aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
blob: 7d913a77cc71550e37744c72de863d273b70637f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//

#include "PPCRegisterInfo.h"
#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>

using namespace llvm;

#define DEBUG_TYPE "reginfo"

#define GET_REGINFO_TARGET_DESC
#include "PPCGenRegisterInfo.inc"

STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");

static cl::opt<bool>
EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
         cl::desc("Enable use of a base pointer for complex stack frames"));

static cl::opt<bool>
AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
         cl::desc("Force the use of a base pointer in every function"));

static cl::opt<bool>
EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
         cl::desc("Enable spills from gpr to vsr rather than stack"));

static cl::opt<bool>
StackPtrConst("ppc-stack-ptr-caller-preserved",
                cl::desc("Consider R1 caller preserved so stack saves of "
                         "caller preserved registers can be LICM candidates"),
                cl::init(true), cl::Hidden);

static cl::opt<unsigned>
MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
                  cl::desc("Maximum search distance for definition of CR bit "
                           "spill on ppc"),
                  cl::Hidden, cl::init(100));

// Copies/moves of physical accumulators are expensive operations
// that should be avoided whenever possible. MMA instructions are
// meant to be used in performance-sensitive computational kernels.
// This option is provided, at least for the time being, to give the
// user a tool to detect this expensive operation and either rework
// their code or report a compiler bug if that turns out to be the
// cause.
#ifndef NDEBUG
static cl::opt<bool>
ReportAccMoves("ppc-report-acc-moves",
               cl::desc("Emit information about accumulator register spills "
                        "and copies"),
               cl::Hidden, cl::init(false));
#endif

extern cl::opt<bool> DisableAutoPairedVecSt;

static unsigned offsetMinAlignForOpcode(unsigned OpC);

PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
  : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
                       TM.isPPC64() ? 0 : 1,
                       TM.isPPC64() ? 0 : 1),
    TM(TM) {
  ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
  ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
  ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
  ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
  ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
  ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
  ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
  ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
  ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;

  // 64-bit
  ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
  ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
  ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
  ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
  ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
  ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
  ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;

  // VSX
  ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
  ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
  ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
  ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
  ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
  ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
  ImmToIdxMap[PPC::LXV] = PPC::LXVX;
  ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
  ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
  ImmToIdxMap[PPC::STXV] = PPC::STXVX;
  ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
  ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;

  // SPE
  ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
  ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
  ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
  ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;

  // Power10
  ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
  ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
  ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
  ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
  ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
  ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;

  ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
  ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
  ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;

  ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
  ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
  ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
  ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
  ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;

  ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
  ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
  ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
  ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
}

/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *
PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
                                                                       const {
  // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
  // when it checks for ZERO folding.
  if (Kind == 1) {
    if (TM.isPPC64())
      return &PPC::G8RC_NOX0RegClass;
    return &PPC::GPRC_NOR0RegClass;
  }

  if (TM.isPPC64())
    return &PPC::G8RCRegClass;
  return &PPC::GPRCRegClass;
}

const MCPhysReg*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
    if (!TM.isPPC64() && Subtarget.isAIXABI())
      report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
    if (Subtarget.hasVSX()) {
      if (Subtarget.pairedVectorMemops())
        return CSR_64_AllRegs_VSRP_SaveList;
      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
        return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
      return CSR_64_AllRegs_VSX_SaveList;
    }
    if (Subtarget.hasAltivec()) {
      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
        return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
      return CSR_64_AllRegs_Altivec_SaveList;
    }
    return CSR_64_AllRegs_SaveList;
  }

  // On PPC64, we might need to save r2 (but only if it is not reserved).
  // We do not need to treat R2 as callee-saved when using PC-Relative calls
  // because any direct uses of R2 will cause it to be reserved. If the function
  // is a leaf or the only uses of R2 are implicit uses for calls, the calls
  // will use the @notoc relocation which will cause this function to set the
  // st_other bit to 1, thereby communicating to its caller that it arbitrarily
  // clobbers the TOC.
  bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
                !Subtarget.isUsingPCRelativeCalls();

  // Cold calling convention CSRs.
  if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
    if (Subtarget.isAIXABI())
      report_fatal_error("Cold calling unimplemented on AIX.");
    if (TM.isPPC64()) {
      if (Subtarget.pairedVectorMemops())
        return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
                      : CSR_SVR64_ColdCC_VSRP_SaveList;
      if (Subtarget.hasAltivec())
        return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
                      : CSR_SVR64_ColdCC_Altivec_SaveList;
      return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
                    : CSR_SVR64_ColdCC_SaveList;
    }
    // 32-bit targets.
    if (Subtarget.pairedVectorMemops())
      return CSR_SVR32_ColdCC_VSRP_SaveList;
    else if (Subtarget.hasAltivec())
      return CSR_SVR32_ColdCC_Altivec_SaveList;
    else if (Subtarget.hasSPE())
      return CSR_SVR32_ColdCC_SPE_SaveList;
    return CSR_SVR32_ColdCC_SaveList;
  }
  // Standard calling convention CSRs.
  if (TM.isPPC64()) {
    if (Subtarget.pairedVectorMemops()) {
      if (Subtarget.isAIXABI()) {
        if (!TM.getAIXExtendedAltivecABI())
          return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
        return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
      }
      return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
    }
    if (Subtarget.hasAltivec() &&
        (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
      return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
                    : CSR_PPC64_Altivec_SaveList;
    }
    return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
  }
  // 32-bit targets.
  if (Subtarget.isAIXABI()) {
    if (Subtarget.pairedVectorMemops())
      return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
                                           : CSR_AIX32_SaveList;
    if (Subtarget.hasAltivec())
      return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
                                           : CSR_AIX32_SaveList;
    return CSR_AIX32_SaveList;
  }
  if (Subtarget.pairedVectorMemops())
    return CSR_SVR432_VSRP_SaveList;
  if (Subtarget.hasAltivec())
    return CSR_SVR432_Altivec_SaveList;
  else if (Subtarget.hasSPE()) {
    if (TM.isPositionIndependent() && !TM.isPPC64())
      return CSR_SVR432_SPE_NO_S30_31_SaveList;
    return CSR_SVR432_SPE_SaveList;
   }
  return CSR_SVR432_SaveList;
}

