aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
blob: 375e63654db11847d615fd70e08ff8f041b8a121 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

let Namespace = "PPC" in {
def sub_lt : SubRegIndex<1>;
def sub_gt : SubRegIndex<1, 1>;
def sub_eq : SubRegIndex<1, 2>;
def sub_un : SubRegIndex<1, 3>;
def sub_32 : SubRegIndex<32>;
def sub_32_hi_phony : SubRegIndex<32,32>;
def sub_64 : SubRegIndex<64>;
def sub_vsx0 : SubRegIndex<128>;
def sub_vsx1 : SubRegIndex<128, 128>;
def sub_gp8_x0 : SubRegIndex<64>;
def sub_gp8_x1 : SubRegIndex<64, 64>;
def sub_fp0 : SubRegIndex<64>;
def sub_fp1 : SubRegIndex<64, 64>;
}


class PPCReg<string n> : Register<n> {
  let Namespace = "PPC";
}

// We identify all our registers with a 5-bit ID, for consistency's sake.

// GPR - One of the 32 32-bit general-purpose registers
class GPR<bits<5> num, string n> : PPCReg<n> {
  let HWEncoding{4-0} = num;
}

// GP8 - One of the 32 64-bit general-purpose registers
class GP8<GPR SubReg, string n> : PPCReg<n> {
  let HWEncoding = SubReg.HWEncoding;
  let SubRegs = [SubReg];
  let SubRegIndices = [sub_32];
}

class SPE<string n, bits<5> Enc, list<Register> subregs = []> : PPCReg<n> {
  let HWEncoding{4-0} = Enc;
  let SubRegs = subregs;
  let SubRegIndices = [sub_32, sub_32_hi_phony];
  let CoveredBySubRegs = 1;
}
// SPR - One of the 32-bit special-purpose registers
class SPR<bits<10> num, string n> : PPCReg<n> {
  let HWEncoding{9-0} = num;
}

// FPR - One of the 32 64-bit floating-point registers
class FPR<bits<5> num, string n> : PPCReg<n> {
  let HWEncoding{4-0} = num;
}

// FPPair - A pair of 64-bit floating-point registers.
class FPPair<string n, bits<5> EvenIndex> : PPCReg<n> {
  assert !eq(EvenIndex{0}, 0), "Index should be even.";
  let HWEncoding{4-0} = EvenIndex;
  let SubRegs = [!cast<FPR>("F"#EvenIndex), !cast<FPR>("F"#!add(EvenIndex, 1))];
  let DwarfNumbers = [-1, -1];
  let SubRegIndices = [sub_fp0, sub_fp1];
}

// VF - One of the 32 64-bit floating-point subregisters of the vector
// registers (used by VSX).
class VF<bits<5> num, string n> : PPCReg<n> {
  let HWEncoding{4-0} = num;
  let HWEncoding{5} = 1;
}

// VR - One of the 32 128-bit vector registers
class VR<VF SubReg, string n> : PPCReg<n> {
  let HWEncoding{4-0} = SubReg.HWEncoding{4-0};
  let HWEncoding{5} = 0;
  let SubRegs = [SubReg];
  let SubRegIndices = [sub_64];
}

// VSRL - One of the 32 128-bit VSX registers that overlap with the scalar
// floating-point registers.
class VSRL<FPR SubReg, string n> : PPCReg<n> {
  let HWEncoding = SubReg.HWEncoding;
  let SubRegs = [SubReg];
  let SubRegIndices = [sub_64];
}

// VSXReg - One of the VSX registers in the range vs32-vs63 with numbering
// and encoding to match.
class VSXReg<bits<6> num, string n> : PPCReg<n> {
  let HWEncoding{5-0} = num;
}

// CR - One of the 8 4-bit condition registers
class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
  let HWEncoding{2-0} = num;
  let SubRegs = subregs;
}

// CRBIT - One of the 32 1-bit condition register fields
class CRBIT<bits<5> num, string n> : PPCReg<n> {
  let HWEncoding{4-0} = num;
}

// VSR Pairs - One of the 32 paired even-odd consecutive VSRs.
class VSRPair<bits<5> num, string n, list<Register> subregs> : PPCReg<n> {
  let HWEncoding{4-0} = num;
  let SubRegs = subregs;
}

// GP8Pair - Consecutive even-odd paired GP8.
class GP8Pair<string n, bits<5> EvenIndex> : PPCReg<n> {
  assert !eq(EvenIndex{0}, 0), "Index should be even.";
  let HWEncoding{4-0} = EvenIndex;
  let SubRegs = [!cast<GP8>("X"#EvenIndex), !cast<GP8>("X"#!add(EvenIndex, 1))];
  let DwarfNumbers = [-1, -1];
  let SubRegIndices = [sub_gp8_x0, sub_gp8_x1];
}

// General-purpose registers
foreach Index = 0-31 in {
  def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
}

let isArtificial = 1 in {
  foreach Index = 0-31 in {
    def H#Index : GPR<-1,"">;
  }
}

// 64-bit General-purpose registers
foreach Index = 0-31 in {
  def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
                    DwarfRegNum<[Index, -2]>;
}

// SPE registers
foreach Index = 0-31 in {
  def S#Index : SPE<"r"#Index, Index, [!cast<GPR>("R"#Index), !cast<GPR>("H"#Index)]>,
                    DwarfRegNum<[!add(Index, 1200), !add(Index, 1200)]>;

}


// Floating-point registers
foreach Index = 0-31 in {
  def F#Index : FPR<Index, "f"#Index>,
                DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
}

// Floating-point pair registers
foreach Index = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 } in {
  def Fpair#Index : FPPair<"fp"#Index, Index>;
}

