
}

const uint32_t *RISCVRegisterInfo::getNoPreservedMask() const {
  return CSR_NoRegs_RegMask;
}

void RISCVRegisterInfo::adjustReg(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator II,
                                  const DebugLoc &DL, Register DestReg,
                                  Register SrcReg, StackOffset Offset,
                                  MachineInstr::MIFlag Flag,
                                  MaybeAlign RequiredAlign) const {

  if (DestReg == SrcReg && !Offset.getFixed() && !Offset.getScalable())
    return;

  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
  const RISCVInstrInfo *TII = ST.getInstrInfo();

  bool KillSrcReg = false;

  if (Offset.getScalable()) {
    unsigned ScalableAdjOpc = RISCV::ADD;
    int64_t ScalableValue = Offset.getScalable();
    if (ScalableValue < 0) {
      ScalableValue = -ScalableValue;
      ScalableAdjOpc = RISCV::SUB;
    }
    // Get vlenb and multiply vlen with the number of vector registers.
    Register ScratchReg = DestReg;
    if (DestReg == SrcReg)
      ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);

    assert(ScalableValue > 0 && "There is no need to get VLEN scaled value.");
    assert(ScalableValue % 8 == 0 &&
           "Reserve the stack by the multiple of one vector size.");
    assert(isInt<32>(ScalableValue / 8) &&
           "Expect the number of vector registers within 32-bits.");
    uint32_t NumOfVReg = ScalableValue / 8;
    BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), ScratchReg)
        .setMIFlag(Flag);

    if (ScalableAdjOpc == RISCV::ADD && ST.hasStdExtZba() &&
        (NumOfVReg == 2 || NumOfVReg == 4 || NumOfVReg == 8)) {
      unsigned Opc = NumOfVReg == 2 ? RISCV::SH1ADD :
        (NumOfVReg == 4 ? RISCV::SH2ADD : RISCV::SH3ADD);
      BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
          .addReg(ScratchReg, RegState::Kill).addReg(SrcReg)
          .setMIFlag(Flag);
    } else {
      TII->mulImm(MF, MBB, II, DL, ScratchReg, NumOfVReg, Flag);
      BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), DestReg)
          .addReg(SrcReg).addReg(ScratchReg, RegState::Kill)
          .setMIFlag(Flag);
    }
    SrcReg = DestReg;
    KillSrcReg = true;
  }

  int64_t Val = Offset.getFixed();
  if (DestReg == SrcReg && Val == 0)
    return;

  const uint64_t Align = RequiredAlign.valueOrOne().value();

  if (isInt<12>(Val)) {
    BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrcReg))
        .addImm(Val)
        .setMIFlag(Flag);
    return;
  }

  // Try to split the offset across two ADDIs. We need to keep the intermediate
  // result aligned after each ADDI.  We need to determine the maximum value we
  // can put in each ADDI. In the negative direction, we can use -2048 which is
  // always sufficiently aligned. In the positive direction, we need to find the
  // largest 12-bit immediate that is aligned.  Exclude -4096 since it can be
  // created with LUI.
  assert(Align < 2048 && "Required alignment too large");
  int64_t MaxPosAdjStep = 2048 - Align;
  if (Val > -4096 && Val <= (2 * MaxPosAdjStep)) {
    int64_t FirstAdj = Val < 0 ? -2048 : MaxPosAdjStep;
    Val -= FirstAdj;
    BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrcReg))
        .addImm(FirstAdj)
        .setMIFlag(Flag);
    BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
        .addReg(DestReg, RegState::Kill)
        .addImm(Val)
        .setMIFlag(Flag);
    return;
  }

