aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/RISCVInstrInfoD.td
blob: fec43d814098ce6aa450aa9ffe720f39800c9efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'D',
// Double-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
                                                 SDTCisVT<1, i32>,
                                                 SDTCisSameAs<1, 2>]>;
def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
                                                 SDTCisVT<1, i32>,
                                                 SDTCisVT<2, f64>]>;

def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;

def AddrRegImmINX : ComplexPattern<iPTR, 2, "SelectAddrRegImmINX">;

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

// Zdinx

def GPRPairAsFPR : AsmOperandClass {
  let Name = "GPRPairAsFPR";
  let ParserMethod = "parseGPRAsFPR";
  let PredicateMethod = "isGPRAsFPR";
  let RenderMethod = "addRegOperands";
}

def GPRF64AsFPR : AsmOperandClass {
  let Name = "GPRF64AsFPR";
  let PredicateMethod = "isGPRAsFPR";
  let ParserMethod = "parseGPRAsFPR";
  let RenderMethod = "addRegOperands";
}

def FPR64INX : RegisterOperand<GPR> {
  let ParserMatchClass = GPRF64AsFPR;
  let DecoderMethod = "DecodeGPRRegisterClass";
}

def FPR64IN32X : RegisterOperand<GPRPair> {
  let ParserMatchClass = GPRPairAsFPR;
}

def DExt       : ExtInfo<"", "", [HasStdExtD], f64, FPR64, FPR32, FPR64, ?>;

def ZdinxExt   : ExtInfo<"_INX", "RVZfinx", [HasStdExtZdinx, IsRV64],
                         f64, FPR64INX, FPR32INX, FPR64INX, ?>;
def Zdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZdinx, IsRV32],
                         f64, FPR64IN32X, FPR32INX, FPR64IN32X, ?>;

defvar DExts     = [DExt, ZdinxExt, Zdinx32Ext];
defvar DExtsRV64 = [DExt, ZdinxExt];

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtD] in {
def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;

// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
} // Predicates = [HasStdExtD]

foreach Ext = DExts in {
  let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64Addend] in {
    defm FMADD_D  : FPFMA_rrr_frm_m<OPC_MADD,  0b01, "fmadd.d",  Ext>;
    defm FMSUB_D  : FPFMA_rrr_frm_m<OPC_MSUB,  0b01, "fmsub.d",  Ext>;
    defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", Ext>;
    defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", Ext>;
  }

  let SchedRW = [WriteFAdd64, ReadFAdd64, ReadFAdd64] in {
    defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", Ext, Commutable=1>;
    defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", Ext>;
  }
  let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
  defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", Ext, Commutable=1>;

  let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
  defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", Ext>;

  defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, Ext, Ext.PrimaryTy,
                                   Ext.PrimaryTy, "fsqrt.d">,
                 Sched<[WriteFSqrt64, ReadFSqrt64]>;

  let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
      mayRaiseFPException = 0 in {
    defm FSGNJ_D  : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d",  Ext>;
    defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", Ext>;
    defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", Ext>;
  }

  let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
    defm FMIN_D   : FPALU_rr_m<0b0010101, 0b000, "fmin.d", Ext, Commutable=1>;
    defm FMAX_D   : FPALU_rr_m<0b0010101, 0b001, "fmax.d", Ext, Commutable=1>;
  }

  defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, Ext, Ext.F32Ty,
                                    Ext.PrimaryTy, "fcvt.s.d">,
                  Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;

  defm FCVT_D_S : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00000, Ext, Ext.PrimaryTy,
                                          Ext.F32Ty, "fcvt.d.s">,
                  Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;

  let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
    defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", Ext, Commutable=1>;
    defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", Ext>;
    defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", Ext>;
  }

  let mayRaiseFPException = 0 in
  defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
                                "fclass.d">,
                  Sched<[WriteFClass64, ReadFClass64]>;

  let IsSignExtendingOpW = 1 in
  defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, Ext, GPR, Ext.PrimaryTy,
                                    "fcvt.w.d">,
                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;

  let IsSignExtendingOpW = 1 in
  defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, Ext, GPR, Ext.PrimaryTy,
                                     "fcvt.wu.d">,
                   Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;