const uint32_t *
PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                      CallingConv::ID CC) const {
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  if (CC == CallingConv::AnyReg) {
    if (Subtarget.hasVSX()) {
      if (Subtarget.pairedVectorMemops())
        return CSR_64_AllRegs_VSRP_RegMask;
      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
        return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
      return CSR_64_AllRegs_VSX_RegMask;
    }
    if (Subtarget.hasAltivec()) {
      if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
        return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
      return CSR_64_AllRegs_Altivec_RegMask;
    }
    return CSR_64_AllRegs_RegMask;
  }

  if (Subtarget.isAIXABI()) {
    if (Subtarget.pairedVectorMemops()) {
      if (!TM.getAIXExtendedAltivecABI())
        return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
      return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
    }
    return TM.isPPC64()
               ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
                      ? CSR_PPC64_Altivec_RegMask
                      : CSR_PPC64_RegMask)
               : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
                      ? CSR_AIX32_Altivec_RegMask
                      : CSR_AIX32_RegMask);
  }

  if (CC == CallingConv::Cold) {
    if (TM.isPPC64())
      return Subtarget.pairedVectorMemops()
                 ? CSR_SVR64_ColdCC_VSRP_RegMask
                 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
                                           : CSR_SVR64_ColdCC_RegMask);
    else
      return Subtarget.pairedVectorMemops()
                 ? CSR_SVR32_ColdCC_VSRP_RegMask
                 : (Subtarget.hasAltivec()
                        ? CSR_SVR32_ColdCC_Altivec_RegMask
                        : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
                                              : CSR_SVR32_ColdCC_RegMask));
  }

  if (TM.isPPC64())
    return Subtarget.pairedVectorMemops()
               ? CSR_SVR464_VSRP_RegMask
               : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
                                         : CSR_PPC64_RegMask);
  else
    return Subtarget.pairedVectorMemops()
               ? CSR_SVR432_VSRP_RegMask
               : (Subtarget.hasAltivec()
                      ? CSR_SVR432_Altivec_RegMask
                      : (Subtarget.hasSPE()
                             ? (TM.isPositionIndependent()
                                     ? CSR_SVR432_SPE_NO_S30_31_RegMask
                                     : CSR_SVR432_SPE_RegMask)
                             : CSR_SVR432_RegMask));
}

const uint32_t*
PPCRegisterInfo::getNoPreservedMask() const {
  return CSR_NoRegs_RegMask;
}

void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
  for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
    Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
}

BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  BitVector Reserved(getNumRegs());
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const PPCFrameLowering *TFI = getFrameLowering(MF);

  // The ZERO register is not really a register, but the representation of r0
  // when used in instructions that treat r0 as the constant 0.
  markSuperRegs(Reserved, PPC::ZERO);

  // The FP register is also not really a register, but is the representation
  // of the frame pointer register used by ISD::FRAMEADDR.
  markSuperRegs(Reserved, PPC::FP);

  // The BP register is also not really a register, but is the representation
  // of the base pointer register used by setjmp.
  markSuperRegs(Reserved, PPC::BP);

  // The counter registers must be reserved so that counter-based loops can
  // be correctly formed (and the mtctr instructions are not DCE'd).
  markSuperRegs(Reserved, PPC::CTR);
  markSuperRegs(Reserved, PPC::CTR8);

  markSuperRegs(Reserved, PPC::R1);
  markSuperRegs(Reserved, PPC::LR);
  markSuperRegs(Reserved, PPC::LR8);
  markSuperRegs(Reserved, PPC::RM);

  markSuperRegs(Reserved, PPC::VRSAVE);

  // The SVR4 ABI reserves r2 and r13
  if (Subtarget.isSVR4ABI()) {
    // We only reserve r2 if we need to use the TOC pointer. If we have no
    // explicit uses of the TOC pointer (meaning we're a leaf function with
    // no constant-pool loads, etc.) and we have no potential uses inside an
    // inline asm block, then we can treat r2 has an ordinary callee-saved
    // register.
    const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
    if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
      markSuperRegs(Reserved, PPC::R2);  // System-reserved register
    markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
  }

  // Always reserve r2 on AIX for now.
  // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
  if (Subtarget.isAIXABI())
    markSuperRegs(Reserved, PPC::R2);  // System-reserved register

  // On PPC64, r13 is the thread pointer. Never allocate this register.
  if (TM.isPPC64())
    markSuperRegs(Reserved, PPC::R13);

  if (TFI->needsFP(MF))
    markSuperRegs(Reserved, PPC::R31);

  bool IsPositionIndependent = TM.isPositionIndependent();
  if (hasBasePointer(MF)) {
    if (Subtarget.is32BitELFABI() && IsPositionIndependent)
      markSuperRegs(Reserved, PPC::R29);
    else
      markSuperRegs(Reserved, PPC::R30);
  }

  if (Subtarget.is32BitELFABI() && IsPositionIndependent)
    markSuperRegs(Reserved, PPC::R30);

  // Reserve Altivec registers when Altivec is unavailable.
  if (!Subtarget.hasAltivec())
    for (MCRegister Reg : PPC::VRRCRegClass)
      markSuperRegs(Reserved, Reg);

  if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
      !TM.getAIXExtendedAltivecABI()) {
    //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
    //  and cannot be used.
    for (auto Reg : CSR_Altivec_SaveList) {
      if (Reg == 0)
        break;
      markSuperRegs(Reserved, Reg);
      for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
        Reserved.set(*AS);
      }
    }
  }

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
                                       MCRegister PhysReg) const {
  // We cannot use getReservedRegs() to find the registers that are not asm
  // clobberable because there are some reserved registers which can be
  // clobbered by inline asm. For example, when LR is clobbered, the register is
  // saved and restored. We will hardcode the registers that are not asm
  // cloberable in this function.