  // Use shNadd if doing so lets us materialize a 12 bit immediate with a single
  // instruction.  This saves 1 instruction over the full lui/addi+add fallback
  // path.  We avoid anything which can be done with a single lui as it might
  // be compressible.  Note that the sh1add case is fully covered by the 2x addi
  // case just above and is thus ommitted.
  if (ST.hasStdExtZba() && (Val & 0xFFF) != 0) {
    unsigned Opc = 0;
    if (isShiftedInt<12, 3>(Val)) {
      Opc = RISCV::SH3ADD;
      Val = Val >> 3;
    } else if (isShiftedInt<12, 2>(Val)) {
      Opc = RISCV::SH2ADD;
      Val = Val >> 2;
    }
    if (Opc) {
      Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
      TII->movImm(MBB, II, DL, ScratchReg, Val, Flag);
      BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
          .addReg(ScratchReg, RegState::Kill)
          .addReg(SrcReg, getKillRegState(KillSrcReg))
          .setMIFlag(Flag);
      return;
    }
  }

  unsigned Opc = RISCV::ADD;
  if (Val < 0) {
    Val = -Val;
    Opc = RISCV::SUB;
  }

  Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  TII->movImm(MBB, II, DL, ScratchReg, Val, Flag);
  BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
      .addReg(SrcReg, getKillRegState(KillSrcReg))
      .addReg(ScratchReg, RegState::Kill)
      .setMIFlag(Flag);
}

// Split a VSPILLx_Mx pseudo into multiple whole register stores separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVSPILL(MachineBasicBlock::iterator II) const {
  DebugLoc DL = II->getDebugLoc();
  MachineBasicBlock &MBB = *II->getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();

  auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
  unsigned NF = ZvlssegInfo->first;
  unsigned LMUL = ZvlssegInfo->second;
  assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
  unsigned Opcode, SubRegIdx;
  switch (LMUL) {
  default:
    llvm_unreachable("LMUL must be 1, 2, or 4.");
  case 1:
    Opcode = RISCV::VS1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    break;
  case 2:
    Opcode = RISCV::VS2R_V;
    SubRegIdx = RISCV::sub_vrm2_0;
    break;
  case 4:
    Opcode = RISCV::VS4R_V;
    SubRegIdx = RISCV::sub_vrm4_0;
    break;
  }
  static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
                "Unexpected subreg numbering");
  static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
                "Unexpected subreg numbering");
  static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
                "Unexpected subreg numbering");

  Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  // Optimize for constant VLEN.
  if (auto VLEN = STI.getRealVLen()) {
    const int64_t VLENB = *VLEN / 8;
    int64_t Offset = VLENB * LMUL;
    STI.getInstrInfo()->movImm(MBB, II, DL, VL, Offset);
  } else {
    BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
    uint32_t ShiftAmount = Log2_32(LMUL);
    if (ShiftAmount != 0)
      BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
          .addReg(VL)
          .addImm(ShiftAmount);
  }

  Register SrcReg = II->getOperand(0).getReg();
  Register Base = II->getOperand(1).getReg();
  bool IsBaseKill = II->getOperand(1).isKill();
  Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  for (unsigned I = 0; I < NF; ++I) {
    // Adding implicit-use of super register to describe we are using part of
    // super register, that prevents machine verifier complaining when part of
    // subreg is undef, see comment in MachineVerifier::checkLiveness for more
    // detail.
    BuildMI(MBB, II, DL, TII->get(Opcode))
        .addReg(TRI->getSubReg(SrcReg, SubRegIdx + I))
        .addReg(Base, getKillRegState(I == NF - 1))
        .addMemOperand(*(II->memoperands_begin()))
        .addReg(SrcReg, RegState::Implicit);
    if (I != NF - 1)
      BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
          .addReg(Base, getKillRegState(I != 0 || IsBaseKill))
          .addReg(VL, getKillRegState(I == NF - 2));
    Base = NewBase;
  }
  II->eraseFromParent();
}

// Split a VSPILLx_Mx pseudo into multiple whole register loads separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVRELOAD(MachineBasicBlock::iterator II) const {
  DebugLoc DL = II->getDebugLoc();
  MachineBasicBlock &MBB = *II->getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();

  auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
  unsigned NF = ZvlssegInfo->first;
  unsigned LMUL = ZvlssegInfo->second;
  assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
  unsigned Opcode, SubRegIdx;
  switch (LMUL) {
  default:
    llvm_unreachable("LMUL must be 1, 2, or 4.");
  case 1:
    Opcode = RISCV::VL1RE8_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    break;
  case 2:
    Opcode = RISCV::VL2RE8_V;
    SubRegIdx = RISCV::sub_vrm2_0;
    break;
  case 4:
    Opcode = RISCV::VL4RE8_V;
    SubRegIdx = RISCV::sub_vrm4_0;
    break;
  }
  static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
                "Unexpected subreg numbering");
  static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
                "Unexpected subreg numbering");
  static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
                "Unexpected subreg numbering");

  Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  // Optimize for constant VLEN.
  if (auto VLEN = STI.getRealVLen()) {
    const int64_t VLENB = *VLEN / 8;
    int64_t Offset = VLENB * LMUL;
    STI.getInstrInfo()->movImm(MBB, II, DL, VL, Offset);
  } else {
    BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
    uint32_t ShiftAmount = Log2_32(LMUL);
    if (ShiftAmount != 0)
      BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
          .addReg(VL)
          .addImm(ShiftAmount);
  }

  Register DestReg = II->getOperand(0).getReg();
  Register Base = II->getOperand(1).getReg();
  bool IsBaseKill = II->getOperand(1).isKill();
  Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  for (unsigned I = 0; I < NF; ++I) {
    BuildMI(MBB, II, DL, TII->get(Opcode),
            TRI->getSubReg(DestReg, SubRegIdx + I))
        .addReg(Base, getKillRegState(I == NF - 1))
        .addMemOperand(*(II->memoperands_begin()));
    if (I != NF - 1)
      BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
          .addReg(Base, getKillRegState(I != 0 || IsBaseKill))
          .addReg(VL, getKillRegState(I == NF - 2));
    Base = NewBase;
  }
  II->eraseFromParent();
}

bool RISCVRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                            int SPAdj, unsigned FIOperandNum,
                                            RegScavenger *RS) const {
  assert(SPAdj == 0 && "Unexpected non-zero SPAdj value");

  MachineInstr &MI = *II;
  MachineFunction &MF = *MI.getParent()->getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
  DebugLoc DL = MI.getDebugLoc();

  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  Register FrameReg;
  StackOffset Offset =
      getFrameLowering(MF)->getFrameIndexReference(MF, FrameIndex, FrameReg);
  bool IsRVVSpill = RISCV::isRVVSpill(MI);
  if (!IsRVVSpill)
    Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());

  if (Offset.getScalable() &&
      ST.getRealMinVLen() == ST.getRealMaxVLen()) {
    // For an exact VLEN value, scalable offsets become constant and thus
    // can be converted entirely into fixed offsets.
    int64_t FixedValue = Offset.getFixed();
    int64_t ScalableValue = Offset.getScalable();
    assert(ScalableValue % 8 == 0 &&
           "Scalable offset is not a multiple of a single vector size.");
    int64_t NumOfVReg = ScalableValue / 8;
    int64_t VLENB = ST.getRealMinVLen() / 8;
    Offset = StackOffset::getFixed(FixedValue + NumOfVReg * VLENB);
  }

  if (!isInt<32>(Offset.getFixed())) {
    report_fatal_error(
        "Frame offsets outside of the signed 32-bit range not supported");
  }

  if (!IsRVVSpill) {
    int64_t Val = Offset.getFixed();
    int64_t Lo12 = SignExtend64<12>(Val);
    unsigned Opc = MI.getOpcode();
    if (Opc == RISCV::ADDI && !isInt<12>(Val)) {
      // We chose to emit the canonical immediate sequence rather than folding
      // the offset into the using add under the theory that doing so doesn't
      // save dynamic instruction count and some target may fuse the canonical
      // 32 bit immediate sequence.  We still need to clear the portion of the
      // offset encoded in the immediate.
      MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
    } else if ((Opc == RISCV::PREFETCH_I || Opc == RISCV::PREFETCH_R ||
                Opc == RISCV::PREFETCH_W) &&
               (Lo12 & 0b11111) != 0) {
      // Prefetch instructions require the offset to be 32 byte aligned.
      MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
    } else if ((Opc == RISCV::PseudoRV32ZdinxLD ||
                Opc == RISCV::PseudoRV32ZdinxSD) &&
               Lo12 >= 2044) {
      // This instruction will be split into 2 instructions. The second
      // instruction will add 4 to the immediate. If that would overflow 12
      // bits, we can't fold the offset.
      MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
    } else {
      // We can encode an add with 12 bit signed immediate in the immediate
      // operand of our user instruction.  As a result, the remaining
      // offset can by construction, at worst, a LUI and a ADD.
      MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Lo12);
      Offset = StackOffset::get((uint64_t)Val - (uint64_t)Lo12,
                                Offset.getScalable());
    }
  }

