aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/IR/DataLayout.cpp
blob: a2f5714c706874ab62d5a1c1fa291b18b7426d87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&.  None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/DataLayout.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemAlloc.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <new>
#include <utility>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Support for StructLayout
//===----------------------------------------------------------------------===//

StructLayout::StructLayout(StructType *ST, const DataLayout &DL)
    : StructSize(TypeSize::getFixed(0)) {
  assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
  IsPadded = false;
  NumElements = ST->getNumElements();

  // Loop over each of the elements, placing them in memory.
  for (unsigned i = 0, e = NumElements; i != e; ++i) {
    Type *Ty = ST->getElementType(i);
    if (i == 0 && Ty->isScalableTy())
      StructSize = TypeSize::getScalable(0);

    const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);

    // Add padding if necessary to align the data element properly.
    // Currently the only structure with scalable size will be the homogeneous
    // scalable vector types. Homogeneous scalable vector types have members of
    // the same data type so no alignment issue will happen. The condition here
    // assumes so and needs to be adjusted if this assumption changes (e.g. we
    // support structures with arbitrary scalable data type, or structure that
    // contains both fixed size and scalable size data type members).
    if (!StructSize.isScalable() && !isAligned(TyAlign, StructSize)) {
      IsPadded = true;
      StructSize = TypeSize::getFixed(alignTo(StructSize, TyAlign));
    }

    // Keep track of maximum alignment constraint.
    StructAlignment = std::max(TyAlign, StructAlignment);

    getMemberOffsets()[i] = StructSize;
    // Consume space for this data item
    StructSize += DL.getTypeAllocSize(Ty);
  }

  // Add padding to the end of the struct so that it could be put in an array
  // and all array elements would be aligned correctly.
  if (!StructSize.isScalable() && !isAligned(StructAlignment, StructSize)) {
    IsPadded = true;
    StructSize = TypeSize::getFixed(alignTo(StructSize, StructAlignment));
  }
}

/// getElementContainingOffset - Given a valid offset into the structure,
/// return the structure index that contains it.
unsigned StructLayout::getElementContainingOffset(uint64_t FixedOffset) const {
  assert(!StructSize.isScalable() &&
         "Cannot get element at offset for structure containing scalable "
         "vector types");
  TypeSize Offset = TypeSize::getFixed(FixedOffset);
  ArrayRef<TypeSize> MemberOffsets = getMemberOffsets();

  const auto *SI =
      std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset,
                       [](TypeSize LHS, TypeSize RHS) -> bool {
                         return TypeSize::isKnownLT(LHS, RHS);
                       });
  assert(SI != MemberOffsets.begin() && "Offset not in structure type!");
  --SI;
  assert(TypeSize::isKnownLE(*SI, Offset) && "upper_bound didn't work");
  assert(
      (SI == MemberOffsets.begin() || TypeSize::isKnownLE(*(SI - 1), Offset)) &&
      (SI + 1 == MemberOffsets.end() ||
       TypeSize::isKnownGT(*(SI + 1), Offset)) &&
      "Upper bound didn't work!");

  // Multiple fields can have the same offset if any of them are zero sized.
  // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
  // at the i32 element, because it is the last element at that offset.  This is
  // the right one to return, because anything after it will have a higher
  // offset, implying that this element is non-empty.
  return SI - MemberOffsets.begin();
}

//===----------------------------------------------------------------------===//
// LayoutAlignElem, LayoutAlign support
//===----------------------------------------------------------------------===//

LayoutAlignElem LayoutAlignElem::get(Align ABIAlign, Align PrefAlign,
                                     uint32_t BitWidth) {
  assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
  LayoutAlignElem retval;
  retval.ABIAlign = ABIAlign;
  retval.PrefAlign = PrefAlign;
  retval.TypeBitWidth = BitWidth;
  return retval;
}

bool LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
  return ABIAlign == rhs.ABIAlign && PrefAlign == rhs.PrefAlign &&
         TypeBitWidth == rhs.TypeBitWidth;
}

//===----------------------------------------------------------------------===//
// PointerAlignElem, PointerAlign support
//===----------------------------------------------------------------------===//