  // The stack pointer (R1/X1) is not clobberable by inline asm
  return PhysReg != PPC::R1 && PhysReg != PPC::X1;
}

bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();

  LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
                    << ".\n");
  // If the callee saved info is invalid we have to default to true for safety.
  if (!MFI.isCalleeSavedInfoValid()) {
    LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
    return true;
  }

  // We will require the use of X-Forms because the frame is larger than what
  // can be represented in signed 16 bits that fit in the immediate of a D-Form.
  // If we need an X-Form then we need a register to store the address offset.
  unsigned FrameSize = MFI.getStackSize();
  // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
  if (FrameSize & ~0x7FFF) {
    LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
    return true;
  }

  // The callee saved info is valid so it can be traversed.
  // Checking for registers that need saving that do not have load or store
  // forms where the address offset is an immediate.
  for (const CalleeSavedInfo &CSI : Info) {
    // If the spill is to a register no scavenging is required.
    if (CSI.isSpilledToReg())
      continue;

    int FrIdx = CSI.getFrameIdx();
    Register Reg = CSI.getReg();

    const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
    unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
    if (!MFI.isFixedObjectIndex(FrIdx)) {
      // This is not a fixed object. If it requires alignment then we may still
      // need to use the XForm.
      if (offsetMinAlignForOpcode(Opcode) > 1) {
        LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
                          << " for register " << printReg(Reg, this) << ".\n");
        LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
                          << "alignment.\n");
        return true;
      }
    }

    // This is eiher:
    // 1) A fixed frame index object which we know are aligned so
    // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
    // need to consider the alignment here.
    // 2) A not fixed object but in that case we now know that the min required
    // alignment is no more than 1 based on the previous check.
    if (InstrInfo->isXFormMemOp(Opcode)) {
      LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
                        << " for register " << printReg(Reg, this) << ".\n");
      LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
      return true;
    }

    // This is a spill/restore of a quadword.
    if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
      LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
                        << " for register " << printReg(Reg, this) << ".\n");
      LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
      return true;
    }
  }
  LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
  return false;
}

bool PPCRegisterInfo::requiresVirtualBaseRegisters(
    const MachineFunction &MF) const {
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Do not use virtual base registers when ROP protection is turned on.
  // Virtual base registers break the layout of the local variable space and may
  // push the ROP Hash location past the 512 byte range of the ROP store
  // instruction.
  return !Subtarget.hasROPProtect();
}

bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
                                               const MachineFunction &MF) const {
  assert(Register::isPhysicalRegister(PhysReg));
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
    return false;
  if (PhysReg == Subtarget.getTOCPointerRegister())
    // X2/R2 is guaranteed to be preserved within a function if it is reserved.
    // The reason it's reserved is that it's the TOC pointer (and the function
    // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
    // with no TOC access), we can't claim that it is preserved.
    return (getReservedRegs(MF).test(PhysReg));
  if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
      !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
    // The value of the stack pointer does not change within a function after
    // the prologue and before the epilogue if there are no dynamic allocations
    // and no inline asm which clobbers X1/R1.
    return true;
  return false;
}

bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
                                            ArrayRef<MCPhysReg> Order,
                                            SmallVectorImpl<MCPhysReg> &Hints,
                                            const MachineFunction &MF,
                                            const VirtRegMap *VRM,
                                            const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();

  // Call the base implementation first to set any hints based on the usual
  // heuristics and decide what the return value should be. We want to return
  // the same value returned by the base implementation. If the base
  // implementation decides to return true and force the allocation then we
  // will leave it as such. On the other hand if the base implementation
  // decides to return false the following code will not force the allocation
  // as we are just looking to provide a hint.
  bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
      VirtReg, Order, Hints, MF, VRM, Matrix);

  // Don't use the allocation hints for ISAFuture.
  // The WACC registers used in ISAFuture are unlike the ACC registers on
  // Power 10 and so this logic to register allocation hints does not apply.
  if (MF.getSubtarget<PPCSubtarget>().isISAFuture())
    return BaseImplRetVal;

  // We are interested in instructions that copy values to ACC/UACC.
  // The copy into UACC will be simply a COPY to a subreg so we
  // want to allocate the corresponding physical subreg for the source.
  // The copy into ACC will be a BUILD_UACC so we want to allocate
  // the same number UACC for the source.
  const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
  for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
    const MachineOperand *ResultOp = nullptr;
    Register ResultReg;
    switch (Use.getOpcode()) {
    case TargetOpcode::COPY: {
      ResultOp = &Use.getOperand(0);
      ResultReg = ResultOp->getReg();
      if (ResultReg.isVirtual() &&
          MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
          VRM->hasPhys(ResultReg)) {
        Register UACCPhys = VRM->getPhys(ResultReg);
        Register HintReg;
        if (RegClass->contains(PPC::VSRp0)) {
          HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
          // Ensure that the hint is a VSRp register.
          if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
            Hints.push_back(HintReg);
        } else if (RegClass->contains(PPC::ACC0)) {
          HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
          if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
            Hints.push_back(HintReg);
        }
      }
      break;
    }
    case PPC::BUILD_UACC: {
      ResultOp = &Use.getOperand(0);
      ResultReg = ResultOp->getReg();
      if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
          VRM->hasPhys(ResultReg)) {
        Register ACCPhys = VRM->getPhys(ResultReg);
        assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
               "Expecting an ACC register for BUILD_UACC.");
        Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
        Hints.push_back(HintReg);
      }
      break;
    }
    }
  }
  return BaseImplRetVal;
}

unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                              MachineFunction &MF) const {
  const PPCFrameLowering *TFI = getFrameLowering(MF);
  const unsigned DefaultSafety = 1;

  switch (RC->getID()) {
  default:
    return 0;
  case PPC::G8RC_NOX0RegClassID:
  case PPC::GPRC_NOR0RegClassID:
  case PPC::SPERCRegClassID:
  case PPC::G8RCRegClassID:
  case PPC::GPRCRegClassID: {
    unsigned FP = TFI->hasFP(MF) ? 1 : 0;
    return 32 - FP - DefaultSafety;
  }
  case PPC::F4RCRegClassID:
  case PPC::F8RCRegClassID:
  case PPC::VSLRCRegClassID:
    return 32 - DefaultSafety;
  case PPC::VFRCRegClassID:
  case PPC::VRRCRegClassID: {
    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
    // Vector registers VR20-VR31 are reserved and cannot be used in the default
    // Altivec ABI on AIX.
    if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
      return 20 - DefaultSafety;
  }
    return 32 - DefaultSafety;
  case PPC::VSFRCRegClassID:
  case PPC::VSSRCRegClassID:
  case PPC::VSRCRegClassID: {
    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
    if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
      // Vector registers VR20-VR31 are reserved and cannot be used in the
      // default Altivec ABI on AIX.
      return 52 - DefaultSafety;
  }
    return 64 - DefaultSafety;
  case PPC::CRRCRegClassID:
    return 8 - DefaultSafety;
  }
}

const TargetRegisterClass *
PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
                                           const MachineFunction &MF) const {
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const auto *DefaultSuperclass =
      TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
  if (Subtarget.hasVSX()) {
    // With VSX, we can inflate various sub-register classes to the full VSX
    // register set.

