aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
blob: 062b53e24a0d793055c1a3acc5cbf609bec41b4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "PPCTargetTransformInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/Local.h"
#include <optional>

using namespace llvm;

#define DEBUG_TYPE "ppctti"

static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);

static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);

static cl::opt<bool>
EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
                cl::desc("Enable using coldcc calling conv for cold "
                         "internal functions"));

static cl::opt<bool>
LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
               cl::desc("Do not add instruction count to lsr cost model"));

// The latency of mtctr is only justified if there are more than 4
// comparisons that will be removed as a result.
static cl::opt<unsigned>
SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
                      cl::desc("Loops with a constant trip count smaller than "
                               "this value will not use the count register."));

//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//

TargetTransformInfo::PopcntSupportKind
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
    return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
             TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

std::optional<Instruction *>
PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  default:
    break;
  case Intrinsic::ppc_altivec_lvx:
  case Intrinsic::ppc_altivec_lvxl:
    // Turn PPC lvx -> load if the pointer is known aligned.
    if (getOrEnforceKnownAlignment(
            II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
            &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
      Value *Ptr = II.getArgOperand(0);
      return new LoadInst(II.getType(), Ptr, "", false, Align(16));
    }
    break;
  case Intrinsic::ppc_vsx_lxvw4x:
  case Intrinsic::ppc_vsx_lxvd2x: {
    // Turn PPC VSX loads into normal loads.
    Value *Ptr = II.getArgOperand(0);
    return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
  }
  case Intrinsic::ppc_altivec_stvx:
  case Intrinsic::ppc_altivec_stvxl:
    // Turn stvx -> store if the pointer is known aligned.
    if (getOrEnforceKnownAlignment(
            II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
            &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
      Value *Ptr = II.getArgOperand(1);
      return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
    }
    break;
  case Intrinsic::ppc_vsx_stxvw4x:
  case Intrinsic::ppc_vsx_stxvd2x: {
    // Turn PPC VSX stores into normal stores.
    Value *Ptr = II.getArgOperand(1);
    return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
  }
  case Intrinsic::ppc_altivec_vperm:
    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
    // Note that ppc_altivec_vperm has a big-endian bias, so when creating
    // a vectorshuffle for little endian, we must undo the transformation
    // performed on vec_perm in altivec.h.  That is, we must complement
    // the permutation mask with respect to 31 and reverse the order of
    // V1 and V2.
    if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
      assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
             "Bad type for intrinsic!");

      // Check that all of the elements are integer constants or undefs.
      bool AllEltsOk = true;
      for (unsigned i = 0; i != 16; ++i) {
        Constant *Elt = Mask->getAggregateElement(i);
        if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
          AllEltsOk = false;
          break;
        }
      }

      if (AllEltsOk) {
        // Cast the input vectors to byte vectors.
        Value *Op0 =
            IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
        Value *Op1 =
            IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
        Value *Result = UndefValue::get(Op0->getType());

        // Only extract each element once.
        Value *ExtractedElts[32];
        memset(ExtractedElts, 0, sizeof(ExtractedElts));

        for (unsigned i = 0; i != 16; ++i) {
          if (isa<UndefValue>(Mask->getAggregateElement(i)))
            continue;
          unsigned Idx =
              cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
          Idx &= 31; // Match the hardware behavior.
          if (DL.isLittleEndian())
            Idx = 31 - Idx;

          if (!ExtractedElts[Idx]) {
            Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
            Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
            ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
                Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
          }

          // Insert this value into the result vector.
          Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
                                                  IC.Builder.getInt32(i));
        }
        return CastInst::Create(Instruction::BitCast, Result, II.getType());
      }
    }
    break;
  }
  return std::nullopt;
}

InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                          TTI::TargetCostKind CostKind) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Imm, Ty, CostKind);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TTI::TCC_Basic;

      return 2 * TTI::TCC_Basic;
    }
  }

  return 4 * TTI::TCC_Basic;
}

InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                                const APInt &Imm, Type *Ty,
                                                TTI::TargetCostKind CostKind) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                              const APInt &Imm, Type *Ty,
                                              TTI::TargetCostKind CostKind,
                                              Instruction *Inst) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    [[fallthrough]];
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    [[fallthrough]];
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Zero comparisons can use record-form instructions.
    [[fallthrough]];
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TTI::TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TTI::TCC_Free;