// 64-bit Floating-point subregisters of Altivec registers
// Note: the register names are v0-v31 or vs32-vs63 depending on the use.
//       Custom C++ code is used to produce the correct name and encoding.
foreach Index = 0-31 in {
  def VF#Index : VF<Index, "v" #Index>,
                 DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
}

// Vector registers
foreach Index = 0-31 in {
  def V#Index : VR<!cast<VF>("VF"#Index), "v"#Index>,
                DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
}

// VSX registers
foreach Index = 0-31 in {
  def VSL#Index : VSRL<!cast<FPR>("F"#Index), "vs"#Index>,
                  DwarfRegAlias<!cast<FPR>("F"#Index)>;
}

// Dummy VSX registers, this defines string: "vs32"-"vs63", and is only used for
// asm printing.
foreach Index = 32-63 in {
  def VSX#Index : VSXReg<Index, "vs"#Index>;
}

let SubRegIndices = [sub_vsx0, sub_vsx1] in {
  // VSR pairs 0 - 15 (corresponding to VSRs 0 - 30 paired with 1 - 31).
  foreach Index = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 } in {
    def VSRp#!srl(Index, 1) : VSRPair<!srl(Index, 1), "vsp"#Index,
                                      [!cast<VSRL>("VSL"#Index), !cast<VSRL>("VSL"#!add(Index, 1))]>,
                              DwarfRegNum<[-1, -1]>;
  }

  // VSR pairs 16 - 31 (corresponding to VSRs 32 - 62 paired with 33 - 63).
  foreach Index = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 } in {
    def VSRp#!add(!srl(Index, 1), 16) :
      VSRPair<!add(!srl(Index, 1), 16), "vsp"#!add(Index, 32),
              [!cast<VR>("V"#Index), !cast<VR>("V"#!add(Index, 1))]>,
      DwarfRegNum<[-1, -1]>;
  }
}

// 16 paired even-odd consecutive GP8s.
foreach Index = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 } in {
  def G8p#!srl(Index, 1) : GP8Pair<"r"#Index, Index>;
}

// The representation of r0 when treated as the constant 0.
let isConstant = true in {
def ZERO  : GPR<0, "0">,    DwarfRegAlias<R0>;
def ZERO8 : GP8<ZERO, "0">, DwarfRegAlias<X0>;
} // isConstant = true

// Representations of the frame pointer used by ISD::FRAMEADDR.
def FP   : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
def FP8  : GP8<FP, "**FRAME POINTER**">;

// Representations of the base pointer used by setjmp.
def BP   : GPR<0 /* arbitrary */, "**BASE POINTER**">;
def BP8  : GP8<BP, "**BASE POINTER**">;

// Condition register bits
def CR0LT : CRBIT< 0, "0">;
def CR0GT : CRBIT< 1, "1">;
def CR0EQ : CRBIT< 2, "2">;
def CR0UN : CRBIT< 3, "3">;
def CR1LT : CRBIT< 4, "4">;
def CR1GT : CRBIT< 5, "5">;
def CR1EQ : CRBIT< 6, "6">;
def CR1UN : CRBIT< 7, "7">;
def CR2LT : CRBIT< 8, "8">;
def CR2GT : CRBIT< 9, "9">;
def CR2EQ : CRBIT<10, "10">;
def CR2UN : CRBIT<11, "11">;
def CR3LT : CRBIT<12, "12">;
def CR3GT : CRBIT<13, "13">;
def CR3EQ : CRBIT<14, "14">;
def CR3UN : CRBIT<15, "15">;
def CR4LT : CRBIT<16, "16">;
def CR4GT : CRBIT<17, "17">;
def CR4EQ : CRBIT<18, "18">;
def CR4UN : CRBIT<19, "19">;
def CR5LT : CRBIT<20, "20">;
def CR5GT : CRBIT<21, "21">;
def CR5EQ : CRBIT<22, "22">;
def CR5UN : CRBIT<23, "23">;
def CR6LT : CRBIT<24, "24">;
def CR6GT : CRBIT<25, "25">;
def CR6EQ : CRBIT<26, "26">;
def CR6UN : CRBIT<27, "27">;
def CR7LT : CRBIT<28, "28">;
def CR7GT : CRBIT<29, "29">;
def CR7EQ : CRBIT<30, "30">;
def CR7UN : CRBIT<31, "31">;

// Condition registers
let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
}

// Link register
def LR  : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
//let Aliases = [LR] in
def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;

// Count register
def CTR  : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;

// VRsave register
def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;

// SPE extra registers
def SPEFSCR: SPR<512, "spefscr">, DwarfRegNum<[612, 112]>;

def XER: SPR<1, "xer">, DwarfRegNum<[76]>;

// Carry bit.  In the architecture this is really bit 0 of the XER register
// (which really is SPR register 1);  this is the only bit interesting to a
// compiler.
def CARRY: SPR<1, "xer">, DwarfRegNum<[76]> {
  let Aliases = [XER];
}

// FP rounding mode:  bits 30 and 31 of the FP status and control register
// This is not allocated as a normal register; it appears only in
// Uses and Defs.  The ABI says it needs to be preserved by a function,
// but this is not achieved by saving and restoring it as with
// most registers, it has to be done in code; to make this work all the
// return and call instructions are described as Uses of RM, so instructions
// that do nothing but change RM will not get deleted.
def RM: PPCReg<"**ROUNDING MODE**">;

let isAllocatable = 0 in
def GPRC32 : RegisterClass<"PPC", [i32,f32], 32, (add (sequence "H%u", 2, 12),
                                                      (sequence "H%u", 30, 13),
                                                      H31, H0, H1)>;