    // For Power9 we allow the user to enable GPR to vector spills.
    // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
    // support to spill GPRC.
    if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
      if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
          RC == &PPC::G8RCRegClass) {
        InflateGP8RC++;
        return &PPC::SPILLTOVSRRCRegClass;
      }
      if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
        InflateGPRC++;
    }

    for (const auto *I = RC->getSuperClasses(); *I; ++I) {
      if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
        continue;

      switch ((*I)->getID()) {
      case PPC::VSSRCRegClassID:
        return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
      case PPC::VSFRCRegClassID:
      case PPC::VSRCRegClassID:
        return *I;
      case PPC::VSRpRCRegClassID:
        return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
      case PPC::ACCRCRegClassID:
      case PPC::UACCRCRegClassID:
        return Subtarget.hasMMA() ? *I : DefaultSuperclass;
      }
    }
  }

  return DefaultSuperclass;
}

//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//

/// lowerDynamicAlloc - Generate the code for allocating an object in the
/// current frame.  The sequence of code will be in the general form
///
///   addi   R0, SP, \#frameSize ; get the address of the previous frame
///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
///
void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
  // Get the instruction.
  MachineInstr &MI = *II;
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  // Get the basic block's function.
  MachineFunction &MF = *MBB.getParent();
  // Get the frame info.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Get the instruction info.
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  // Determine whether 64-bit pointers are used.
  bool LP64 = TM.isPPC64();
  DebugLoc dl = MI.getDebugLoc();

  // Get the maximum call stack size.
  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
  Align MaxAlign = MFI.getMaxAlign();
  assert(isAligned(MaxAlign, maxCallFrameSize) &&
         "Maximum call-frame size not sufficiently aligned");
  (void)MaxAlign;

  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  bool KillNegSizeReg = MI.getOperand(1).isKill();
  Register NegSizeReg = MI.getOperand(1).getReg();

  prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
  // Grow the stack and update the stack pointer link, then determine the
  // address of new allocated space.
  if (LP64) {
    BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
        .addReg(Reg, RegState::Kill)
        .addReg(PPC::X1)
        .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
    BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
        .addReg(PPC::X1)
        .addImm(maxCallFrameSize);
  } else {
    BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
        .addReg(Reg, RegState::Kill)
        .addReg(PPC::R1)
        .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
    BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
        .addReg(PPC::R1)
        .addImm(maxCallFrameSize);
  }

  // Discard the DYNALLOC instruction.
  MBB.erase(II);
}

/// To accomplish dynamic stack allocation, we have to calculate exact size
/// subtracted from the stack pointer according alignment information and get
/// previous frame pointer.
void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
                                           Register &NegSizeReg,
                                           bool &KillNegSizeReg,
                                           Register &FramePointer) const {
  // Get the instruction.
  MachineInstr &MI = *II;
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  // Get the basic block's function.
  MachineFunction &MF = *MBB.getParent();
  // Get the frame info.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Get the instruction info.
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  // Determine whether 64-bit pointers are used.
  bool LP64 = TM.isPPC64();
  DebugLoc dl = MI.getDebugLoc();
  // Get the total frame size.
  unsigned FrameSize = MFI.getStackSize();

  // Get stack alignments.
  const PPCFrameLowering *TFI = getFrameLowering(MF);
  Align TargetAlign = TFI->getStackAlign();
  Align MaxAlign = MFI.getMaxAlign();

  // Determine the previous frame's address.  If FrameSize can't be
  // represented as 16 bits or we need special alignment, then we load the
  // previous frame's address from 0(SP).  Why not do an addis of the hi?
  // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
  // Constructing the constant and adding would take 3 instructions.
  // Fortunately, a frame greater than 32K is rare.
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
    if (LP64)
      BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
          .addReg(PPC::X31)
          .addImm(FrameSize);
    else
      BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
          .addReg(PPC::R31)
          .addImm(FrameSize);
  } else if (LP64) {
    BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
        .addImm(0)
        .addReg(PPC::X1);
  } else {
    BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
        .addImm(0)
        .addReg(PPC::R1);
  }
  // Determine the actual NegSizeReg according to alignment info.
  if (LP64) {
    if (MaxAlign > TargetAlign) {
      unsigned UnalNegSizeReg = NegSizeReg;
      NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);

      // Unfortunately, there is no andi, only andi., and we can't insert that
      // here because we might clobber cr0 while it is live.
      BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
          .addImm(~(MaxAlign.value() - 1));

      unsigned NegSizeReg1 = NegSizeReg;
      NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
      BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
          .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
          .addReg(NegSizeReg1, RegState::Kill);
      KillNegSizeReg = true;
    }
  } else {
    if (MaxAlign > TargetAlign) {
      unsigned UnalNegSizeReg = NegSizeReg;
      NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);

      // Unfortunately, there is no andi, only andi., and we can't insert that
      // here because we might clobber cr0 while it is live.
      BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
          .addImm(~(MaxAlign.value() - 1));

      unsigned NegSizeReg1 = NegSizeReg;
      NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
      BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
          .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
          .addReg(NegSizeReg1, RegState::Kill);
      KillNegSizeReg = true;
    }
  }
}

void PPCRegisterInfo::lowerPrepareProbedAlloca(
    MachineBasicBlock::iterator II) const {
  MachineInstr &MI = *II;
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  // Get the basic block's function.
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Get the instruction info.
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  // Determine whether 64-bit pointers are used.
  bool LP64 = TM.isPPC64();
  DebugLoc dl = MI.getDebugLoc();
  Register FramePointer = MI.getOperand(0).getReg();
  const Register ActualNegSizeReg = MI.getOperand(1).getReg();
  bool KillNegSizeReg = MI.getOperand(2).isKill();
  Register NegSizeReg = MI.getOperand(2).getReg();
  const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
  // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
  if (FramePointer == NegSizeReg) {
    assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
                             "NegSizeReg should be killed");
    // FramePointer is clobbered earlier than the use of NegSizeReg in
    // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
    // misuse.
    BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
        .addReg(NegSizeReg)
        .addReg(NegSizeReg);
    NegSizeReg = ActualNegSizeReg;
    KillNegSizeReg = false;
  }
  prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
  // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
  // TargetAlign.
  if (NegSizeReg != ActualNegSizeReg)
    BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
        .addReg(NegSizeReg)
        .addReg(NegSizeReg);
  MBB.erase(II);
}

void PPCRegisterInfo::lowerDynamicAreaOffset(
    MachineBasicBlock::iterator II) const {
  // Get the instruction.
  MachineInstr &MI = *II;
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  // Get the basic block's function.
  MachineFunction &MF = *MBB.getParent();
  // Get the frame info.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Get the instruction info.
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();