PointerAlignElem PointerAlignElem::getInBits(uint32_t AddressSpace,
                                             Align ABIAlign, Align PrefAlign,
                                             uint32_t TypeBitWidth,
                                             uint32_t IndexBitWidth) {
  assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
  PointerAlignElem retval;
  retval.AddressSpace = AddressSpace;
  retval.ABIAlign = ABIAlign;
  retval.PrefAlign = PrefAlign;
  retval.TypeBitWidth = TypeBitWidth;
  retval.IndexBitWidth = IndexBitWidth;
  return retval;
}

bool
PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
  return (ABIAlign == rhs.ABIAlign && AddressSpace == rhs.AddressSpace &&
          PrefAlign == rhs.PrefAlign && TypeBitWidth == rhs.TypeBitWidth &&
          IndexBitWidth == rhs.IndexBitWidth);
}

//===----------------------------------------------------------------------===//
//                       DataLayout Class Implementation
//===----------------------------------------------------------------------===//

const char *DataLayout::getManglingComponent(const Triple &T) {
  if (T.isOSBinFormatGOFF())
    return "-m:l";
  if (T.isOSBinFormatMachO())
    return "-m:o";
  if ((T.isOSWindows() || T.isUEFI()) && T.isOSBinFormatCOFF())
    return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
  if (T.isOSBinFormatXCOFF())
    return "-m:a";
  return "-m:e";
}

static const std::pair<AlignTypeEnum, LayoutAlignElem> DefaultAlignments[] = {
    {INTEGER_ALIGN, {1, Align(1), Align(1)}},    // i1
    {INTEGER_ALIGN, {8, Align(1), Align(1)}},    // i8
    {INTEGER_ALIGN, {16, Align(2), Align(2)}},   // i16
    {INTEGER_ALIGN, {32, Align(4), Align(4)}},   // i32
    {INTEGER_ALIGN, {64, Align(4), Align(8)}},   // i64
    {FLOAT_ALIGN, {16, Align(2), Align(2)}},     // half, bfloat
    {FLOAT_ALIGN, {32, Align(4), Align(4)}},     // float
    {FLOAT_ALIGN, {64, Align(8), Align(8)}},     // double
    {FLOAT_ALIGN, {128, Align(16), Align(16)}},  // ppcf128, quad, ...
    {VECTOR_ALIGN, {64, Align(8), Align(8)}},    // v2i32, v1i64, ...
    {VECTOR_ALIGN, {128, Align(16), Align(16)}}, // v16i8, v8i16, v4i32, ...
};

void DataLayout::reset(StringRef Desc) {
  clear();

  LayoutMap = nullptr;
  BigEndian = false;
  AllocaAddrSpace = 0;
  StackNaturalAlign.reset();
  ProgramAddrSpace = 0;
  DefaultGlobalsAddrSpace = 0;
  FunctionPtrAlign.reset();
  TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
  ManglingMode = MM_None;
  NonIntegralAddressSpaces.clear();
  StructAlignment = LayoutAlignElem::get(Align(1), Align(8), 0);

  // Default alignments
  for (const auto &[Kind, Layout] : DefaultAlignments) {
    if (Error Err = setAlignment(Kind, Layout.ABIAlign, Layout.PrefAlign,
                                 Layout.TypeBitWidth))
      return report_fatal_error(std::move(Err));
  }
  if (Error Err = setPointerAlignmentInBits(0, Align(8), Align(8), 64, 64))
    return report_fatal_error(std::move(Err));

  if (Error Err = parseSpecifier(Desc))
    return report_fatal_error(std::move(Err));
}

Expected<DataLayout> DataLayout::parse(StringRef LayoutDescription) {
  DataLayout Layout("");
  if (Error Err = Layout.parseSpecifier(LayoutDescription))
    return std::move(Err);
  return Layout;
}

static Error reportError(const Twine &Message) {
  return createStringError(inconvertibleErrorCode(), Message);
}

/// Checked version of split, to ensure mandatory subparts.
static Error split(StringRef Str, char Separator,
                   std::pair<StringRef, StringRef> &Split) {
  assert(!Str.empty() && "parse error, string can't be empty here");
  Split = Str.split(Separator);
  if (Split.second.empty() && Split.first != Str)
    return reportError("Trailing separator in datalayout string");
  if (!Split.second.empty() && Split.first.empty())
    return reportError("Expected token before separator in datalayout string");
  return Error::success();
}