/// Register classes
// Allocate volatiles first
// then nonvolatiles in reverse order since stmw/lmw save from rN to r31
def GPRC : RegisterClass<"PPC", [i32,f32], 32, (add (sequence "R%u", 2, 12),
                                                    (sequence "R%u", 30, 13),
                                                    R31, R0, R1, FP, BP)> {
  // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so
  // put it at the end of the list.
  // On AIX, CSRs are allocated starting from R31 according to:
  // https://www.ibm.com/docs/en/ssw_aix_72/assembler/assembler_pdf.pdf.
  // This also helps setting the correct `NumOfGPRsSaved' in traceback table.
  let AltOrders = [(add (sub GPRC, R2), R2),
                   (add (sequence "R%u", 2, 12),
                        (sequence "R%u", 31, 13), R0, R1, FP, BP)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().getGPRAllocationOrderIdx();
  }];
}

def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
                                                (sequence "X%u", 30, 14),
                                                X31, X13, X0, X1, FP8, BP8)> {
  // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so
  // put it at the end of the list.
  let AltOrders = [(add (sub G8RC, X2), X2),
                   (add (sequence "X%u", 2, 12),
                        (sequence "X%u", 31, 13), X0, X1, FP8, BP8)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().getGPRAllocationOrderIdx();
  }];
}

// For some instructions r0 is special (representing the value 0 instead of
// the value in the r0 register), and we use these register subclasses to
// prevent r0 from being allocated for use by those instructions.
def GPRC_NOR0 : RegisterClass<"PPC", [i32,f32], 32, (add (sub GPRC, R0), ZERO)> {
  // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so
  // put it at the end of the list.
  let AltOrders = [(add (sub GPRC_NOR0, R2), R2),
                   (add (sequence "R%u", 2, 12),
                        (sequence "R%u", 31, 13), R1, FP, BP, ZERO)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().getGPRAllocationOrderIdx();
  }];
}

def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)> {
  // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so
  // put it at the end of the list.
  let AltOrders = [(add (sub G8RC_NOX0, X2), X2),
                   (add (sequence "X%u", 2, 12),
                        (sequence "X%u", 31, 13), X1, FP8, BP8, ZERO8)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().getGPRAllocationOrderIdx();
  }];
}

def SPERC : RegisterClass<"PPC", [f64], 64, (add (sequence "S%u", 2, 12),
                                                (sequence "S%u", 30, 13),
                                                S31, S0, S1)>;

// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
// ABI the size of the Floating-point register save area is determined by the
// allocated non-volatile register with the lowest register number, as FP
// register N is spilled to offset 8 * (32 - N) below the back chain word of the
// previous stack frame. By allocating non-volatiles in reverse order we make
// sure that the Floating-point register save area is always as small as
// possible because there aren't any unused spill slots.
def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
                                                (sequence "F%u", 31, 14))>;
def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;

// Floating point pair registers.
// Note that the type used for this register class is ppcf128. This is not
// completely correct. However, since we are not pattern matching any
// instructions for these registers and we are not register allocating or
// scheduling any of these instructions it should be safe to do this.
// The reason we didn't use the correct type (Decimal Floating Point) is that
// at the time of this implementation the correct type was not available.
def FpRC :
  RegisterClass<"PPC", [ppcf128], 128,
                (add Fpair0, Fpair2, Fpair4, Fpair6, Fpair8, Fpair10, Fpair12,
                     Fpair14, Fpair16, Fpair18, Fpair20, Fpair22, Fpair24,
                     Fpair26, Fpair28, Fpair30)> {
  let Size = 128;
}

def VRRC : RegisterClass<"PPC",
                         [v16i8,v8i16,v4i32,v2i64,v1i128,v4f32,v2f64, f128],
                         128,
                         (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
                             V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
                             V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;

// VSX register classes (the allocation order mirrors that of the corresponding
// subregister classes).
def VSLRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128,
                          (add (sequence "VSL%u", 0, 13),
                               (sequence "VSL%u", 31, 14))>;
def VSRC  : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128,
                          (add VSLRC, VRRC)>;

// Register classes for the 64-bit "scalar" VSX subregisters.
def VFRC :  RegisterClass<"PPC", [f64], 64,
                          (add VF2, VF3, VF4, VF5, VF0, VF1, VF6, VF7,
                               VF8, VF9, VF10, VF11, VF12, VF13, VF14,
                               VF15, VF16, VF17, VF18, VF19, VF31, VF30,
                               VF29, VF28, VF27, VF26, VF25, VF24, VF23,
                               VF22, VF21, VF20)>;
def VSFRC : RegisterClass<"PPC", [f64], 64, (add F8RC, VFRC)>;

// Allow spilling GPR's into caller-saved VSR's.
def SPILLTOVSRRC : RegisterClass<"PPC", [i64, f64], 64, (add G8RC, (sub VSFRC,
				(sequence "VF%u", 31, 20),
				(sequence "F%u", 31, 14)))>;