  if (Offset.getScalable() || Offset.getFixed()) {
    Register DestReg;
    if (MI.getOpcode() == RISCV::ADDI)
      DestReg = MI.getOperand(0).getReg();
    else
      DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
    adjustReg(*II->getParent(), II, DL, DestReg, FrameReg, Offset,
              MachineInstr::NoFlags, std::nullopt);
    MI.getOperand(FIOperandNum).ChangeToRegister(DestReg, /*IsDef*/false,
                                                 /*IsImp*/false,
                                                 /*IsKill*/true);
  } else {
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, /*IsDef*/false,
                                                 /*IsImp*/false,
                                                 /*IsKill*/false);
  }

  // If after materializing the adjustment, we have a pointless ADDI, remove it
  if (MI.getOpcode() == RISCV::ADDI &&
      MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
      MI.getOperand(2).getImm() == 0) {
    MI.eraseFromParent();
    return true;
  }

  // Handle spill/fill of synthetic register classes for segment operations to
  // ensure correctness in the edge case one gets spilled. There are many
  // possible optimizations here, but given the extreme rarity of such spills,
  // we prefer simplicity of implementation for now.
  switch (MI.getOpcode()) {
  case RISCV::PseudoVSPILL2_M1:
  case RISCV::PseudoVSPILL2_M2:
  case RISCV::PseudoVSPILL2_M4:
  case RISCV::PseudoVSPILL3_M1:
  case RISCV::PseudoVSPILL3_M2:
  case RISCV::PseudoVSPILL4_M1:
  case RISCV::PseudoVSPILL4_M2:
  case RISCV::PseudoVSPILL5_M1:
  case RISCV::PseudoVSPILL6_M1:
  case RISCV::PseudoVSPILL7_M1:
  case RISCV::PseudoVSPILL8_M1:
    lowerVSPILL(II);
    return true;
  case RISCV::PseudoVRELOAD2_M1:
  case RISCV::PseudoVRELOAD2_M2:
  case RISCV::PseudoVRELOAD2_M4:
  case RISCV::PseudoVRELOAD3_M1:
  case RISCV::PseudoVRELOAD3_M2:
  case RISCV::PseudoVRELOAD4_M1:
  case RISCV::PseudoVRELOAD4_M2:
  case RISCV::PseudoVRELOAD5_M1:
  case RISCV::PseudoVRELOAD6_M1:
  case RISCV::PseudoVRELOAD7_M1:
  case RISCV::PseudoVRELOAD8_M1:
    lowerVRELOAD(II);
    return true;
  }

  return false;
}

bool RISCVRegisterInfo::requiresVirtualBaseRegisters(
    const MachineFunction &MF) const {
  return true;
}

// Returns true if the instruction's frame index reference would be better
// served by a base register other than FP or SP.
// Used by LocalStackSlotAllocation pass to determine which frame index
// references it should create new base registers for.
bool RISCVRegisterInfo::needsFrameBaseReg(MachineInstr *MI,
                                          int64_t Offset) const {
  unsigned FIOperandNum = 0;
  for (; !MI->getOperand(FIOperandNum).isFI(); FIOperandNum++)
    assert(FIOperandNum < MI->getNumOperands() &&
           "Instr doesn't have FrameIndex operand");