/// Get an unsigned integer, including error checks.
template <typename IntTy> static Error getInt(StringRef R, IntTy &Result) {
  bool error = R.getAsInteger(10, Result); (void)error;
  if (error)
    return reportError("not a number, or does not fit in an unsigned int");
  return Error::success();
}

/// Get an unsigned integer representing the number of bits and convert it into
/// bytes. Error out of not a byte width multiple.
template <typename IntTy>
static Error getIntInBytes(StringRef R, IntTy &Result) {
  if (Error Err = getInt<IntTy>(R, Result))
    return Err;
  if (Result % 8)
    return reportError("number of bits must be a byte width multiple");
  Result /= 8;
  return Error::success();
}

static Error getAddrSpace(StringRef R, unsigned &AddrSpace) {
  if (Error Err = getInt(R, AddrSpace))
    return Err;
  if (!isUInt<24>(AddrSpace))
    return reportError("Invalid address space, must be a 24-bit integer");
  return Error::success();
}

Error DataLayout::parseSpecifier(StringRef Desc) {
  StringRepresentation = std::string(Desc);
  while (!Desc.empty()) {
    // Split at '-'.
    std::pair<StringRef, StringRef> Split;
    if (Error Err = ::split(Desc, '-', Split))
      return Err;
    Desc = Split.second;

    // Split at ':'.
    if (Error Err = ::split(Split.first, ':', Split))
      return Err;

    // Aliases used below.
    StringRef &Tok  = Split.first;  // Current token.
    StringRef &Rest = Split.second; // The rest of the string.

    if (Tok == "ni") {
      do {
        if (Error Err = ::split(Rest, ':', Split))
          return Err;
        Rest = Split.second;
        unsigned AS;
        if (Error Err = getInt(Split.first, AS))
          return Err;
        if (AS == 0)
          return reportError("Address space 0 can never be non-integral");
        NonIntegralAddressSpaces.push_back(AS);
      } while (!Rest.empty());

      continue;
    }

    char Specifier = Tok.front();
    Tok = Tok.substr(1);

    switch (Specifier) {
    case 's':
      // Deprecated, but ignoring here to preserve loading older textual llvm
      // ASM file
      break;
    case 'E':
      BigEndian = true;
      break;
    case 'e':
      BigEndian = false;
      break;
    case 'p': {
      // Address space.
      unsigned AddrSpace = 0;
      if (!Tok.empty())
        if (Error Err = getInt(Tok, AddrSpace))
          return Err;
      if (!isUInt<24>(AddrSpace))
        return reportError("Invalid address space, must be a 24-bit integer");

      // Size.
      if (Rest.empty())
        return reportError(
            "Missing size specification for pointer in datalayout string");
      if (Error Err = ::split(Rest, ':', Split))
        return Err;
      unsigned PointerMemSize;
      if (Error Err = getInt(Tok, PointerMemSize))
        return Err;
      if (!PointerMemSize)
        return reportError("Invalid pointer size of 0 bytes");

      // ABI alignment.
      if (Rest.empty())
        return reportError(
            "Missing alignment specification for pointer in datalayout string");
      if (Error Err = ::split(Rest, ':', Split))
        return Err;
      unsigned PointerABIAlign;
      if (Error Err = getIntInBytes(Tok, PointerABIAlign))
        return Err;
      if (!isPowerOf2_64(PointerABIAlign))
        return reportError("Pointer ABI alignment must be a power of 2");

      // Size of index used in GEP for address calculation.
      // The parameter is optional. By default it is equal to size of pointer.
      unsigned IndexSize = PointerMemSize;

      // Preferred alignment.
      unsigned PointerPrefAlign = PointerABIAlign;
      if (!Rest.empty()) {
        if (Error Err = ::split(Rest, ':', Split))
          return Err;
        if (Error Err = getIntInBytes(Tok, PointerPrefAlign))
          return Err;
        if (!isPowerOf2_64(PointerPrefAlign))
          return reportError(
              "Pointer preferred alignment must be a power of 2");