// Register class for single precision scalars in VSX registers
def VSSRC : RegisterClass<"PPC", [f32], 32, (add VSFRC)>;

def CRBITRC : RegisterClass<"PPC", [i1], 32,
  (add CR2LT, CR2GT, CR2EQ, CR2UN,
       CR3LT, CR3GT, CR3EQ, CR3UN,
       CR4LT, CR4GT, CR4EQ, CR4UN,
       CR5LT, CR5GT, CR5EQ, CR5UN,
       CR6LT, CR6GT, CR6EQ, CR6UN,
       CR7LT, CR7GT, CR7EQ, CR7UN,
       CR1LT, CR1GT, CR1EQ, CR1UN,
       CR0LT, CR0GT, CR0EQ, CR0UN)> {
  let Size = 32;
  let AltOrders = [(sub CRBITRC, CR2LT, CR2GT, CR2EQ, CR2UN, CR3LT, CR3GT,
                        CR3EQ, CR3UN, CR4LT, CR4GT, CR4EQ, CR4UN)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().isELFv2ABI() &&
           MF.getInfo<PPCFunctionInfo>()->isNonVolatileCRDisabled();
  }];
}

def CRRC : RegisterClass<"PPC", [i32], 32,
  (add CR0, CR1, CR5, CR6,
       CR7, CR2, CR3, CR4)> {
  let AltOrders = [(sub CRRC, CR2, CR3, CR4)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().isELFv2ABI() &&
           MF.getInfo<PPCFunctionInfo>()->isNonVolatileCRDisabled();
  }];
}
// The CTR registers are not allocatable because they're used by the
// decrement-and-branch instructions, and thus need to stay live across
// multiple basic blocks.
def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
  let isAllocatable = 0;
}
def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
  let isAllocatable = 0;
}

def LRRC : RegisterClass<"PPC", [i32], 32, (add LR)> {
  let isAllocatable = 0;
}
def LR8RC : RegisterClass<"PPC", [i64], 64, (add LR8)> {
  let isAllocatable = 0;
}

def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY, XER)> {
  let CopyCost = -1;
}

// Make AllocationOrder as similar as G8RC's to avoid potential spilling.
// Similarly, we have an AltOrder for 64-bit ELF ABI which r2 is allocated
// at last.
def G8pRC :
  RegisterClass<"PPC", [i128], 128,
                (add (sequence "G8p%u", 1, 5),
                     (sequence "G8p%u", 14, 7),
                     G8p15, G8p6, G8p0)> {
  let AltOrders = [(add (sub G8pRC, G8p1), G8p1)];
  let AltOrderSelect = [{
    return MF.getSubtarget<PPCSubtarget>().is64BitELFABI();
  }];
  let Size = 128;
}

include "PPCRegisterInfoMMA.td"
include "PPCRegisterInfoDMR.td"

//===----------------------------------------------------------------------===//
// PowerPC Operand Definitions.

// In the default PowerPC assembler syntax, registers are specified simply
// by number, so they cannot be distinguished from immediate values (without
// looking at the opcode).  This means that the default operand matching logic
// for the asm parser does not work, and we need to specify custom matchers.
// Since those can only be specified with RegisterOperand classes and not
// directly on the RegisterClass, all instructions patterns used by the asm
// parser need to use a RegisterOperand (instead of a RegisterClass) for
// all their register operands.
// For this purpose, we define one RegisterOperand for each RegisterClass,
// using the same name as the class, just in lower case.

def PPCRegGPRCAsmOperand : AsmOperandClass {
  let Name = "RegGPRC"; let PredicateMethod = "isRegNumber";
}
def gprc : RegisterOperand<GPRC> {
  let ParserMatchClass = PPCRegGPRCAsmOperand;
}
def PPCRegG8RCAsmOperand : AsmOperandClass {
  let Name = "RegG8RC"; let PredicateMethod = "isRegNumber";
}
def g8rc : RegisterOperand<G8RC> {
  let ParserMatchClass = PPCRegG8RCAsmOperand;
}
def PPCRegG8pRCAsmOperand : AsmOperandClass {
  let Name = "RegG8pRC"; let PredicateMethod = "isEvenRegNumber";
}
def g8prc : RegisterOperand<G8pRC> {
  let ParserMatchClass = PPCRegG8pRCAsmOperand;
}
def PPCRegGPRCNoR0AsmOperand : AsmOperandClass {
  let Name = "RegGPRCNoR0"; let PredicateMethod = "isRegNumber";
}
def gprc_nor0 : RegisterOperand<GPRC_NOR0> {
  let ParserMatchClass = PPCRegGPRCNoR0AsmOperand;
}
def PPCRegG8RCNoX0AsmOperand : AsmOperandClass {
  let Name = "RegG8RCNoX0"; let PredicateMethod = "isRegNumber";
}
def g8rc_nox0 : RegisterOperand<G8RC_NOX0> {
  let ParserMatchClass = PPCRegG8RCNoX0AsmOperand;
}
def PPCRegF8RCAsmOperand : AsmOperandClass {
  let Name = "RegF8RC"; let PredicateMethod = "isRegNumber";
}
def f8rc : RegisterOperand<F8RC> {
  let ParserMatchClass = PPCRegF8RCAsmOperand;
}
def PPCRegF4RCAsmOperand : AsmOperandClass {
  let Name = "RegF4RC"; let PredicateMethod = "isRegNumber";
}
def f4rc : RegisterOperand<F4RC> {
  let ParserMatchClass = PPCRegF4RCAsmOperand;
}
def PPCRegFpRCAsmOperand : AsmOperandClass {
  let Name = "RegFpRC"; let PredicateMethod = "isEvenRegNumber";
}
def fpairrc : RegisterOperand<FpRC> {
  let ParserMatchClass = PPCRegFpRCAsmOperand;
}
def PPCRegVRRCAsmOperand : AsmOperandClass {
  let Name = "RegVRRC"; let PredicateMethod = "isRegNumber";
}
def vrrc : RegisterOperand<VRRC> {
  let ParserMatchClass = PPCRegVRRCAsmOperand;
}
def PPCRegVFRCAsmOperand : AsmOperandClass {
  let Name = "RegVFRC"; let PredicateMethod = "isRegNumber";
}
def vfrc : RegisterOperand<VFRC> {
  let ParserMatchClass = PPCRegVFRCAsmOperand;
}
def PPCRegCRBITRCAsmOperand : AsmOperandClass {
  let Name = "RegCRBITRC"; let PredicateMethod = "isCRBitNumber";
}
def crbitrc : RegisterOperand<CRBITRC> {
  let ParserMatchClass = PPCRegCRBITRCAsmOperand;
}
def PPCRegCRRCAsmOperand : AsmOperandClass {
  let Name = "RegCRRC"; let PredicateMethod = "isCCRegNumber";
}
def crrc : RegisterOperand<CRRC> {
  let ParserMatchClass = PPCRegCRRCAsmOperand;
}
def PPCRegSPERCAsmOperand : AsmOperandClass {
  let Name = "RegSPERC"; let PredicateMethod = "isRegNumber";
}
def sperc : RegisterOperand<SPERC> {
  let ParserMatchClass = PPCRegSPERCAsmOperand;
}
def PPCRegSPE4RCAsmOperand : AsmOperandClass {
  let Name = "RegSPE4RC"; let PredicateMethod = "isRegNumber";
}
def spe4rc : RegisterOperand<GPRC> {
  let ParserMatchClass = PPCRegSPE4RCAsmOperand;
}