      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TTI::TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TTI::TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TTI::TCC_Free;
  }

  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

// Check if the current Type is an MMA vector type. Valid MMA types are
// v256i1 and v512i1 respectively.
static bool isMMAType(Type *Ty) {
  return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
         (Ty->getPrimitiveSizeInBits() > 128);
}

InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
                                               ArrayRef<const Value *> Operands,
                                               TTI::TargetCostKind CostKind) {
  // We already implement getCastInstrCost and getMemoryOpCost where we perform
  // the vector adjustment there.
  if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
    return BaseT::getInstructionCost(U, Operands, CostKind);

  if (U->getType()->isVectorTy()) {
    // Instructions that need to be split should cost more.
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
    return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
  }

  return BaseT::getInstructionCost(U, Operands, CostKind);
}

bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                          AssumptionCache &AC,
                                          TargetLibraryInfo *LibInfo,
                                          HardwareLoopInfo &HWLoopInfo) {
  const PPCTargetMachine &TM = ST->getTargetMachine();
  TargetSchedModel SchedModel;
  SchedModel.init(ST);

  // Do not convert small short loops to CTR loop.
  unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
  if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
    CodeMetrics Metrics;
    for (BasicBlock *BB : L->blocks())
      Metrics.analyzeBasicBlock(BB, *this, EphValues);
    // 6 is an approximate latency for the mtctr instruction.
    if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
      return false;
  }

  // Check that there is no hardware loop related intrinsics in the loop.
  for (auto *BB : L->getBlocks())
    for (auto &I : *BB)
      if (auto *Call = dyn_cast<IntrinsicInst>(&I))
        if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
            Call->getIntrinsicID() == Intrinsic::loop_decrement)
          return false;

  SmallVector<BasicBlock*, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // If there is an exit edge known to be frequently taken,
  // we should not transform this loop.
  for (auto &BB : ExitingBlocks) {
    Instruction *TI = BB->getTerminator();
    if (!TI) continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      uint64_t TrueWeight = 0, FalseWeight = 0;
      if (!BI->isConditional() ||
          !extractBranchWeights(*BI, TrueWeight, FalseWeight))
        continue;

      // If the exit path is more frequent than the loop path,
      // we return here without further analysis for this loop.
      bool TrueIsExit = !L->contains(BI->getSuccessor(0));
      if (( TrueIsExit && FalseWeight < TrueWeight) ||
          (!TrueIsExit && FalseWeight > TrueWeight))
        return false;
    }
  }

  LLVMContext &C = L->getHeader()->getContext();
  HWLoopInfo.CountType = TM.isPPC64() ?
    Type::getInt64Ty(C) : Type::getInt32Ty(C);
  HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
  return true;
}

void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::UnrollingPreferences &UP,
                                         OptimizationRemarkEmitter *ORE) {
  if (ST->getCPUDirective() == PPC::DIR_A2) {
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
    // helps expose latency-hiding opportunities to the instruction scheduler.
    UP.Partial = UP.Runtime = true;

    // We unroll a lot on the A2 (hundreds of instructions), and the benefits
    // often outweigh the cost of a division to compute the trip count.
    UP.AllowExpensiveTripCount = true;
  }

  BaseT::getUnrollingPreferences(L, SE, UP, ORE);
}

void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                       TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}
// This function returns true to allow using coldcc calling convention.
// Returning true results in coldcc being used for functions which are cold at
// all call sites when the callers of the functions are not calling any other
// non coldcc functions.
bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
  return EnablePPCColdCC;
}

bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
  // On the A2, always unroll aggressively.
  if (ST->getCPUDirective() == PPC::DIR_A2)
    return true;

  return LoopHasReductions;
}

PPCTTIImpl::TTI::MemCmpExpansionOptions
PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  Options.LoadSizes = {8, 4, 2, 1};
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  return Options;
}

bool PPCTTIImpl::enableInterleavedAccessVectorization() {
  return true;
}

unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
  assert(ClassID == GPRRC || ClassID == FPRRC ||
         ClassID == VRRC || ClassID == VSXRC);
  if (ST->hasVSX()) {
    assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
    return ClassID == VSXRC ? 64 : 32;
  }
  assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
  return 32;
}

unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
  if (Vector)
    return ST->hasVSX() ? VSXRC : VRRC;
  else if (Ty && (Ty->getScalarType()->isFloatTy() ||
                  Ty->getScalarType()->isDoubleTy()))
    return ST->hasVSX() ? VSXRC : FPRRC;
  else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
                  Ty->getScalarType()->isPPC_FP128Ty()))
    return VRRC;
  else if (Ty && Ty->getScalarType()->isHalfTy())
    return VSXRC;
  else
    return GPRRC;
}

const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {

  switch (ClassID) {
    default:
      llvm_unreachable("unknown register class");
      return "PPC::unknown register class";
    case GPRRC:       return "PPC::GPRRC";
    case FPRRC:       return "PPC::FPRRC";
    case VRRC:        return "PPC::VRRC";
    case VSXRC:       return "PPC::VSXRC";
  }
}

TypeSize
PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
  switch (K) {
  case TargetTransformInfo::RGK_Scalar:
    return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
  case TargetTransformInfo::RGK_FixedWidthVector:
    return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
  case TargetTransformInfo::RGK_ScalableVector:
    return TypeSize::getScalable(0);
  }

  llvm_unreachable("Unsupported register kind");
}

unsigned PPCTTIImpl::getCacheLineSize() const {
  // Starting with P7 we have a cache line size of 128.
  unsigned Directive = ST->getCPUDirective();
  // Assume that Future CPU has the same cache line size as the others.
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
      Directive == PPC::DIR_PWR_FUTURE)
    return 128;

  // On other processors return a default of 64 bytes.
  return 64;
}

unsigned PPCTTIImpl::getPrefetchDistance() const {
  return 300;
}

unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
  unsigned Directive = ST->getCPUDirective();
  // The 440 has no SIMD support, but floating-point instructions
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
  if (Directive == PPC::DIR_440)
    return 5;

  // The A2 has no SIMD support, but floating-point instructions
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
  if (Directive == PPC::DIR_A2)
    return 6;

  // FIXME: For lack of any better information, do no harm...
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
    return 1;

  // For P7 and P8, floating-point instructions have a 6-cycle latency and
  // there are two execution units, so unroll by 12x for latency hiding.
  // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
  // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
  // Assume that future is the same as the others.
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
      Directive == PPC::DIR_PWR_FUTURE)
    return 12;

  // For most things, modern systems have two execution units (and
  // out-of-order execution).
  return 2;
}

// Returns a cost adjustment factor to adjust the cost of vector instructions
// on targets which there is overlap between the vector and scalar units,
// thereby reducing the overall throughput of vector code wrt. scalar code.
// An invalid instruction cost is returned if the type is an MMA vector type.
InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
                                                       Type *Ty1, Type *Ty2) {
  // If the vector type is of an MMA type (v256i1, v512i1), an invalid
  // instruction cost is returned. This is to signify to other cost computing
  // functions to return the maximum instruction cost in order to prevent any
  // opportunities for the optimizer to produce MMA types within the IR.
  if (isMMAType(Ty1))
    return InstructionCost::getInvalid();

  if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
    return InstructionCost(1);

  std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
  // If type legalization involves splitting the vector, we don't want to
  // double the cost at every step - only the last step.
  if (LT1.first != 1 || !LT1.second.isVector())
    return InstructionCost(1);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  if (TLI->isOperationExpand(ISD, LT1.second))
    return InstructionCost(1);

  if (Ty2) {
    std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
    if (LT2.first != 1 || !LT2.second.isVector())
      return InstructionCost(1);
  }

  return InstructionCost(2);
}

InstructionCost PPCTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
    ArrayRef<const Value *> Args,
    const Instruction *CxtI) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Args, CxtI);

  // Fallback to the default implementation.
  InstructionCost Cost = BaseT::getArithmeticInstrCost(
      Opcode, Ty, CostKind, Op1Info, Op2Info);
  return Cost * CostFactor;
}

InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
                                           ArrayRef<int> Mask,
                                           TTI::TargetCostKind CostKind,
                                           int Index, Type *SubTp,
                                           ArrayRef<const Value *> Args) {

  InstructionCost CostFactor =
      vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);