        // Now read the index. It is the second optional parameter here.
        if (!Rest.empty()) {
          if (Error Err = ::split(Rest, ':', Split))
            return Err;
          if (Error Err = getInt(Tok, IndexSize))
            return Err;
          if (!IndexSize)
            return reportError("Invalid index size of 0 bytes");
        }
      }
      if (Error Err = setPointerAlignmentInBits(
              AddrSpace, assumeAligned(PointerABIAlign),
              assumeAligned(PointerPrefAlign), PointerMemSize, IndexSize))
        return Err;
      break;
    }
    case 'i':
    case 'v':
    case 'f':
    case 'a': {
      AlignTypeEnum AlignType;
      switch (Specifier) {
      default: llvm_unreachable("Unexpected specifier!");
      case 'i': AlignType = INTEGER_ALIGN; break;
      case 'v': AlignType = VECTOR_ALIGN; break;
      case 'f': AlignType = FLOAT_ALIGN; break;
      case 'a': AlignType = AGGREGATE_ALIGN; break;
      }

      // Bit size.
      unsigned Size = 0;
      if (!Tok.empty())
        if (Error Err = getInt(Tok, Size))
          return Err;

      if (AlignType == AGGREGATE_ALIGN && Size != 0)
        return reportError(
            "Sized aggregate specification in datalayout string");

      // ABI alignment.
      if (Rest.empty())
        return reportError(
            "Missing alignment specification in datalayout string");
      if (Error Err = ::split(Rest, ':', Split))
        return Err;
      unsigned ABIAlign;
      if (Error Err = getIntInBytes(Tok, ABIAlign))
        return Err;
      if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
        return reportError(
            "ABI alignment specification must be >0 for non-aggregate types");

      if (!isUInt<16>(ABIAlign))
        return reportError("Invalid ABI alignment, must be a 16bit integer");
      if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
        return reportError("Invalid ABI alignment, must be a power of 2");
      if (AlignType == INTEGER_ALIGN && Size == 8 && ABIAlign != 1)
        return reportError(
            "Invalid ABI alignment, i8 must be naturally aligned");

      // Preferred alignment.
      unsigned PrefAlign = ABIAlign;
      if (!Rest.empty()) {
        if (Error Err = ::split(Rest, ':', Split))
          return Err;
        if (Error Err = getIntInBytes(Tok, PrefAlign))
          return Err;
      }

      if (!isUInt<16>(PrefAlign))
        return reportError(
            "Invalid preferred alignment, must be a 16bit integer");
      if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
        return reportError("Invalid preferred alignment, must be a power of 2");

      if (Error Err = setAlignment(AlignType, assumeAligned(ABIAlign),
                                   assumeAligned(PrefAlign), Size))
        return Err;

      break;
    }
    case 'n':  // Native integer types.
      while (true) {
        unsigned Width;
        if (Error Err = getInt(Tok, Width))
          return Err;
        if (Width == 0)
          return reportError(
              "Zero width native integer type in datalayout string");
        LegalIntWidths.push_back(Width);
        if (Rest.empty())
          break;
        if (Error Err = ::split(Rest, ':', Split))
          return Err;
      }
      break;
    case 'S': { // Stack natural alignment.
      uint64_t Alignment;
      if (Error Err = getIntInBytes(Tok, Alignment))
        return Err;
      if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
        return reportError("Alignment is neither 0 nor a power of 2");
      StackNaturalAlign = MaybeAlign(Alignment);
      break;
    }
    case 'F': {
      switch (Tok.front()) {
      case 'i':
        TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
        break;
      case 'n':
        TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
        break;
      default:
        return reportError("Unknown function pointer alignment type in "
                           "datalayout string");
      }
      Tok = Tok.substr(1);
      uint64_t Alignment;
      if (Error Err = getIntInBytes(Tok, Alignment))
        return Err;
      if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
        return reportError("Alignment is neither 0 nor a power of 2");
      FunctionPtrAlign = MaybeAlign(Alignment);
      break;
    }
    case 'P': { // Function address space.
      if (Error Err = getAddrSpace(Tok, ProgramAddrSpace))
        return Err;
      break;
    }
    case 'A': { // Default stack/alloca address space.
      if (Error Err = getAddrSpace(Tok, AllocaAddrSpace))
        return Err;
      break;
    }
    case 'G': { // Default address space for global variables.
      if (Error Err = getAddrSpace(Tok, DefaultGlobalsAddrSpace))
        return Err;
      break;
    }
    case 'm':
      if (!Tok.empty())
        return reportError("Unexpected trailing characters after mangling "
                           "specifier in datalayout string");
      if (Rest.empty())
        return reportError("Expected mangling specifier in datalayout string");
      if (Rest.size() > 1)
        return reportError("Unknown mangling specifier in datalayout string");
      switch(Rest[0]) {
      default:
        return reportError("Unknown mangling in datalayout string");
      case 'e':
        ManglingMode = MM_ELF;
        break;
      case 'l':
        ManglingMode = MM_GOFF;
        break;
      case 'o':
        ManglingMode = MM_MachO;
        break;
      case 'm':
        ManglingMode = MM_Mips;
        break;
      case 'w':
        ManglingMode = MM_WinCOFF;
        break;
      case 'x':
        ManglingMode = MM_WinCOFFX86;
        break;
      case 'a':
        ManglingMode = MM_XCOFF;
        break;
      }
      break;
    default:
      return reportError("Unknown specifier in datalayout string");
      break;
    }
  }