def PPCU1ImmAsmOperand : AsmOperandClass {
  let Name = "U1Imm"; let PredicateMethod = "isU1Imm";
  let RenderMethod = "addImmOperands";
}
def u1imm   : Operand<i32> {
  let PrintMethod = "printU1ImmOperand";
  let ParserMatchClass = PPCU1ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<1>";
  let OperandType = "OPERAND_IMMEDIATE";
}

def PPCU2ImmAsmOperand : AsmOperandClass {
  let Name = "U2Imm"; let PredicateMethod = "isU2Imm";
  let RenderMethod = "addImmOperands";
}
def u2imm   : Operand<i32> {
  let PrintMethod = "printU2ImmOperand";
  let ParserMatchClass = PPCU2ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<2>";
  let OperandType = "OPERAND_IMMEDIATE";
}

def PPCATBitsAsHintAsmOperand : AsmOperandClass {
  let Name = "ATBitsAsHint"; let PredicateMethod = "isATBitsAsHint";
  let RenderMethod = "addImmOperands"; // Irrelevant, predicate always fails.
}
def atimm   : Operand<i32> {
  let PrintMethod = "printATBitsAsHint";
  let ParserMatchClass = PPCATBitsAsHintAsmOperand;
  let OperandType = "OPERAND_IMMEDIATE";
}

def PPCU3ImmAsmOperand : AsmOperandClass {
  let Name = "U3Imm"; let PredicateMethod = "isU3Imm";
  let RenderMethod = "addImmOperands";
}
def u3imm   : Operand<i32> {
  let PrintMethod = "printU3ImmOperand";
  let ParserMatchClass = PPCU3ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<3>";
  let OperandType = "OPERAND_IMMEDIATE";
}

def PPCU4ImmAsmOperand : AsmOperandClass {
  let Name = "U4Imm"; let PredicateMethod = "isU4Imm";
  let RenderMethod = "addImmOperands";
}
def u4imm   : Operand<i32> {
  let PrintMethod = "printU4ImmOperand";
  let ParserMatchClass = PPCU4ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<4>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCS5ImmAsmOperand : AsmOperandClass {
  let Name = "S5Imm"; let PredicateMethod = "isS5Imm";
  let RenderMethod = "addImmOperands";
}
def s5imm   : Operand<i32> {
  let PrintMethod = "printS5ImmOperand";
  let ParserMatchClass = PPCS5ImmAsmOperand;
  let DecoderMethod = "decodeSImmOperand<5>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU5ImmAsmOperand : AsmOperandClass {
  let Name = "U5Imm"; let PredicateMethod = "isU5Imm";
  let RenderMethod = "addImmOperands";
}
def u5imm   : Operand<i32> {
  let PrintMethod = "printU5ImmOperand";
  let ParserMatchClass = PPCU5ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<5>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU6ImmAsmOperand : AsmOperandClass {
  let Name = "U6Imm"; let PredicateMethod = "isU6Imm";
  let RenderMethod = "addImmOperands";
}
def u6imm   : Operand<i32> {
  let PrintMethod = "printU6ImmOperand";
  let ParserMatchClass = PPCU6ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<6>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU7ImmAsmOperand : AsmOperandClass {
  let Name = "U7Imm"; let PredicateMethod = "isU7Imm";
  let RenderMethod = "addImmOperands";
}
def u7imm   : Operand<i32> {
  let PrintMethod = "printU7ImmOperand";
  let ParserMatchClass = PPCU7ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<7>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU8ImmAsmOperand : AsmOperandClass {
  let Name = "U8Imm"; let PredicateMethod = "isU8Imm";
  let RenderMethod = "addImmOperands";
}
def u8imm   : Operand<i32> {
  let PrintMethod = "printU8ImmOperand";
  let ParserMatchClass = PPCU8ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<8>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU10ImmAsmOperand : AsmOperandClass {
  let Name = "U10Imm"; let PredicateMethod = "isU10Imm";
  let RenderMethod = "addImmOperands";
}
def u10imm  : Operand<i32> {
  let PrintMethod = "printU10ImmOperand";
  let ParserMatchClass = PPCU10ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<10>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU12ImmAsmOperand : AsmOperandClass {
  let Name = "U12Imm"; let PredicateMethod = "isU12Imm";
  let RenderMethod = "addImmOperands";
}
def u12imm  : Operand<i32> {
  let PrintMethod = "printU12ImmOperand";
  let ParserMatchClass = PPCU12ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<12>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCS16ImmAsmOperand : AsmOperandClass {
  let Name = "S16Imm"; let PredicateMethod = "isS16Imm";
  let RenderMethod = "addS16ImmOperands";
}
def s16imm  : Operand<i32> {
  let PrintMethod = "printS16ImmOperand";
  let EncoderMethod = "getImm16Encoding";
  let ParserMatchClass = PPCS16ImmAsmOperand;
  let DecoderMethod = "decodeSImmOperand<16>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCU16ImmAsmOperand : AsmOperandClass {
  let Name = "U16Imm"; let PredicateMethod = "isU16Imm";
  let RenderMethod = "addU16ImmOperands";
}
def u16imm  : Operand<i32> {
  let PrintMethod = "printU16ImmOperand";
  let EncoderMethod = "getImm16Encoding";
  let ParserMatchClass = PPCU16ImmAsmOperand;
  let DecoderMethod = "decodeUImmOperand<16>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCS17ImmAsmOperand : AsmOperandClass {
  let Name = "S17Imm"; let PredicateMethod = "isS17Imm";
  let RenderMethod = "addS16ImmOperands";
}
def s17imm  : Operand<i32> {
  // This operand type is used for addis/lis to allow the assembler parser
  // to accept immediates in the range -65536..65535 for compatibility with
  // the GNU assembler.  The operand is treated as 16-bit otherwise.
  let PrintMethod = "printS16ImmOperand";
  let EncoderMethod = "getImm16Encoding";
  let ParserMatchClass = PPCS17ImmAsmOperand;
  let DecoderMethod = "decodeSImmOperand<16>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCS34ImmAsmOperand : AsmOperandClass {
  let Name = "S34Imm";
  let PredicateMethod = "isS34Imm";
  let RenderMethod = "addImmOperands";
}
def s34imm : Operand<i64> {
  let PrintMethod = "printS34ImmOperand";
  let EncoderMethod = "getImm34EncodingNoPCRel";
  let ParserMatchClass = PPCS34ImmAsmOperand;
  let DecoderMethod = "decodeSImmOperand<34>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def s34imm_pcrel : Operand<i64> {
  let PrintMethod = "printS34ImmOperand";
  let EncoderMethod = "getImm34EncodingPCRel";
  let ParserMatchClass = PPCS34ImmAsmOperand;
  let DecoderMethod = "decodeSImmOperand<34>";
  let OperandType = "OPERAND_IMMEDIATE";
}
def PPCImmZeroAsmOperand : AsmOperandClass {
  let Name = "ImmZero";
  let PredicateMethod = "isImmZero";
  let RenderMethod = "addImmOperands";
}
def immZero : Operand<i32> {
  let PrintMethod = "printImmZeroOperand";
  let ParserMatchClass = PPCImmZeroAsmOperand;
  let DecoderMethod = "decodeImmZeroOperand";
  let OperandType = "OPERAND_IMMEDIATE";
}