  // For RISC-V, The machine instructions that include a FrameIndex operand
  // are load/store, ADDI instructions.
  unsigned MIFrm = RISCVII::getFormat(MI->getDesc().TSFlags);
  if (MIFrm != RISCVII::InstFormatI && MIFrm != RISCVII::InstFormatS)
    return false;
  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  if (!MI->mayLoad() && !MI->mayStore())
    return false;

  const MachineFunction &MF = *MI->getMF();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const RISCVFrameLowering *TFI = getFrameLowering(MF);
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  Offset += getFrameIndexInstrOffset(MI, FIOperandNum);

  if (TFI->hasFP(MF) && !shouldRealignStack(MF)) {
    // Estimate the stack size used to store callee saved registers(
    // excludes reserved registers).
    unsigned CalleeSavedSize = 0;
    BitVector ReservedRegs = getReservedRegs(MF);
    for (const MCPhysReg *R = MRI.getCalleeSavedRegs(); MCPhysReg Reg = *R;
         ++R) {
      if (!ReservedRegs.test(Reg))
        CalleeSavedSize += getSpillSize(*getMinimalPhysRegClass(Reg));
    }

    int64_t MaxFPOffset = Offset - CalleeSavedSize;
    return !isFrameOffsetLegal(MI, RISCV::X8, MaxFPOffset);
  }

  // Assume 128 bytes spill slots size to estimate the maximum possible
  // offset relative to the stack pointer.
  // FIXME: The 128 is copied from ARM. We should run some statistics and pick a
  // real one for RISC-V.
  int64_t MaxSPOffset = Offset + 128;
  MaxSPOffset += MFI.getLocalFrameSize();
  return !isFrameOffsetLegal(MI, RISCV::X2, MaxSPOffset);
}

// Determine whether a given base register plus offset immediate is
// encodable to resolve a frame index.
bool RISCVRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                           Register BaseReg,
                                           int64_t Offset) const {
  unsigned FIOperandNum = 0;
  while (!MI->getOperand(FIOperandNum).isFI()) {
    FIOperandNum++;
    assert(FIOperandNum < MI->getNumOperands() &&
           "Instr does not have a FrameIndex operand!");
  }

  Offset += getFrameIndexInstrOffset(MI, FIOperandNum);
  return isInt<12>(Offset);
}

// Insert defining instruction(s) for a pointer to FrameIdx before
// insertion point I.
// Return materialized frame pointer.
Register RISCVRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                         int FrameIdx,
                                                         int64_t Offset) const {
  MachineBasicBlock::iterator MBBI = MBB->begin();
  DebugLoc DL;
  if (MBBI != MBB->end())
    DL = MBBI->getDebugLoc();
  MachineFunction *MF = MBB->getParent();
  MachineRegisterInfo &MFI = MF->getRegInfo();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();

  Register BaseReg = MFI.createVirtualRegister(&RISCV::GPRRegClass);
  BuildMI(*MBB, MBBI, DL, TII->get(RISCV::ADDI), BaseReg)
      .addFrameIndex(FrameIdx)
      .addImm(Offset);
  return BaseReg;
}

// Resolve a frame index operand of an instruction to reference the
// indicated base register plus offset instead.
void RISCVRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
                                          int64_t Offset) const {
  unsigned FIOperandNum = 0;
  while (!MI.getOperand(FIOperandNum).isFI()) {
    FIOperandNum++;
    assert(FIOperandNum < MI.getNumOperands() &&
           "Instr does not have a FrameIndex operand!");
  }

  Offset += getFrameIndexInstrOffset(&MI, FIOperandNum);
  // FrameIndex Operands are always represented as a
  // register followed by an immediate.
  MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
  MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}

// Get the offset from the referenced frame index in the instruction,
// if there is one.
int64_t RISCVRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
                                                    int Idx) const {
  assert((RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatI ||
          RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatS) &&
         "The MI must be I or S format.");
  assert(MI->getOperand(Idx).isFI() && "The Idx'th operand of MI is not a "
                                       "FrameIndex operand");
  return MI->getOperand(Idx + 1).getImm();
}