  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
  bool is64Bit = TM.isPPC64();
  DebugLoc dl = MI.getDebugLoc();
  BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
          MI.getOperand(0).getReg())
      .addImm(maxCallFrameSize);
  MBB.erase(II);
}

/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
/// reserving a whole register (R0), we scrounge for one here. This generates
/// code like this:
///
///   mfcr rA                  ; Move the conditional register into GPR rA.
///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
///   stw rA, FI               ; Store rA to the frame.
///
void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
                                      unsigned FrameIndex) const {
  // Get the instruction.
  MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();

  bool LP64 = TM.isPPC64();
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  Register SrcReg = MI.getOperand(0).getReg();

  // We need to store the CR in the low 4-bits of the saved value. First, issue
  // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
      .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));

  // If the saved register wasn't CR0, shift the bits left so that they are in
  // CR0's slot.
  if (SrcReg != PPC::CR0) {
    Register Reg1 = Reg;
    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);

    // rlwinm rA, rA, ShiftBits, 0, 31.
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
      .addReg(Reg1, RegState::Kill)
      .addImm(getEncodingValue(SrcReg) * 4)
      .addImm(0)
      .addImm(31);
  }

  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
                    .addReg(Reg, RegState::Kill),
                    FrameIndex);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
                                      unsigned FrameIndex) const {
  // Get the instruction.
  MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();

  bool LP64 = TM.isPPC64();
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  Register DestReg = MI.getOperand(0).getReg();
  assert(MI.definesRegister(DestReg) &&
    "RESTORE_CR does not define its destination");

  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
                              Reg), FrameIndex);

  // If the reloaded register isn't CR0, shift the bits right so that they are
  // in the right CR's slot.
  if (DestReg != PPC::CR0) {
    Register Reg1 = Reg;
    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);

    unsigned ShiftBits = getEncodingValue(DestReg)*4;
    // rlwinm r11, r11, 32-ShiftBits, 0, 31.
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
             .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
             .addImm(31);
  }

  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
             .addReg(Reg, RegState::Kill);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
                                         unsigned FrameIndex) const {
  // Get the instruction.
  MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
  DebugLoc dl = MI.getDebugLoc();

  bool LP64 = TM.isPPC64();
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  Register SrcReg = MI.getOperand(0).getReg();

  // Search up the BB to find the definition of the CR bit.
  MachineBasicBlock::reverse_iterator Ins = MI;
  MachineBasicBlock::reverse_iterator Rend = MBB.rend();
  ++Ins;
  unsigned CRBitSpillDistance = 0;
  bool SeenUse = false;
  for (; Ins != Rend; ++Ins) {
    // Definition found.
    if (Ins->modifiesRegister(SrcReg, TRI))
      break;
    // Use found.
    if (Ins->readsRegister(SrcReg, TRI))
      SeenUse = true;
    // Unable to find CR bit definition within maximum search distance.
    if (CRBitSpillDistance == MaxCRBitSpillDist) {
      Ins = MI;
      break;
    }
    // Skip debug instructions when counting CR bit spill distance.
    if (!Ins->isDebugInstr())
      CRBitSpillDistance++;
  }

  // Unable to find the definition of the CR bit in the MBB.
  if (Ins == MBB.rend())
    Ins = MI;

  bool SpillsKnownBit = false;
  // There is no need to extract the CR bit if its value is already known.
  switch (Ins->getOpcode()) {
  case PPC::CRUNSET:
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
      .addImm(0);
    SpillsKnownBit = true;
    break;
  case PPC::CRSET:
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
      .addImm(-32768);
    SpillsKnownBit = true;
    break;
  default:
    // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
    // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
    // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
    // register), and SETNBC will set this.
    if (Subtarget.isISA3_1()) {
      BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
          .addReg(SrcReg, RegState::Undef);
      break;
    }

    // On Power9, we can use SETB to extract the LT bit. This only works for
    // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
    // of the bit we care about (32-bit sign bit) will be set to the value of
    // the LT bit (regardless of the other bits in the CR field).
    if (Subtarget.isISA3_0()) {
      if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
          SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
          SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
          SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
        BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
          .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
        break;
      }
    }

    // We need to move the CR field that contains the CR bit we are spilling.
    // The super register may not be explicitly defined (i.e. it can be defined
    // by a CR-logical that only defines the subreg) so we state that the CR
    // field is undef. Also, in order to preserve the kill flag on the CR bit,
    // we add it as an implicit use.
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
      .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
      .addReg(SrcReg,
              RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));

    // If the saved register wasn't CR0LT, shift the bits left so that the bit
    // to store is the first one. Mask all but that bit.
    Register Reg1 = Reg;
    Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);

    // rlwinm rA, rA, ShiftBits, 0, 0.
    BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
      .addReg(Reg1, RegState::Kill)
      .addImm(getEncodingValue(SrcReg))
      .addImm(0).addImm(0);
  }
  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
                    .addReg(Reg, RegState::Kill),
                    FrameIndex);

  bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
  // Discard the pseudo instruction.
  MBB.erase(II);
  if (SpillsKnownBit && KillsCRBit && !SeenUse) {
    Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
    Ins->removeOperand(0);
  }
}

void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
                                      unsigned FrameIndex) const {
  // Get the instruction.
  MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();

  bool LP64 = TM.isPPC64();
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  Register DestReg = MI.getOperand(0).getReg();
  assert(MI.definesRegister(DestReg) &&
    "RESTORE_CRBIT does not define its destination");

  addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
                              Reg), FrameIndex);

  BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);

  Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
          .addReg(getCRFromCRBit(DestReg));

  unsigned ShiftBits = getEncodingValue(DestReg);
  // rlwimi r11, r10, 32-ShiftBits, ..., ...
  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
      .addReg(RegO, RegState::Kill)
      .addReg(Reg, RegState::Kill)
      .addImm(ShiftBits ? 32 - ShiftBits : 0)
      .addImm(ShiftBits)
      .addImm(ShiftBits);

  BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
          getCRFromCRBit(DestReg))
      .addReg(RegO, RegState::Kill)
      // Make sure we have a use dependency all the way through this
      // sequence of instructions. We can't have the other bits in the CR
      // modified in between the mfocrf and the mtocrf.
      .addReg(getCRFromCRBit(DestReg), RegState::Implicit);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
                                      MCRegister DestReg, MCRegister SrcReg) {
#ifdef NDEBUG
  return;
#else
  if (ReportAccMoves) {
    std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
    std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
    dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
    MBB.dump();
  }
#endif
}

static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
                                    bool IsRestore) {
#ifdef NDEBUG
  return;
#else
  if (ReportAccMoves) {
    dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
           << (IsRestore ? "restore" : "spill") << ":\n";
    MBB.dump();
  }
#endif
}

static void spillRegPairs(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator II, DebugLoc DL,
                          const TargetInstrInfo &TII, Register SrcReg,
                          unsigned FrameIndex, bool IsLittleEndian,
                          bool IsKilled, bool TwoPairs) {
  unsigned Offset = 0;
  // The register arithmetic in this function does not support virtual
  // registers.
  assert(!SrcReg.isVirtual() &&
         "Spilling register pairs does not support virtual registers.");

  if (TwoPairs)
    Offset = IsLittleEndian ? 48 : 0;
  else
    Offset = IsLittleEndian ? 16 : 0;
  Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
                                        : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
                        .addReg(Reg, getKillRegState(IsKilled)),
                    FrameIndex, Offset);
  Offset += IsLittleEndian ? -16 : 16;
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
                        .addReg(Reg + 1, getKillRegState(IsKilled)),
                    FrameIndex, Offset);
  if (TwoPairs) {
    Offset += IsLittleEndian ? -16 : 16;
    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
                          .addReg(Reg + 2, getKillRegState(IsKilled)),
                      FrameIndex, Offset);
    Offset += IsLittleEndian ? -16 : 16;
    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
                          .addReg(Reg + 3, getKillRegState(IsKilled)),
                      FrameIndex, Offset);
  }
}

/// Remove any STXVP[X] instructions and split them out into a pair of
/// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
/// the command line.
void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
                                           unsigned FrameIndex) const {
  assert(DisableAutoPairedVecSt &&
         "Expecting to do this only if paired vector stores are disabled.");
  MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  Register SrcReg = MI.getOperand(0).getReg();
  bool IsLittleEndian = Subtarget.isLittleEndian();
  bool IsKilled = MI.getOperand(0).isKill();
  spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
                /* TwoPairs */ false);
  // Discard the original instruction.
  MBB.erase(II);
}

static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) {
#ifdef NDEBUG
  return;
#else
  if (ReportAccMoves) {
    dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill")
           << ":\n";
    MBB.dump();
  }
#endif
}

/// lowerACCSpilling - Generate the code for spilling the accumulator register.
/// Similarly to other spills/reloads that use pseudo-ops, we do not actually
/// eliminate the FrameIndex here nor compute the stack offset. We simply
/// create a real instruction with an FI and rely on eliminateFrameIndex to
/// handle the FI elimination.
void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
                                       unsigned FrameIndex) const {
  MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  Register SrcReg = MI.getOperand(0).getReg();
  bool IsKilled = MI.getOperand(0).isKill();

  bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
  Register Reg =
      PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
  bool IsLittleEndian = Subtarget.isLittleEndian();

  emitAccSpillRestoreInfo(MBB, IsPrimed, false);

  // De-prime the register being spilled, create two stores for the pair
  // subregisters accounting for endianness and then re-prime the register if
  // it isn't killed.  This uses the Offset parameter to addFrameReference() to
  // adjust the offset of the store that is within the 64-byte stack slot.
  if (IsPrimed)
    BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
  if (DisableAutoPairedVecSt)
    spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
                  /* TwoPairs */ true);
  else {
    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
                          .addReg(Reg, getKillRegState(IsKilled)),
                      FrameIndex, IsLittleEndian ? 32 : 0);
    addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
                          .addReg(Reg + 1, getKillRegState(IsKilled)),
                      FrameIndex, IsLittleEndian ? 0 : 32);
  }
  if (IsPrimed && !IsKilled)
    BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

/// lowerACCRestore - Generate the code to restore the accumulator register.
void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
                                      unsigned FrameIndex) const {
  MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  Register DestReg = MI.getOperand(0).getReg();
  assert(MI.definesRegister(DestReg) &&
         "RESTORE_ACC does not define its destination");

  bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
  Register Reg =
      PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
  bool IsLittleEndian = Subtarget.isLittleEndian();

  emitAccSpillRestoreInfo(MBB, IsPrimed, true);

  // Create two loads for the pair subregisters accounting for endianness and
  // then prime the accumulator register being restored.
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
                    FrameIndex, IsLittleEndian ? 32 : 0);
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
                    FrameIndex, IsLittleEndian ? 0 : 32);
  if (IsPrimed)
    BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

/// lowerWACCSpilling - Generate the code for spilling the wide accumulator
/// register.
void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II,
                                        unsigned FrameIndex) const {
  MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset>
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  bool IsLittleEndian = Subtarget.isLittleEndian();

  emitWAccSpillRestoreInfo(MBB, false);

  const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
  Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
  Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
  Register SrcReg = MI.getOperand(0).getReg();

  BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0)
      .addDef(VSRpReg1)
      .addReg(SrcReg);

  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
                        .addReg(VSRpReg0, RegState::Kill),
                    FrameIndex, IsLittleEndian ? 32 : 0);
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
                        .addReg(VSRpReg1, RegState::Kill),
                    FrameIndex, IsLittleEndian ? 0 : 32);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

/// lowerWACCRestore - Generate the code to restore the wide accumulator
/// register.
void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II,
                                       unsigned FrameIndex) const {
  MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset>
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  bool IsLittleEndian = Subtarget.isLittleEndian();

  emitWAccSpillRestoreInfo(MBB, true);

  const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
  Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
  Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
  Register DestReg = MI.getOperand(0).getReg();

  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0),
                    FrameIndex, IsLittleEndian ? 32 : 0);
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1),
                    FrameIndex, IsLittleEndian ? 0 : 32);

  // Kill VSRpReg0, VSRpReg1   (killedRegState::Killed)
  BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg)
      .addReg(VSRpReg0, RegState::Kill)
      .addReg(VSRpReg1, RegState::Kill);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

/// lowerQuadwordSpilling - Generate code to spill paired general register.
void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
                                            unsigned FrameIndex) const {
  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  Register SrcReg = MI.getOperand(0).getReg();
  bool IsKilled = MI.getOperand(0).isKill();

  Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
  bool IsLittleEndian = Subtarget.isLittleEndian();

  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
                        .addReg(Reg, getKillRegState(IsKilled)),
                    FrameIndex, IsLittleEndian ? 8 : 0);
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
                        .addReg(Reg + 1, getKillRegState(IsKilled)),
                    FrameIndex, IsLittleEndian ? 0 : 8);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

/// lowerQuadwordRestore - Generate code to restore paired general register.
void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
                                           unsigned FrameIndex) const {
  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  Register DestReg = MI.getOperand(0).getReg();
  assert(MI.definesRegister(DestReg) &&
         "RESTORE_QUADWORD does not define its destination");

  Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
  bool IsLittleEndian = Subtarget.isLittleEndian();

  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
                    IsLittleEndian ? 8 : 0);
  addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
                    IsLittleEndian ? 0 : 8);

  // Discard the pseudo instruction.
  MBB.erase(II);
}

bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
                                           Register Reg, int &FrameIdx) const {
  // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
  // prevent allocating an additional frame slot.
  // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
  // for 32-bit AIX the CR save area is in the linkage area at SP+4.
  // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
  // valid.
  // For 32-bit ELF, we have previously created the stack slot if needed, so
  // return its FrameIdx.
  if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
    FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
    return true;
  }
  return false;
}

// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlignForOpcode(unsigned OpC) {
  switch (OpC) {
  default:
    return 1;
  case PPC::LWA:
  case PPC::LWA_32:
  case PPC::LD:
  case PPC::LDU:
  case PPC::STD:
  case PPC::STDU:
  case PPC::DFLOADf32:
  case PPC::DFLOADf64:
  case PPC::DFSTOREf32:
  case PPC::DFSTOREf64:
  case PPC::LXSD:
  case PPC::LXSSP:
  case PPC::STXSD:
  case PPC::STXSSP:
  case PPC::STQ:
    return 4;
  case PPC::EVLDD:
  case PPC::EVSTDD:
    return 8;
  case PPC::LXV:
  case PPC::STXV:
  case PPC::LQ:
  case PPC::LXVP:
  case PPC::STXVP:
    return 16;
  }
}

// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlign(const MachineInstr &MI) {
  unsigned OpC = MI.getOpcode();
  return offsetMinAlignForOpcode(OpC);
}

// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
static unsigned getOffsetONFromFION(const MachineInstr &MI,
                                    unsigned FIOperandNum) {
  // Take into account whether it's an add or mem instruction
  unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
  if (MI.isInlineAsm())
    OffsetOperandNo = FIOperandNum - 1;
  else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
           MI.getOpcode() == TargetOpcode::PATCHPOINT)
    OffsetOperandNo = FIOperandNum + 1;

  return OffsetOperandNo;
}

bool
PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                     int SPAdj, unsigned FIOperandNum,
                                     RegScavenger *RS) const {
  assert(SPAdj == 0 && "Unexpected");

  // Get the instruction.
  MachineInstr &MI = *II;
  // Get the instruction's basic block.
  MachineBasicBlock &MBB = *MI.getParent();
  // Get the basic block's function.
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  // Get the instruction info.
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  // Get the frame info.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  DebugLoc dl = MI.getDebugLoc();

  unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);

  // Get the frame index.
  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();

  // Get the frame pointer save index.  Users of this index are primarily
  // DYNALLOC instructions.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  int FPSI = FI->getFramePointerSaveIndex();
  // Get the instruction opcode.
  unsigned OpC = MI.getOpcode();

  if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
    lowerDynamicAreaOffset(II);
    // lowerDynamicAreaOffset erases II
    return true;
  }

  // Special case for dynamic alloca.
  if (FPSI && FrameIndex == FPSI &&
      (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
    lowerDynamicAlloc(II);
    // lowerDynamicAlloc erases II
    return true;
  }

  if (FPSI && FrameIndex == FPSI &&
      (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
       OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
       OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
       OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
    lowerPrepareProbedAlloca(II);
    // lowerPrepareProbedAlloca erases II
    return true;
  }

  // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
  if (OpC == PPC::SPILL_CR) {
    lowerCRSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::RESTORE_CR) {
    lowerCRRestore(II, FrameIndex);
    return true;
  } else if (OpC == PPC::SPILL_CRBIT) {
    lowerCRBitSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::RESTORE_CRBIT) {
    lowerCRBitRestore(II, FrameIndex);
    return true;
  } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
    lowerACCSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
    lowerACCRestore(II, FrameIndex);
    return true;
  } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
    lowerOctWordSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::SPILL_WACC) {
    lowerWACCSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::RESTORE_WACC) {
    lowerWACCRestore(II, FrameIndex);
    return true;
  } else if (OpC == PPC::SPILL_QUADWORD) {
    lowerQuadwordSpilling(II, FrameIndex);
    return true;
  } else if (OpC == PPC::RESTORE_QUADWORD) {
    lowerQuadwordRestore(II, FrameIndex);
    return true;
  }

  // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
  MI.getOperand(FIOperandNum).ChangeToRegister(
    FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);

  // If the instruction is not present in ImmToIdxMap, then it has no immediate
  // form (and must be r+r).
  bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
                   OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);

  // Now add the frame object offset to the offset from r1.
  int64_t Offset = MFI.getObjectOffset(FrameIndex);
  Offset += MI.getOperand(OffsetOperandNo).getImm();

  // If we're not using a Frame Pointer that has been set to the value of the
  // SP before having the stack size subtracted from it, then add the stack size
  // to Offset to get the correct offset.
  // Naked functions have stack size 0, although getStackSize may not reflect
  // that because we didn't call all the pieces that compute it for naked
  // functions.
  if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
    if (!(hasBasePointer(MF) && FrameIndex < 0))
      Offset += MFI.getStackSize();
  }

  // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
  // transform it to the prefixed version so we don't have to use the XForm.
  if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
      (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
      Subtarget.hasPrefixInstrs()) {
    unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
    MI.setDesc(TII.get(NewOpc));
    OpC = NewOpc;
  }