def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
def fpimm0neg : PatLeaf<(fpimm), [{return N->isExactlyValue(-0.0);}]>;

def PPCDirectBrAsmOperand : AsmOperandClass {
  let Name = "DirectBr"; let PredicateMethod = "isDirectBr";
  let RenderMethod = "addBranchTargetOperands";
}
def directbrtarget : Operand<OtherVT> {
  let PrintMethod = "printBranchOperand";
  let EncoderMethod = "getDirectBrEncoding";
  let DecoderMethod = "decodeDirectBrTarget";
  let ParserMatchClass = PPCDirectBrAsmOperand;
  let OperandType = "OPERAND_PCREL";
}
def absdirectbrtarget : Operand<OtherVT> {
  let PrintMethod = "printAbsBranchOperand";
  let EncoderMethod = "getAbsDirectBrEncoding";
  let DecoderMethod = "decodeDirectBrTarget";
  let ParserMatchClass = PPCDirectBrAsmOperand;
}
def PPCCondBrAsmOperand : AsmOperandClass {
  let Name = "CondBr"; let PredicateMethod = "isCondBr";
  let RenderMethod = "addBranchTargetOperands";
}
def condbrtarget : Operand<OtherVT> {
  let PrintMethod = "printBranchOperand";
  let EncoderMethod = "getCondBrEncoding";
  let DecoderMethod = "decodeCondBrTarget";
  let ParserMatchClass = PPCCondBrAsmOperand;
  let OperandType = "OPERAND_PCREL";
}
def abscondbrtarget : Operand<OtherVT> {
  let PrintMethod = "printAbsBranchOperand";
  let EncoderMethod = "getAbsCondBrEncoding";
  let DecoderMethod = "decodeCondBrTarget";
  let ParserMatchClass = PPCCondBrAsmOperand;
}
def calltarget : Operand<iPTR> {
  let PrintMethod = "printBranchOperand";
  let EncoderMethod = "getDirectBrEncoding";
  let DecoderMethod = "decodeDirectBrTarget";
  let ParserMatchClass = PPCDirectBrAsmOperand;
  let OperandType = "OPERAND_PCREL";
}
def abscalltarget : Operand<iPTR> {
  let PrintMethod = "printAbsBranchOperand";
  let EncoderMethod = "getAbsDirectBrEncoding";
  let DecoderMethod = "decodeDirectBrTarget";
  let ParserMatchClass = PPCDirectBrAsmOperand;
}
def PPCCRBitMaskOperand : AsmOperandClass {
 let Name = "CRBitMask"; let PredicateMethod = "isCRBitMask";
}
def crbitm: Operand<i8> {
  let PrintMethod = "printcrbitm";
  let EncoderMethod = "get_crbitm_encoding";
  let DecoderMethod = "decodeCRBitMOperand";
  let ParserMatchClass = PPCCRBitMaskOperand;
}
// Address operands
// A version of ptr_rc which excludes R0 (or X0 in 64-bit mode).
def PPCRegGxRCNoR0Operand : AsmOperandClass {
  let Name = "RegGxRCNoR0"; let PredicateMethod = "isRegNumber";
}
def ptr_rc_nor0 : Operand<iPTR>, PointerLikeRegClass<1> {
  let ParserMatchClass = PPCRegGxRCNoR0Operand;
}