Register RISCVRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const TargetFrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? RISCV::X8 : RISCV::X2;
}

const uint32_t *
RISCVRegisterInfo::getCallPreservedMask(const MachineFunction & MF,
                                        CallingConv::ID CC) const {
  auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();

  if (CC == CallingConv::GHC)
    return CSR_NoRegs_RegMask;
  switch (Subtarget.getTargetABI()) {
  default:
    llvm_unreachable("Unrecognized ABI");
  case RISCVABI::ABI_ILP32E:
  case RISCVABI::ABI_LP64E:
    return CSR_ILP32E_LP64E_RegMask;
  case RISCVABI::ABI_ILP32:
  case RISCVABI::ABI_LP64:
    if (CC == CallingConv::RISCV_VectorCall)
      return CSR_ILP32_LP64_V_RegMask;
    return CSR_ILP32_LP64_RegMask;
  case RISCVABI::ABI_ILP32F:
  case RISCVABI::ABI_LP64F:
    if (CC == CallingConv::RISCV_VectorCall)
      return CSR_ILP32F_LP64F_V_RegMask;
    return CSR_ILP32F_LP64F_RegMask;
  case RISCVABI::ABI_ILP32D:
  case RISCVABI::ABI_LP64D:
    if (CC == CallingConv::RISCV_VectorCall)
      return CSR_ILP32D_LP64D_V_RegMask;
    return CSR_ILP32D_LP64D_RegMask;
  }
}

const TargetRegisterClass *
RISCVRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
                                             const MachineFunction &) const {
  if (RC == &RISCV::VMV0RegClass)
    return &RISCV::VRRegClass;
  if (RC == &RISCV::VRNoV0RegClass)
    return &RISCV::VRRegClass;
  if (RC == &RISCV::VRM2NoV0RegClass)
    return &RISCV::VRM2RegClass;
  if (RC == &RISCV::VRM4NoV0RegClass)
    return &RISCV::VRM4RegClass;
  if (RC == &RISCV::VRM8NoV0RegClass)
    return &RISCV::VRM8RegClass;
  return RC;
}

void RISCVRegisterInfo::getOffsetOpcodes(const StackOffset &Offset,
                                         SmallVectorImpl<uint64_t> &Ops) const {
  // VLENB is the length of a vector register in bytes. We use <vscale x 8 x i8>
  // to represent one vector register. The dwarf offset is
  // VLENB * scalable_offset / 8.
  assert(Offset.getScalable() % 8 == 0 && "Invalid frame offset");

  // Add fixed-sized offset using existing DIExpression interface.
  DIExpression::appendOffset(Ops, Offset.getFixed());

  unsigned VLENB = getDwarfRegNum(RISCV::VLENB, true);
  int64_t VLENBSized = Offset.getScalable() / 8;
  if (VLENBSized > 0) {
    Ops.push_back(dwarf::DW_OP_constu);
    Ops.push_back(VLENBSized);
    Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
    Ops.push_back(dwarf::DW_OP_mul);
    Ops.push_back(dwarf::DW_OP_plus);
  } else if (VLENBSized < 0) {
    Ops.push_back(dwarf::DW_OP_constu);
    Ops.push_back(-VLENBSized);
    Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
    Ops.push_back(dwarf::DW_OP_mul);
    Ops.push_back(dwarf::DW_OP_minus);
  }
}

unsigned
RISCVRegisterInfo::getRegisterCostTableIndex(const MachineFunction &MF) const {
  return MF.getSubtarget<RISCVSubtarget>().hasStdExtCOrZca() &&
                 !DisableCostPerUse
             ? 1
             : 0;
}

// Add two address hints to improve chances of being able to use a compressed
// instruction.
bool RISCVRegisterInfo::getRegAllocationHints(
    Register VirtReg, ArrayRef<MCPhysReg> Order,
    SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
    const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();
  auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();

  bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
      VirtReg, Order, Hints, MF, VRM, Matrix);

  if (!VRM || DisableRegAllocHints)
    return BaseImplRetVal;

  // Add any two address hints after any copy hints.
  SmallSet<Register, 4> TwoAddrHints;

  auto tryAddHint = [&](const MachineOperand &VRRegMO, const MachineOperand &MO,
                        bool NeedGPRC) -> void {
    Register Reg = MO.getReg();
    Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
    // TODO: Support GPRPair subregisters? Need to be careful with even/odd
    // registers. If the virtual register is an odd register of a pair and the
    // physical register is even (or vice versa), we should not add the hint.
    if (PhysReg && (!NeedGPRC || RISCV::GPRCRegClass.contains(PhysReg)) &&
        !MO.getSubReg() && !VRRegMO.getSubReg()) {
      if (!MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
        TwoAddrHints.insert(PhysReg);
    }
  };