  // If we can, encode the offset directly into the instruction.  If this is a
  // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
  // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
  // clear can be encoded.  This is extremely uncommon, because normally you
  // only "std" to a stack slot that is at least 4-byte aligned, but it can
  // happen in invalid code.
  assert(OpC != PPC::DBG_VALUE &&
         "This should be handled in a target-independent way");
  // FIXME: This should be factored out to a separate function as prefixed
  // instructions add a number of opcodes for which we can use 34-bit imm.
  bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
                            isUInt<8>(Offset) :
                            isInt<16>(Offset);
  if (TII.isPrefixed(MI.getOpcode()))
    OffsetFitsMnemonic = isInt<34>(Offset);
  if (!noImmForm && ((OffsetFitsMnemonic &&
                      ((Offset % offsetMinAlign(MI)) == 0)) ||
                     OpC == TargetOpcode::STACKMAP ||
                     OpC == TargetOpcode::PATCHPOINT)) {
    MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
    return false;
  }

  // The offset doesn't fit into a single register, scavenge one to build the
  // offset in.

  bool is64Bit = TM.isPPC64();
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
  const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
  unsigned NewOpcode = 0u;
  bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() &&
                          RS->getRegsAvailable(&PPC::VSFRCRegClass).any();
  Register SRegHi, SReg, VSReg;

  // The register scavenger is unable to get a GPR but can get a VSR. We
  // need to stash a GPR into a VSR so that we can free one up.
  if (ScavengingFailed && Subtarget.hasDirectMove()) {
    // Pick a volatile register and if we are spilling/restoring that
    // particular one, pick the next one.
    SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4;
    if (MI.getOperand(0).getReg() == SReg)
      SRegHi = SReg = SReg + 1;
    VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass);
    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg)
        .addReg(SReg);
  } else {
    SRegHi = MF.getRegInfo().createVirtualRegister(RC);
    SReg = MF.getRegInfo().createVirtualRegister(RC);
  }

  // Insert a set of rA with the full offset value before the ld, st, or add
  if (isInt<16>(Offset))
    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
        .addImm(Offset);
  else if (isInt<32>(Offset)) {
    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
        .addImm(Offset >> 16);
    BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
        .addReg(SRegHi, RegState::Kill)
        .addImm(Offset);
  } else {
    assert(is64Bit && "Huge stack is only supported on PPC64");
    TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
  }

  // Convert into indexed form of the instruction:
  //
  //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
  //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
  unsigned OperandBase;

  if (noImmForm)
    OperandBase = 1;
  else if (OpC != TargetOpcode::INLINEASM &&
           OpC != TargetOpcode::INLINEASM_BR) {
    assert(ImmToIdxMap.count(OpC) &&
           "No indexed form of load or store available!");
    NewOpcode = ImmToIdxMap.find(OpC)->second;
    MI.setDesc(TII.get(NewOpcode));
    OperandBase = 1;
  } else {
    OperandBase = OffsetOperandNo;
  }

  Register StackReg = MI.getOperand(FIOperandNum).getReg();
  MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
  MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);

  // If we stashed a value from a GPR into a VSR, we need to get it back after
  // spilling the register.
  if (ScavengingFailed && Subtarget.hasDirectMove())
    BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg)
        .addReg(VSReg);

  // Since these are not real X-Form instructions, we must
  // add the registers and access 0(NewReg) rather than
  // emitting the X-Form pseudo.
  if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
    assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
    Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
    BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
        .addReg(SReg, RegState::Kill)
        .addReg(StackReg);
    MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
    MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
    MI.getOperand(OperandBase).ChangeToImmediate(0);
  }
  return false;
}

Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const PPCFrameLowering *TFI = getFrameLowering(MF);

  if (!TM.isPPC64())
    return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
  else
    return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
}

Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  if (!hasBasePointer(MF))
    return getFrameRegister(MF);

  if (TM.isPPC64())
    return PPC::X30;

  if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
    return PPC::R29;

  return PPC::R30;
}

bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  if (!EnableBasePointer)
    return false;
  if (AlwaysBasePointer)
    return true;

  // If we need to realign the stack, then the stack pointer can no longer
  // serve as an offset into the caller's stack space. As a result, we need a
  // base pointer.
  return hasStackRealignment(MF);
}

/// Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool PPCRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
  assert(Offset < 0 && "Local offset must be negative");

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores that have
  // an r+i form. Return false for everything else.
  unsigned OpC = MI->getOpcode();
  if (!ImmToIdxMap.count(OpC))
    return false;

  // Don't generate a new virtual base register just to add zero to it.
  if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
      MI->getOperand(2).getImm() == 0)
    return false;

  MachineBasicBlock &MBB = *MI->getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCFrameLowering *TFI = getFrameLowering(MF);
  unsigned StackEst = TFI->determineFrameLayout(MF, true);

  // If we likely don't need a stack frame, then we probably don't need a
  // virtual base register either.
  if (!StackEst)
    return false;

  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += StackEst;

  // The frame pointer will point to the end of the stack, so estimate the
  // offset as the difference between the object offset and the FP location.
  return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
}

/// Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                       int FrameIdx,
                                                       int64_t Offset) const {
  unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;

  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL;                  // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();

  const MachineFunction &MF = *MBB->getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  const MCInstrDesc &MCID = TII.get(ADDriOpc);
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  const TargetRegisterClass *RC = getPointerRegClass(MF);
  Register BaseReg = MRI.createVirtualRegister(RC);
  MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));

  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
    .addFrameIndex(FrameIdx).addImm(Offset);

  return BaseReg;
}

void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
                                        int64_t Offset) const {
  unsigned FIOperandNum = 0;
  while (!MI.getOperand(FIOperandNum).isFI()) {
    ++FIOperandNum;
    assert(FIOperandNum < MI.getNumOperands() &&
           "Instr doesn't have FrameIndex operand!");
  }

  MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
  unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
  Offset += MI.getOperand(OffsetOperandNo).getImm();
  MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);

  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  const MCInstrDesc &MCID = MI.getDesc();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  MRI.constrainRegClass(BaseReg,
                        TII.getRegClass(MCID, FIOperandNum, this, MF));
}

bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                         Register BaseReg,
                                         int64_t Offset) const {
  unsigned FIOperandNum = 0;
  while (!MI->getOperand(FIOperandNum).isFI()) {
    ++FIOperandNum;
    assert(FIOperandNum < MI->getNumOperands() &&
           "Instr doesn't have FrameIndex operand!");
  }

  unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
  Offset += MI->getOperand(OffsetOperandNo).getImm();

  return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
         MI->getOpcode() == TargetOpcode::STACKMAP ||
         MI->getOpcode() == TargetOpcode::PATCHPOINT ||
         (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
}