// New addressing modes with 34 bit immediates.
def PPCDispRI34Operand : AsmOperandClass {
  let Name = "DispRI34"; let PredicateMethod = "isS34Imm";
  let RenderMethod = "addImmOperands";
}
def dispRI34 : Operand<iPTR> {
  let ParserMatchClass = PPCDispRI34Operand;
  let EncoderMethod = "getDispRI34Encoding";
  let DecoderMethod = "decodeSImmOperand<34>";
}
def dispRI34_pcrel : Operand<iPTR> {
  let ParserMatchClass = PPCDispRI34Operand;
  let EncoderMethod = "getDispRI34PCRelEncoding";
  let DecoderMethod = "decodeSImmOperand<34>";
}
def memri34 : Operand<iPTR> { // memri, imm is a 34-bit value.
  let PrintMethod = "printMemRegImm34";
  let MIOperandInfo = (ops dispRI34:$imm, ptr_rc_nor0:$reg);
}
// memri, imm is a 34-bit value for pc-relative instructions where
// base register is set to zero.
def memri34_pcrel : Operand<iPTR> { // memri, imm is a 34-bit value.
  let PrintMethod = "printMemRegImm34PCRel";
  let MIOperandInfo = (ops dispRI34_pcrel:$imm, immZero:$reg);
}

// A version of ptr_rc usable with the asm parser.
def PPCRegGxRCOperand : AsmOperandClass {
  let Name = "RegGxRC"; let PredicateMethod = "isRegNumber";
}
def ptr_rc_idx : Operand<iPTR>, PointerLikeRegClass<0> {
  let ParserMatchClass = PPCRegGxRCOperand;
}

def PPCDispRIOperand : AsmOperandClass {
 let Name = "DispRI"; let PredicateMethod = "isS16Imm";
 let RenderMethod = "addS16ImmOperands";
}
def dispRI : Operand<iPTR> {
  let ParserMatchClass = PPCDispRIOperand;
  let EncoderMethod = "getDispRIEncoding";
}
def PPCDispRIXOperand : AsmOperandClass {
 let Name = "DispRIX"; let PredicateMethod = "isS16ImmX4";
 let RenderMethod = "addS16ImmOperands";
}
def dispRIX : Operand<iPTR> {
  let ParserMatchClass = PPCDispRIXOperand;
  let EncoderMethod = "getDispRIXEncoding";
  let DecoderMethod = "decodeDispRIXOperand";
}
def PPCDispRIHashOperand : AsmOperandClass {
  let Name = "DispRIHash"; let PredicateMethod = "isHashImmX8";
  let RenderMethod = "addImmOperands";
}
def dispRIHash : Operand<iPTR> {
  let ParserMatchClass = PPCDispRIHashOperand;
  let EncoderMethod = "getDispRIHashEncoding";
  let DecoderMethod = "decodeDispRIHashOperand";
}
def PPCDispRIX16Operand : AsmOperandClass {
 let Name = "DispRIX16"; let PredicateMethod = "isS16ImmX16";
 let RenderMethod = "addS16ImmOperands";
}
def dispRIX16 : Operand<iPTR> {
  let ParserMatchClass = PPCDispRIX16Operand;
  let EncoderMethod = "getDispRIX16Encoding";
  let DecoderMethod = "decodeDispRIX16Operand";

}
def PPCDispSPE8Operand : AsmOperandClass {
 let Name = "DispSPE8"; let PredicateMethod = "isU8ImmX8";
 let RenderMethod = "addImmOperands";
}
def dispSPE8 : Operand<iPTR> {
  let ParserMatchClass = PPCDispSPE8Operand;
  let DecoderMethod = "decodeDispSPE8Operand";
  let EncoderMethod = "getDispSPE8Encoding";
}
def PPCDispSPE4Operand : AsmOperandClass {
 let Name = "DispSPE4"; let PredicateMethod = "isU7ImmX4";
 let RenderMethod = "addImmOperands";
}
def dispSPE4 : Operand<iPTR> {
  let ParserMatchClass = PPCDispSPE4Operand;
  let DecoderMethod = "decodeDispSPE4Operand";
  let EncoderMethod = "getDispSPE4Encoding";
}
def PPCDispSPE2Operand : AsmOperandClass {
 let Name = "DispSPE2"; let PredicateMethod = "isU6ImmX2";
 let RenderMethod = "addImmOperands";
}
def dispSPE2 : Operand<iPTR> {
  let ParserMatchClass = PPCDispSPE2Operand;
  let DecoderMethod = "decodeDispSPE2Operand";
  let EncoderMethod = "getDispSPE2Encoding";
}

def memri : Operand<iPTR> {
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispRI:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def memrr : Operand<iPTR> {
  let PrintMethod = "printMemRegReg";
  let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg, ptr_rc_idx:$offreg);
  let OperandType = "OPERAND_MEMORY";
}
def memrix : Operand<iPTR> {   // memri where the imm is 4-aligned.
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispRIX:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def memrihash : Operand<iPTR> {
  // memrihash 8-aligned for ROP Protection Instructions.
  let PrintMethod = "printMemRegImmHash";
  let MIOperandInfo = (ops dispRIHash:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def memrix16 : Operand<iPTR> { // memri, imm is 16-aligned, 12-bit, Inst{16:27}
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispRIX16:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def spe8dis : Operand<iPTR> {   // SPE displacement where the imm is 8-aligned.
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispSPE8:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def spe4dis : Operand<iPTR> {   // SPE displacement where the imm is 4-aligned.
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispSPE4:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}
def spe2dis : Operand<iPTR> {   // SPE displacement where the imm is 2-aligned.
  let PrintMethod = "printMemRegImm";
  let MIOperandInfo = (ops dispSPE2:$imm, ptr_rc_nor0:$reg);
  let OperandType = "OPERAND_MEMORY";
}