  // This is all of the compressible binary instructions. If an instruction
  // needs GPRC register class operands \p NeedGPRC will be set to true.
  auto isCompressible = [&Subtarget](const MachineInstr &MI, bool &NeedGPRC) {
    NeedGPRC = false;
    switch (MI.getOpcode()) {
    default:
      return false;
    case RISCV::AND:
    case RISCV::OR:
    case RISCV::XOR:
    case RISCV::SUB:
    case RISCV::ADDW:
    case RISCV::SUBW:
      NeedGPRC = true;
      return true;
    case RISCV::ANDI: {
      NeedGPRC = true;
      if (!MI.getOperand(2).isImm())
        return false;
      int64_t Imm = MI.getOperand(2).getImm();
      if (isInt<6>(Imm))
        return true;
      // c.zext.b
      return Subtarget.hasStdExtZcb() && Imm == 255;
    }
    case RISCV::SRAI:
    case RISCV::SRLI:
      NeedGPRC = true;
      return true;
    case RISCV::ADD:
    case RISCV::SLLI:
      return true;
    case RISCV::ADDI:
    case RISCV::ADDIW:
      return MI.getOperand(2).isImm() && isInt<6>(MI.getOperand(2).getImm());
    case RISCV::MUL:
    case RISCV::SEXT_B:
    case RISCV::SEXT_H:
    case RISCV::ZEXT_H_RV32:
    case RISCV::ZEXT_H_RV64:
      // c.mul, c.sext.b, c.sext.h, c.zext.h
      NeedGPRC = true;
      return Subtarget.hasStdExtZcb();
    case RISCV::ADD_UW:
      // c.zext.w
      NeedGPRC = true;
      return Subtarget.hasStdExtZcb() && MI.getOperand(2).isReg() &&
             MI.getOperand(2).getReg() == RISCV::X0;
    case RISCV::XORI:
      // c.not
      NeedGPRC = true;
      return Subtarget.hasStdExtZcb() && MI.getOperand(2).isImm() &&
             MI.getOperand(2).getImm() == -1;
    }
  };

  // Returns true if this operand is compressible. For non-registers it always
  // returns true. Immediate range was already checked in isCompressible.
  // For registers, it checks if the register is a GPRC register. reg-reg
  // instructions that require GPRC need all register operands to be GPRC.
  auto isCompressibleOpnd = [&](const MachineOperand &MO) {
    if (!MO.isReg())
      return true;
    Register Reg = MO.getReg();
    Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
    return PhysReg && RISCV::GPRCRegClass.contains(PhysReg);
  };

  for (auto &MO : MRI->reg_nodbg_operands(VirtReg)) {
    const MachineInstr &MI = *MO.getParent();
    unsigned OpIdx = MO.getOperandNo();
    bool NeedGPRC;
    if (isCompressible(MI, NeedGPRC)) {
      if (OpIdx == 0 && MI.getOperand(1).isReg()) {
        if (!NeedGPRC || MI.getNumExplicitOperands() < 3 ||
            MI.getOpcode() == RISCV::ADD_UW ||
            isCompressibleOpnd(MI.getOperand(2)))
          tryAddHint(MO, MI.getOperand(1), NeedGPRC);
        if (MI.isCommutable() && MI.getOperand(2).isReg() &&
            (!NeedGPRC || isCompressibleOpnd(MI.getOperand(1))))
          tryAddHint(MO, MI.getOperand(2), NeedGPRC);
      } else if (OpIdx == 1 && (!NeedGPRC || MI.getNumExplicitOperands() < 3 ||
                                isCompressibleOpnd(MI.getOperand(2)))) {
        tryAddHint(MO, MI.getOperand(0), NeedGPRC);
      } else if (MI.isCommutable() && OpIdx == 2 &&
                 (!NeedGPRC || isCompressibleOpnd(MI.getOperand(1)))) {
        tryAddHint(MO, MI.getOperand(0), NeedGPRC);
      }
    }
  }

  for (MCPhysReg OrderReg : Order)
    if (TwoAddrHints.count(OrderReg))
      Hints.push_back(OrderReg);

  return BaseImplRetVal;
}