  return Error::success();
}

DataLayout::DataLayout(const Module *M) {
  init(M);
}

void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }

bool DataLayout::operator==(const DataLayout &Other) const {
  bool Ret = BigEndian == Other.BigEndian &&
             AllocaAddrSpace == Other.AllocaAddrSpace &&
             StackNaturalAlign == Other.StackNaturalAlign &&
             ProgramAddrSpace == Other.ProgramAddrSpace &&
             DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace &&
             FunctionPtrAlign == Other.FunctionPtrAlign &&
             TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
             ManglingMode == Other.ManglingMode &&
             LegalIntWidths == Other.LegalIntWidths &&
             IntAlignments == Other.IntAlignments &&
             FloatAlignments == Other.FloatAlignments &&
             VectorAlignments == Other.VectorAlignments &&
             StructAlignment == Other.StructAlignment &&
             Pointers == Other.Pointers;
  // Note: getStringRepresentation() might differs, it is not canonicalized
  return Ret;
}

static SmallVectorImpl<LayoutAlignElem>::const_iterator
findAlignmentLowerBound(const SmallVectorImpl<LayoutAlignElem> &Alignments,
                        uint32_t BitWidth) {
  return partition_point(Alignments, [BitWidth](const LayoutAlignElem &E) {
    return E.TypeBitWidth < BitWidth;
  });
}

Error DataLayout::setAlignment(AlignTypeEnum AlignType, Align ABIAlign,
                               Align PrefAlign, uint32_t BitWidth) {
  // AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
  // uint16_t, it is unclear if there are requirements for alignment to be less
  // than 2^16 other than storage. In the meantime we leave the restriction as
  // an assert. See D67400 for context.
  assert(Log2(ABIAlign) < 16 && Log2(PrefAlign) < 16 && "Alignment too big");
  if (!isUInt<24>(BitWidth))
    return reportError("Invalid bit width, must be a 24-bit integer");
  if (PrefAlign < ABIAlign)
    return reportError(
        "Preferred alignment cannot be less than the ABI alignment");

  SmallVectorImpl<LayoutAlignElem> *Alignments;
  switch (AlignType) {
  case AGGREGATE_ALIGN:
    StructAlignment.ABIAlign = ABIAlign;
    StructAlignment.PrefAlign = PrefAlign;
    return Error::success();
  case INTEGER_ALIGN:
    Alignments = &IntAlignments;
    break;
  case FLOAT_ALIGN:
    Alignments = &FloatAlignments;
    break;
  case VECTOR_ALIGN:
    Alignments = &VectorAlignments;
    break;
  }

  auto I = partition_point(*Alignments, [BitWidth](const LayoutAlignElem &E) {
    return E.TypeBitWidth < BitWidth;
  });
  if (I != Alignments->end() && I->TypeBitWidth == BitWidth) {
    // Update the abi, preferred alignments.
    I->ABIAlign = ABIAlign;
    I->PrefAlign = PrefAlign;
  } else {
    // Insert before I to keep the vector sorted.
    Alignments->insert(I, LayoutAlignElem::get(ABIAlign, PrefAlign, BitWidth));
  }
  return Error::success();
}

const PointerAlignElem &
DataLayout::getPointerAlignElem(uint32_t AddressSpace) const {
  if (AddressSpace != 0) {
    auto I = lower_bound(Pointers, AddressSpace,
                         [](const PointerAlignElem &A, uint32_t AddressSpace) {
      return A.AddressSpace < AddressSpace;
    });
    if (I != Pointers.end() && I->AddressSpace == AddressSpace)
      return *I;
  }