  // PPC, for both Altivec/VSX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). We need one such shuffle instruction for each actual
  // register (this is not true for arbitrary shuffles, but is true for the
  // structured types of shuffles covered by TTI::ShuffleKind).
  return LT.first * CostFactor;
}

InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
                                           TTI::TargetCostKind CostKind,
                                           const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  // Branches are assumed to be predicted.
  return 0;
}

InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
                                             Type *Src,
                                             TTI::CastContextHint CCH,
                                             TTI::TargetCostKind CostKind,
                                             const Instruction *I) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  InstructionCost Cost =
      BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
  Cost *= CostFactor;
  // TODO: Allow non-throughput costs that aren't binary.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost == 0 ? 0 : 1;
  return Cost;
}

InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                               Type *CondTy,
                                               CmpInst::Predicate VecPred,
                                               TTI::TargetCostKind CostKind,
                                               const Instruction *I) {
  InstructionCost CostFactor =
      vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  InstructionCost Cost =
      BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost;
  return Cost * CostFactor;
}

InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                               TTI::TargetCostKind CostKind,
                                               unsigned Index, Value *Op0,
                                               Value *Op1) {
  assert(Val->isVectorTy() && "This must be a vector type");

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  InstructionCost Cost =
      BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
  Cost *= CostFactor;

  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
    // Double-precision scalars are already located in index #0 (or #1 if LE).
    if (ISD == ISD::EXTRACT_VECTOR_ELT &&
        Index == (ST->isLittleEndian() ? 1 : 0))
      return 0;

    return Cost;

  } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
    unsigned EltSize = Val->getScalarSizeInBits();
    // Computing on 1 bit values requires extra mask or compare operations.
    unsigned MaskCost = VecMaskCost && EltSize == 1 ? 1 : 0;
    if (ST->hasP9Altivec()) {
      if (ISD == ISD::INSERT_VECTOR_ELT)
        // A move-to VSR and a permute/insert.  Assume vector operation cost
        // for both (cost will be 2x on P9).
        return 2 * CostFactor;

      // It's an extract.  Maybe we can do a cheap move-from VSR.
      unsigned EltSize = Val->getScalarSizeInBits();
      if (EltSize == 64) {
        unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
        if (Index == MfvsrdIndex)
          return 1;
      } else if (EltSize == 32) {
        unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
        if (Index == MfvsrwzIndex)
          return 1;
      }

      // We need a vector extract (or mfvsrld).  Assume vector operation cost.
      // The cost of the load constant for a vector extract is disregarded
      // (invariant, easily schedulable).
      return CostFactor + MaskCost;

    } else if (ST->hasDirectMove()) {
      // Assume permute has standard cost.
      // Assume move-to/move-from VSR have 2x standard cost.
      if (ISD == ISD::INSERT_VECTOR_ELT)
        return 3;
      return 3 + MaskCost;
    }
  }

  // Estimated cost of a load-hit-store delay.  This was obtained
  // experimentally as a minimum needed to prevent unprofitable
  // vectorization for the paq8p benchmark.  It may need to be
  // raised further if other unprofitable cases remain.
  unsigned LHSPenalty = 2;
  if (ISD == ISD::INSERT_VECTOR_ELT)
    LHSPenalty += 7;

  // Vector element insert/extract with Altivec is very expensive,
  // because they require store and reload with the attendant
  // processor stall for load-hit-store.  Until VSX is available,
  // these need to be estimated as very costly.
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
      ISD == ISD::INSERT_VECTOR_ELT)
    return LHSPenalty + Cost;

  return Cost;
}

InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                            MaybeAlign Alignment,
                                            unsigned AddressSpace,
                                            TTI::TargetCostKind CostKind,
                                            TTI::OperandValueInfo OpInfo,
                                            const Instruction *I) {

  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  if (TLI->getValueType(DL, Src,  true) == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                  CostKind);
  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  InstructionCost Cost =
      BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost;

  Cost *= CostFactor;

  bool IsAltivecType = ST->hasAltivec() &&
                       (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
                        LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
  bool IsVSXType = ST->hasVSX() &&
                   (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);

  // VSX has 32b/64b load instructions. Legalization can handle loading of
  // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
  // PPCTargetLowering can't compute the cost appropriately. So here we
  // explicitly check this case.
  unsigned MemBytes = Src->getPrimitiveSizeInBits();
  if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
      (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
    return 1;