// A single-register address. This is used with the SjLj
// pseudo-instructions which translates to LD/LWZ.  These instructions requires
// G8RC_NOX0 registers.
def memr : Operand<iPTR> {
  let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg);
  let OperandType = "OPERAND_MEMORY";
}
def PPCTLSRegOperand : AsmOperandClass {
  let Name = "TLSReg"; let PredicateMethod = "isTLSReg";
  let RenderMethod = "addTLSRegOperands";
}
def tlsreg32 : Operand<i32> {
  let EncoderMethod = "getTLSRegEncoding";
  let ParserMatchClass = PPCTLSRegOperand;
}
def tlsgd32 : Operand<i32> {}
def tlscall32 : Operand<i32> {
  let PrintMethod = "printTLSCall";
  let MIOperandInfo = (ops calltarget:$func, tlsgd32:$sym);
  let EncoderMethod = "getTLSCallEncoding";
}

// PowerPC Predicate operand.
def pred : Operand<OtherVT> {
  let PrintMethod = "printPredicateOperand";
  let MIOperandInfo = (ops i32imm:$bibo, crrc:$reg);
}

def PPCRegVSRCAsmOperand : AsmOperandClass {
  let Name = "RegVSRC"; let PredicateMethod = "isVSRegNumber";
}
def vsrc : RegisterOperand<VSRC> {
  let ParserMatchClass = PPCRegVSRCAsmOperand;
}

def PPCRegVSFRCAsmOperand : AsmOperandClass {
  let Name = "RegVSFRC"; let PredicateMethod = "isVSRegNumber";
}
def vsfrc : RegisterOperand<VSFRC> {
  let ParserMatchClass = PPCRegVSFRCAsmOperand;
}

def PPCRegVSSRCAsmOperand : AsmOperandClass {
  let Name = "RegVSSRC"; let PredicateMethod = "isVSRegNumber";
}
def vssrc : RegisterOperand<VSSRC> {
  let ParserMatchClass = PPCRegVSSRCAsmOperand;
}

def PPCRegSPILLTOVSRRCAsmOperand : AsmOperandClass {
  let Name = "RegSPILLTOVSRRC"; let PredicateMethod = "isVSRegNumber";
}

def spilltovsrrc : RegisterOperand<SPILLTOVSRRC> {
  let ParserMatchClass = PPCRegSPILLTOVSRRCAsmOperand;
}

def PPCRegVSRpRCAsmOperand : AsmOperandClass {
  let Name = "RegVSRpRC"; let PredicateMethod = "isVSRpEvenRegNumber";
}

def vsrprc : RegisterOperand<VSRpRC> {
  let ParserMatchClass = PPCRegVSRpRCAsmOperand;
}

def PPCRegVSRpEvenRCAsmOperand : AsmOperandClass {
  let Name = "RegVSRpEvenRC"; let PredicateMethod = "isVSRpEvenRegNumber";
}

def vsrpevenrc : RegisterOperand<VSRpRC> {
  let ParserMatchClass = PPCRegVSRpEvenRCAsmOperand;
  let EncoderMethod = "getVSRpEvenEncoding";
  let DecoderMethod = "decodeVSRpEvenOperands";
}

def PPCRegACCRCAsmOperand : AsmOperandClass {
  let Name = "RegACCRC"; let PredicateMethod = "isACCRegNumber";
}

def acc : RegisterOperand<ACCRC> {
  let ParserMatchClass = PPCRegACCRCAsmOperand;
}

def uacc : RegisterOperand<UACCRC> {
  let ParserMatchClass = PPCRegACCRCAsmOperand;
}

// DMR Register Operands
def PPCRegDMRROWRCAsmOperand : AsmOperandClass {
  let Name = "RegDMRROWRC";
  let PredicateMethod = "isDMRROWRegNumber";
}

def dmrrow : RegisterOperand<DMRROWRC> {
  let ParserMatchClass = PPCRegDMRROWRCAsmOperand;
}

def PPCRegDMRROWpRCAsmOperand : AsmOperandClass {
  let Name = "RegDMRROWpRC";
  let PredicateMethod = "isDMRROWpRegNumber";
}

def dmrrowp : RegisterOperand<DMRROWpRC> {
  let ParserMatchClass = PPCRegDMRROWpRCAsmOperand;
}

def wacc : RegisterOperand<WACCRC> {
  let ParserMatchClass = PPCRegACCRCAsmOperand;
}

def wacc_hi : RegisterOperand<WACC_HIRC> {
  let ParserMatchClass = PPCRegACCRCAsmOperand;
}

def PPCRegDMRRCAsmOperand : AsmOperandClass {
  let Name = "RegDMRRC";
  let PredicateMethod = "isDMRRegNumber";
}

def dmr : RegisterOperand<DMRRC> {
  let ParserMatchClass = PPCRegDMRRCAsmOperand;
}

def PPCRegDMRpRCAsmOperand : AsmOperandClass {
  let Name = "RegDMRpRC";
  let PredicateMethod = "isDMRpRegNumber";
}

def dmrp : RegisterOperand<DMRpRC> {
  let ParserMatchClass = PPCRegDMRpRCAsmOperand;
}