  assert(Pointers[0].AddressSpace == 0);
  return Pointers[0];
}

Error DataLayout::setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
                                            Align PrefAlign,
                                            uint32_t TypeBitWidth,
                                            uint32_t IndexBitWidth) {
  if (PrefAlign < ABIAlign)
    return reportError(
        "Preferred alignment cannot be less than the ABI alignment");
  if (IndexBitWidth > TypeBitWidth)
    return reportError("Index width cannot be larger than pointer width");

  auto I = lower_bound(Pointers, AddrSpace,
                       [](const PointerAlignElem &A, uint32_t AddressSpace) {
    return A.AddressSpace < AddressSpace;
  });
  if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
    Pointers.insert(I,
                    PointerAlignElem::getInBits(AddrSpace, ABIAlign, PrefAlign,
                                                TypeBitWidth, IndexBitWidth));
  } else {
    I->ABIAlign = ABIAlign;
    I->PrefAlign = PrefAlign;
    I->TypeBitWidth = TypeBitWidth;
    I->IndexBitWidth = IndexBitWidth;
  }
  return Error::success();
}

Align DataLayout::getIntegerAlignment(uint32_t BitWidth,
                                      bool abi_or_pref) const {
  auto I = findAlignmentLowerBound(IntAlignments, BitWidth);
  // If we don't have an exact match, use alignment of next larger integer
  // type. If there is none, use alignment of largest integer type by going
  // back one element.
  if (I == IntAlignments.end())
    --I;
  return abi_or_pref ? I->ABIAlign : I->PrefAlign;
}

namespace {

class StructLayoutMap {
  using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
  LayoutInfoTy LayoutInfo;

public:
  ~StructLayoutMap() {
    // Remove any layouts.
    for (const auto &I : LayoutInfo) {
      StructLayout *Value = I.second;
      Value->~StructLayout();
      free(Value);
    }
  }

  StructLayout *&operator[](StructType *STy) {
    return LayoutInfo[STy];
  }
};

} // end anonymous namespace

void DataLayout::clear() {
  LegalIntWidths.clear();
  IntAlignments.clear();
  FloatAlignments.clear();
  VectorAlignments.clear();
  Pointers.clear();
  delete static_cast<StructLayoutMap *>(LayoutMap);
  LayoutMap = nullptr;
}

DataLayout::~DataLayout() {
  clear();
}

const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
  if (!LayoutMap)
    LayoutMap = new StructLayoutMap();

  StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
  StructLayout *&SL = (*STM)[Ty];
  if (SL) return SL;

  // Otherwise, create the struct layout.  Because it is variable length, we
  // malloc it, then use placement new.
  StructLayout *L = (StructLayout *)safe_malloc(
      StructLayout::totalSizeToAlloc<TypeSize>(Ty->getNumElements()));

  // Set SL before calling StructLayout's ctor.  The ctor could cause other
  // entries to be added to TheMap, invalidating our reference.
  SL = L;

  new (L) StructLayout(Ty, *this);

  return L;
}

Align DataLayout::getPointerABIAlignment(unsigned AS) const {
  return getPointerAlignElem(AS).ABIAlign;
}

Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
  return getPointerAlignElem(AS).PrefAlign;
}

unsigned DataLayout::getPointerSize(unsigned AS) const {
  return divideCeil(getPointerAlignElem(AS).TypeBitWidth, 8);
}

unsigned DataLayout::getMaxIndexSize() const {
  unsigned MaxIndexSize = 0;
  for (auto &P : Pointers)
    MaxIndexSize =
        std::max(MaxIndexSize, (unsigned)divideCeil(P.TypeBitWidth, 8));

  return MaxIndexSize;
}

unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "This should only be called with a pointer or pointer vector type");
  Ty = Ty->getScalarType();
  return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}

unsigned DataLayout::getIndexSize(unsigned AS) const {
  return divideCeil(getPointerAlignElem(AS).IndexBitWidth, 8);
}

unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "This should only be called with a pointer or pointer vector type");
  Ty = Ty->getScalarType();
  return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}

/*!
  \param abi_or_pref Flag that determines which alignment is returned. true
  returns the ABI alignment, false returns the preferred alignment.
  \param Ty The underlying type for which alignment is determined.

  Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
  == false) for the requested type \a Ty.
 */
Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  // Early escape for the non-numeric types.
  case Type::LabelTyID:
    return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
  case Type::PointerTyID: {
    unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
    return abi_or_pref ? getPointerABIAlignment(AS)
                       : getPointerPrefAlignment(AS);
    }
  case Type::ArrayTyID:
    return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);

  case Type::StructTyID: {
    // Packed structure types always have an ABI alignment of one.
    if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
      return Align(1);

    // Get the layout annotation... which is lazily created on demand.
    const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
    const Align Align =
        abi_or_pref ? StructAlignment.ABIAlign : StructAlignment.PrefAlign;
    return std::max(Align, Layout->getAlignment());
  }
  case Type::IntegerTyID:
    return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref);
  case Type::HalfTyID:
  case Type::BFloatTyID:
  case Type::FloatTyID:
  case Type::DoubleTyID:
  // PPC_FP128TyID and FP128TyID have different data contents, but the
  // same size and alignment, so they look the same here.
  case Type::PPC_FP128TyID:
  case Type::FP128TyID:
  case Type::X86_FP80TyID: {
    unsigned BitWidth = getTypeSizeInBits(Ty).getFixedValue();
    auto I = findAlignmentLowerBound(FloatAlignments, BitWidth);
    if (I != FloatAlignments.end() && I->TypeBitWidth == BitWidth)
      return abi_or_pref ? I->ABIAlign : I->PrefAlign;

    // If we still couldn't find a reasonable default alignment, fall back
    // to a simple heuristic that the alignment is the first power of two
    // greater-or-equal to the store size of the type.  This is a reasonable
    // approximation of reality, and if the user wanted something less
    // less conservative, they should have specified it explicitly in the data
    // layout.
    return Align(PowerOf2Ceil(BitWidth / 8));
  }
  case Type::X86_MMXTyID:
  case Type::FixedVectorTyID:
  case Type::ScalableVectorTyID: {
    unsigned BitWidth = getTypeSizeInBits(Ty).getKnownMinValue();
    auto I = findAlignmentLowerBound(VectorAlignments, BitWidth);
    if (I != VectorAlignments.end() && I->TypeBitWidth == BitWidth)
      return abi_or_pref ? I->ABIAlign : I->PrefAlign;

    // By default, use natural alignment for vector types. This is consistent
    // with what clang and llvm-gcc do.
    //
    // We're only calculating a natural alignment, so it doesn't have to be
    // based on the full size for scalable vectors. Using the minimum element
    // count should be enough here.
    return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinValue()));
  }
  case Type::X86_AMXTyID:
    return Align(64);
  case Type::TargetExtTyID: {
    Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
    return getAlignment(LayoutTy, abi_or_pref);
  }
  default:
    llvm_unreachable("Bad type for getAlignment!!!");
  }
}

Align DataLayout::getABITypeAlign(Type *Ty) const {
  return getAlignment(Ty, true);
}

/// TODO: Remove this function once the transition to Align is over.
uint64_t DataLayout::getPrefTypeAlignment(Type *Ty) const {
  return getPrefTypeAlign(Ty).value();
}

Align DataLayout::getPrefTypeAlign(Type *Ty) const {
  return getAlignment(Ty, false);
}

IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
                                       unsigned AddressSpace) const {
  return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
}

Type *DataLayout::getIntPtrType(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "Expected a pointer or pointer vector type.");
  unsigned NumBits = getPointerTypeSizeInBits(Ty);
  IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
  if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
    return VectorType::get(IntTy, VecTy);
  return IntTy;
}

Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
  for (unsigned LegalIntWidth : LegalIntWidths)
    if (Width <= LegalIntWidth)
      return Type::getIntNTy(C, LegalIntWidth);
  return nullptr;
}

unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
  auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
  return Max != LegalIntWidths.end() ? *Max : 0;
}

IntegerType *DataLayout::getIndexType(LLVMContext &C,
                                      unsigned AddressSpace) const {
  return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
}