  // Aligned loads and stores are easy.
  unsigned SrcBytes = LT.second.getStoreSize();
  if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
    return Cost;

  // If we can use the permutation-based load sequence, then this is also
  // relatively cheap (not counting loop-invariant instructions): one load plus
  // one permute (the last load in a series has extra cost, but we're
  // neglecting that here). Note that on the P7, we could do unaligned loads
  // for Altivec types using the VSX instructions, but that's more expensive
  // than using the permutation-based load sequence. On the P8, that's no
  // longer true.
  if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
      *Alignment >= LT.second.getScalarType().getStoreSize())
    return Cost + LT.first; // Add the cost of the permutations.

  // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
  // P7, unaligned vector loads are more expensive than the permutation-based
  // load sequence, so that might be used instead, but regardless, the net cost
  // is about the same (not counting loop-invariant instructions).
  if (IsVSXType || (ST->hasVSX() && IsAltivecType))
    return Cost;

  // Newer PPC supports unaligned memory access.
  if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
    return Cost;

  // PPC in general does not support unaligned loads and stores. They'll need
  // to be decomposed based on the alignment factor.

  // Add the cost of each scalar load or store.
  assert(Alignment);
  Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);

  // For a vector type, there is also scalarization overhead (only for
  // stores, loads are expanded using the vector-load + permutation sequence,
  // which is much less expensive).
  if (Src->isVectorTy() && Opcode == Instruction::Store)
    for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
         ++i)
      Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
                                 nullptr, nullptr);

  return Cost;
}

InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  InstructionCost CostFactor =
      vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
  if (!CostFactor.isValid())
    return InstructionCost::getMax();

  if (UseMaskForCond || UseMaskForGaps)
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                             Alignment, AddressSpace, CostKind,
                                             UseMaskForCond, UseMaskForGaps);

  assert(isa<VectorType>(VecTy) &&
         "Expect a vector type for interleaved memory op");

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);

  // Firstly, the cost of load/store operation.
  InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
                                         AddressSpace, CostKind);

  // PPC, for both Altivec/VSX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). For each result vector, we need one shuffle per incoming
  // vector (except that the first shuffle can take two incoming vectors
  // because it does not need to take itself).
  Cost += Factor*(LT.first-1);

  return Cost;
}

InstructionCost
PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                  TTI::TargetCostKind CostKind) {
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}

bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
                                       const Function *Callee,
                                       const ArrayRef<Type *> &Types) const {

  // We need to ensure that argument promotion does not
  // attempt to promote pointers to MMA types (__vector_pair
  // and __vector_quad) since these types explicitly cannot be
  // passed as arguments. Both of these types are larger than
  // the 128-bit Altivec vectors and have a scalar size of 1 bit.
  if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
    return false;

  return llvm::none_of(Types, [](Type *Ty) {
    if (Ty->isSized())
      return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
    return false;
  });
}

bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
                            LoopInfo *LI, DominatorTree *DT,
                            AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
  // Process nested loops first.
  for (Loop *I : *L)
    if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
      return false; // Stop search.

  HardwareLoopInfo HWLoopInfo(L);

  if (!HWLoopInfo.canAnalyze(*LI))
    return false;

  if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
    return false;

  if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
    return false;

  *BI = HWLoopInfo.ExitBranch;
  return true;
}

bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
                               const TargetTransformInfo::LSRCost &C2) {
  // PowerPC default behaviour here is "instruction number 1st priority".
  // If LsrNoInsnsCost is set, call default implementation.
  if (!LsrNoInsnsCost)
    return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
                    C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
           std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
                    C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
  else
    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
}

bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
  return false;
}

bool PPCTTIImpl::shouldBuildRelLookupTables() const {
  const PPCTargetMachine &TM = ST->getTargetMachine();
  // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
  if (!TM.isELFv2ABI())
    return false;
  return BaseT::shouldBuildRelLookupTables();
}

bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                    MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  case Intrinsic::ppc_altivec_lvx:
  case Intrinsic::ppc_altivec_lvxl:
  case Intrinsic::ppc_altivec_lvebx:
  case Intrinsic::ppc_altivec_lvehx:
  case Intrinsic::ppc_altivec_lvewx:
  case Intrinsic::ppc_vsx_lxvd2x:
  case Intrinsic::ppc_vsx_lxvw4x:
  case Intrinsic::ppc_vsx_lxvd2x_be:
  case Intrinsic::ppc_vsx_lxvw4x_be:
  case Intrinsic::ppc_vsx_lxvl:
  case Intrinsic::ppc_vsx_lxvll:
  case Intrinsic::ppc_vsx_lxvp: {
    Info.PtrVal = Inst->getArgOperand(0);
    Info.ReadMem = true;
    Info.WriteMem = false;
    return true;
  }
  case Intrinsic::ppc_altivec_stvx:
  case Intrinsic::ppc_altivec_stvxl:
  case Intrinsic::ppc_altivec_stvebx:
  case Intrinsic::ppc_altivec_stvehx:
  case Intrinsic::ppc_altivec_stvewx:
  case Intrinsic::ppc_vsx_stxvd2x:
  case Intrinsic::ppc_vsx_stxvw4x:
  case Intrinsic::ppc_vsx_stxvd2x_be:
  case Intrinsic::ppc_vsx_stxvw4x_be:
  case Intrinsic::ppc_vsx_stxvl:
  case Intrinsic::ppc_vsx_stxvll:
  case Intrinsic::ppc_vsx_stxvp: {
    Info.PtrVal = Inst->getArgOperand(1);
    Info.ReadMem = false;
    Info.WriteMem = true;
    return true;
  }
  case Intrinsic::ppc_stbcx:
  case Intrinsic::ppc_sthcx:
  case Intrinsic::ppc_stdcx:
  case Intrinsic::ppc_stwcx: {
    Info.PtrVal = Inst->getArgOperand(0);
    Info.ReadMem = false;
    Info.WriteMem = true;
    return true;
  }
  default:
    break;
  }

  return false;
}

bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
                                       Align Alignment) const {
  // Only load and stores instructions can have variable vector length on Power.
  if (Opcode != Instruction::Load && Opcode != Instruction::Store)
    return false;
  // Loads/stores with length instructions use bits 0-7 of the GPR operand and
  // therefore cannot be used in 32-bit mode.
  if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
    return false;
  if (isa<FixedVectorType>(DataType)) {
    unsigned VecWidth = DataType->getPrimitiveSizeInBits();
    return VecWidth == 128;
  }
  Type *ScalarTy = DataType->getScalarType();

  if (ScalarTy->isPointerTy())
    return true;

  if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
    return true;

  if (!ScalarTy->isIntegerTy())
    return false;

  unsigned IntWidth = ScalarTy->getIntegerBitWidth();
  return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
}

InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
                                              Align Alignment,
                                              unsigned AddressSpace,
                                              TTI::TargetCostKind CostKind,
                                              const Instruction *I) {
  InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
                                                  AddressSpace, CostKind, I);
  if (TLI->getValueType(DL, Src, true) == MVT::Other)
    return Cost;
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost;

  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
  assert(SrcVTy && "Expected a vector type for VP memory operations");

  if (hasActiveVectorLength(Opcode, Src, Alignment)) {
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);

    InstructionCost CostFactor =
        vectorCostAdjustmentFactor(Opcode, Src, nullptr);
    if (!CostFactor.isValid())
      return InstructionCost::getMax();

    InstructionCost Cost = LT.first * CostFactor;
    assert(Cost.isValid() && "Expected valid cost");

    // On P9 but not on P10, if the op is misaligned then it will cause a
    // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
    // ones.
    const Align DesiredAlignment(16);
    if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
      return Cost;

    // Since alignment may be under estimated, we try to compute the probability
    // that the actual address is aligned to the desired boundary. For example
    // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
    // time, while a 4-byte aligned load has a 25% chance of being 16-byte
    // aligned.
    float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
    float MisalignmentProb = 1.0 - AlignmentProb;
    return (MisalignmentProb * P9PipelineFlushEstimate) +
           (AlignmentProb * *Cost.getValue());
  }

  // Usually we should not get to this point, but the following is an attempt to
  // model the cost of legalization. Currently we can only lower intrinsics with
  // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
  return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}

bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
  return TLI->supportsTailCallFor(CB);
}