  defm FCVT_D_W : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00000, Ext, Ext.PrimaryTy, GPR,
                                          "fcvt.d.w">,
                  Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;

  defm FCVT_D_WU : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00001, Ext, Ext.PrimaryTy, GPR,
                                           "fcvt.d.wu">,
                   Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
} // foreach Ext = DExts

foreach Ext = DExtsRV64 in {
  defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, Ext, GPR, Ext.PrimaryTy,
                                    "fcvt.l.d", [IsRV64]>,
                  Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;

  defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, Ext, GPR, Ext.PrimaryTy,
                                     "fcvt.lu.d", [IsRV64]>,
                   Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;

  defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, Ext, Ext.PrimaryTy, GPR,
                                    "fcvt.d.l", [IsRV64]>,
                  Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;

  defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, Ext, Ext.PrimaryTy, GPR,
                                     "fcvt.d.lu", [IsRV64]>,
                   Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
} // foreach Ext = DExts64

let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;

let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;

//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtD] in {
def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;

def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;

// fgt.d/fge.d are recognised by the GNU assembler but the canonical
// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;

def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
def PseudoFSD  : PseudoStore<"fsd", FPR64>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
}
} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV64] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;

def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D_INX : PseudoQuietFCMP<FPR64INX>;
def PseudoQuietFLT_D_INX : PseudoQuietFCMP<FPR64INX>;
}
} // Predicates = [HasStdExtZdinx, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV32] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;

def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
def PseudoQuietFLT_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
}
} // Predicates = [HasStdExtZdinx, IsRV32]

//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtD] in {

/// Float conversion operations

// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV64] in {
/// Float conversion operations

// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_S_D_INX FPR64INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_INX FPR32INX:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV32] in {
/// Float conversion operations

// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_S_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_IN32X FPR32INX:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV32]

// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.

/// Float arithmetic operations

foreach Ext = DExts in {
  defm : PatFprFprDynFrm_m<any_fadd, FADD_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fsub, FSUB_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fmul, FMUL_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fdiv, FDIV_D, Ext>;
}

let Predicates = [HasStdExtD] in {
def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, FRM_DYN)>;

def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;

def : Pat<(riscv_fclass FPR64:$rs1), (FCLASS_D $rs1)>;

def : PatFprFpr<fcopysign, FSGNJ_D, FPR64, f64>;
def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2,
                                                              FRM_RNE))>;
def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
                                                              FRM_DYN))>;

// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
          (FMADD_D $rs1, $rs2, $rs3, FRM_DYN)>;

// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;

// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;

// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;

// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)),
          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV64] in {
def : Pat<(any_fsqrt FPR64INX:$rs1), (FSQRT_D_INX FPR64INX:$rs1, FRM_DYN)>;

def : Pat<(fneg FPR64INX:$rs1), (FSGNJN_D_INX $rs1, $rs1)>;
def : Pat<(fabs FPR64INX:$rs1), (FSGNJX_D_INX $rs1, $rs1)>;

def : Pat<(riscv_fclass FPR64INX:$rs1), (FCLASS_D_INX $rs1)>;

def : PatFprFpr<fcopysign, FSGNJ_D_INX, FPR64INX, f64>;
def : Pat<(fcopysign FPR64INX:$rs1, (fneg FPR64INX:$rs2)),
          (FSGNJN_D_INX $rs1, $rs2)>;
def : Pat<(fcopysign FPR64INX:$rs1, FPR32INX:$rs2),
          (FSGNJ_D_INX $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR64INX:$rs2),
          (FSGNJ_S_INX $rs1, (FCVT_S_D_INX $rs2, FRM_DYN))>;

// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3),
          (FMADD_D_INX $rs1, $rs2, $rs3, FRM_DYN)>;

// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
          (FMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;

// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, FPR64INX:$rs3),
          (FNMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;

// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;

// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3)),
          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV32] in {
def : Pat<(any_fsqrt FPR64IN32X:$rs1), (FSQRT_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;

def : Pat<(fneg FPR64IN32X:$rs1), (FSGNJN_D_IN32X $rs1, $rs1)>;
def : Pat<(fabs FPR64IN32X:$rs1), (FSGNJX_D_IN32X $rs1, $rs1)>;

def : Pat<(riscv_fclass FPR64IN32X:$rs1), (FCLASS_D_IN32X $rs1)>;

def : PatFprFpr<fcopysign, FSGNJ_D_IN32X, FPR64IN32X, f64>;
def : Pat<(fcopysign FPR64IN32X:$rs1, (fneg FPR64IN32X:$rs2)),
          (FSGNJN_D_IN32X $rs1, $rs2)>;
def : Pat<(fcopysign FPR64IN32X:$rs1, FPR32INX:$rs2),
          (FSGNJ_D_IN32X $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR64IN32X:$rs2),
          (FSGNJ_S_INX $rs1, (FCVT_S_D_IN32X $rs2, FRM_DYN))>;

// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3),
          (FMADD_D_IN32X $rs1, $rs2, $rs3, FRM_DYN)>;

// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
          (FMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;

// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, FPR64IN32X:$rs3),
          (FNMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;

// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;

// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3)),
          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV32]

// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum.
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
foreach Ext = DExts in {
  defm : PatFprFpr_m<fminnum, FMIN_D, Ext>;
  defm : PatFprFpr_m<fmaxnum, FMAX_D, Ext>;
  defm : PatFprFpr_m<riscv_fmin, FMIN_D, Ext>;
  defm : PatFprFpr_m<riscv_fmax, FMAX_D, Ext>;
}

/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.

// Match non-signaling FEQ_D
foreach Ext = DExts in {
  defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_D,            Ext>;
  defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_D,            Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_D, Ext>;
}

let Predicates = [HasStdExtD] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ)),
          (AND (FLE_D $rs1, $rs2),
               (FLE_D $rs2, $rs1))>;
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ)),
          (AND (FLE_D $rs1, $rs2),
               (FLE_D $rs2, $rs1))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ)),
          (FLE_D $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ)),
          (FLE_D $rs1, $rs1)>;

def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D, f64>;
} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV64] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETEQ)),
          (AND (FLE_D_INX $rs1, $rs2),
               (FLE_D_INX $rs2, $rs1))>;
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETOEQ)),
          (AND (FLE_D_INX $rs1, $rs2),
               (FLE_D_INX $rs2, $rs1))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETEQ)),
          (FLE_D_INX $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETOEQ)),
          (FLE_D_INX $rs1, $rs1)>;

def : PatSetCC<FPR64INX, any_fsetccs, SETLT,  FLT_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETOLT, FLT_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETLE,  FLE_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETOLE, FLE_D_INX, f64>;
} // Predicates = [HasStdExtZdinx, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV32] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETEQ)),
          (AND (FLE_D_IN32X $rs1, $rs2),
               (FLE_D_IN32X $rs2, $rs1))>;
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETOEQ)),
          (AND (FLE_D_IN32X $rs1, $rs2),
               (FLE_D_IN32X $rs2, $rs1))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETEQ)),
          (FLE_D_IN32X $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETOEQ)),
          (FLE_D_IN32X $rs1, $rs1)>;

def : PatSetCC<FPR64IN32X, any_fsetccs, SETLT,  FLT_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLT, FLT_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETLE,  FLE_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLE, FLE_D_IN32X, f64>;
} // Predicates = [HasStdExtZdinx, IsRV32]

let Predicates = [HasStdExtD] in {
defm Select_FPR64 : SelectCC_GPR_rrirr<FPR64, f64>;

def PseudoFROUND_D : PseudoFROUND<FPR64, f64>;

/// Loads

def : LdPat<load, FLD, f64>;

/// Stores

def : StPat<store, FSD, FPR64, f64>;

/// Pseudo-instructions needed for the soft-float ABI with RV32D

// Moves two GPRs to an FPR.
let usesCustomInserter = 1 in
def BuildPairF64Pseudo
    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;

// Moves an FPR to two GPRs.
let usesCustomInserter = 1 in
def SplitF64Pseudo
    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;

} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV64] in {
defm Select_FPR64INX : SelectCC_GPR_rrirr<FPR64INX, f64>;

def PseudoFROUND_D_INX : PseudoFROUND<FPR64INX, f64>;

/// Loads
def : LdPat<load, LD, f64>;

/// Stores
def : StPat<store, SD, GPR, f64>;
} // Predicates = [HasStdExtZdinx, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV32] in {
defm Select_FPR64IN32X : SelectCC_GPR_rrirr<FPR64IN32X, f64>;

def PseudoFROUND_D_IN32X : PseudoFROUND<FPR64IN32X, f64>;

/// Loads
let isCall = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 1 in
def PseudoRV32ZdinxLD : Pseudo<(outs GPRPair:$dst), (ins GPR:$rs1, simm12:$imm12), []>;
def : Pat<(f64 (load (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12))),
          (PseudoRV32ZdinxLD GPR:$rs1, simm12:$imm12)>;

/// Stores
let isCall = 0, mayLoad = 0, mayStore = 1, Size = 8, isCodeGenOnly = 1 in
def PseudoRV32ZdinxSD : Pseudo<(outs), (ins GPRPair:$rs2, GPRNoX0:$rs1, simm12:$imm12), []>;
def : Pat<(store (f64 GPRPair:$rs2), (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12)),
          (PseudoRV32ZdinxSD GPRPair:$rs2, GPR:$rs1, simm12:$imm12)>;

/// Pseudo-instructions needed for the soft-float ABI with RV32D

// Moves two GPRs to an FPR.
let usesCustomInserter = 1 in
def BuildPairF64Pseudo_INX
    : Pseudo<(outs FPR64IN32X:$dst), (ins GPR:$src1, GPR:$src2),
             [(set FPR64IN32X:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;

// Moves an FPR to two GPRs.
let usesCustomInserter = 1 in
def SplitF64Pseudo_INX
    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64IN32X:$src),
             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64IN32X:$src))]>;
} // Predicates = [HasStdExtZdinx, IsRV32]

let Predicates = [HasStdExtD] in {

// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, FRM_RTZ)>;

// Saturating double->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;

// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, FRM_DYN)>;

// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, FRM_RMM)>;

// [u]int->double.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtD]

let Predicates = [HasStdExtZdinx, IsRV32] in {

// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR64IN32X:$rs1)), (FCVT_WU_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;

// Saturating double->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR64IN32X:$rs1, timm:$frm)), (FCVT_W_D_IN32X $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR64IN32X:$rs1, timm:$frm)), (FCVT_WU_D_IN32X $rs1, timm:$frm)>;

// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_DYN)>;

// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_RMM)>;

// [u]int->double.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W_IN32X GPR:$rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU_IN32X GPR:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV32]

let Predicates = [HasStdExtD, IsRV64] in {

// Moves (no conversion)
def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;

// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm),  (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;

// [u]int32->fp
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1, FRM_RNE)>;

// Saturating double->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;

// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, FRM_RTZ)>;

// double->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;

// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;

// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, FRM_DYN)>;
} // Predicates = [HasStdExtD, IsRV64]

let Predicates = [HasStdExtZdinx, IsRV64] in {

// Moves (no conversion)
def : Pat<(f64 (bitconvert (i64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
def : Pat<(i64 (bitconvert (f64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;

// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR64INX:$rs1, timm:$frm),  (FCVT_W_D_INX $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR64INX:$rs1, timm:$frm), (FCVT_WU_D_INX $rs1, timm:$frm)>;

// [u]int32->fp
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W_INX $rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU_INX $rs1, FRM_RNE)>;

// Saturating double->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR64INX:$rs1, timm:$frm)), (FCVT_L_D_INX $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR64INX:$rs1, timm:$frm)), (FCVT_LU_D_INX $rs1, timm:$frm)>;

// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR64INX:$rs1)), (FCVT_L_D_INX FPR64INX:$rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR64INX:$rs1)), (FCVT_LU_D_INX FPR64INX:$rs1, FRM_RTZ)>;

// double->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;

// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;

// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L_INX GPR:$rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU_INX GPR:$rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV64]