Type *DataLayout::getIndexType(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "Expected a pointer or pointer vector type.");
  unsigned NumBits = getIndexTypeSizeInBits(Ty);
  IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
  if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
    return VectorType::get(IntTy, VecTy);
  return IntTy;
}

int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
                                           ArrayRef<Value *> Indices) const {
  int64_t Result = 0;

  generic_gep_type_iterator<Value* const*>
    GTI = gep_type_begin(ElemTy, Indices),
    GTE = gep_type_end(ElemTy, Indices);
  for (; GTI != GTE; ++GTI) {
    Value *Idx = GTI.getOperand();
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
      unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();

      // Get structure layout information...
      const StructLayout *Layout = getStructLayout(STy);

      // Add in the offset, as calculated by the structure layout info...
      Result += Layout->getElementOffset(FieldNo);
    } else {
      if (int64_t ArrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
        Result += ArrayIdx * GTI.getSequentialElementStride(*this);
    }
  }

  return Result;
}

static APInt getElementIndex(TypeSize ElemSize, APInt &Offset) {
  // Skip over scalable or zero size elements. Also skip element sizes larger
  // than the positive index space, because the arithmetic below may not be
  // correct in that case.
  unsigned BitWidth = Offset.getBitWidth();
  if (ElemSize.isScalable() || ElemSize == 0 ||
      !isUIntN(BitWidth - 1, ElemSize)) {
    return APInt::getZero(BitWidth);
  }

  APInt Index = Offset.sdiv(ElemSize);
  Offset -= Index * ElemSize;
  if (Offset.isNegative()) {
    // Prefer a positive remaining offset to allow struct indexing.
    --Index;
    Offset += ElemSize;
    assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative");
  }
  return Index;
}

std::optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy,
                                                      APInt &Offset) const {
  if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) {
    ElemTy = ArrTy->getElementType();
    return getElementIndex(getTypeAllocSize(ElemTy), Offset);
  }

  if (isa<VectorType>(ElemTy)) {
    // Vector GEPs are partially broken (e.g. for overaligned element types),
    // and may be forbidden in the future, so avoid generating GEPs into
    // vectors. See https://discourse.llvm.org/t/67497
    return std::nullopt;
  }

  if (auto *STy = dyn_cast<StructType>(ElemTy)) {
    const StructLayout *SL = getStructLayout(STy);
    uint64_t IntOffset = Offset.getZExtValue();
    if (IntOffset >= SL->getSizeInBytes())
      return std::nullopt;

    unsigned Index = SL->getElementContainingOffset(IntOffset);
    Offset -= SL->getElementOffset(Index);
    ElemTy = STy->getElementType(Index);
    return APInt(32, Index);
  }

  // Non-aggregate type.
  return std::nullopt;
}

SmallVector<APInt> DataLayout::getGEPIndicesForOffset(Type *&ElemTy,
                                                      APInt &Offset) const {
  assert(ElemTy->isSized() && "Element type must be sized");
  SmallVector<APInt> Indices;
  Indices.push_back(getElementIndex(getTypeAllocSize(ElemTy), Offset));
  while (Offset != 0) {
    std::optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset);
    if (!Index)
      break;
    Indices.push_back(*Index);
  }

  return Indices;
}

/// getPreferredAlign - Return the preferred alignment of the specified global.
/// This includes an explicitly requested alignment (if the global has one).
Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const {
  MaybeAlign GVAlignment = GV->getAlign();
  // If a section is specified, always precisely honor explicit alignment,
  // so we don't insert padding into a section we don't control.
  if (GVAlignment && GV->hasSection())
    return *GVAlignment;

  // If no explicit alignment is specified, compute the alignment based on
  // the IR type. If an alignment is specified, increase it to match the ABI
  // alignment of the IR type.
  //
  // FIXME: Not sure it makes sense to use the alignment of the type if
  // there's already an explicit alignment specification.
  Type *ElemType = GV->getValueType();
  Align Alignment = getPrefTypeAlign(ElemType);
  if (GVAlignment) {
    if (*GVAlignment >= Alignment)
      Alignment = *GVAlignment;
    else
      Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
  }

  // If no explicit alignment is specified, and the global is large, increase
  // the alignment to 16.
  // FIXME: Why 16, specifically?
  if (GV->hasInitializer() && !GVAlignment) {
    if (Alignment < Align(16)) {
      // If the global is not external, see if it is large.  If so, give it a
      // larger alignment.
      if (getTypeSizeInBits(ElemType) > 128)
        Alignment = Align(16); // 16-byte alignment.
    }
  }
  return Alignment;
}