aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/IndirectBrExpandPass.cpp
blob: 13f595bef8eeb898a675d2535858e788e3a05aeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//===- IndirectBrExpandPass.cpp - Expand indirectbr to switch -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Implements an expansion pass to turn `indirectbr` instructions in the IR
/// into `switch` instructions. This works by enumerating the basic blocks in
/// a dense range of integers, replacing each `blockaddr` constant with the
/// corresponding integer constant, and then building a switch that maps from
/// the integers to the actual blocks. All of the indirectbr instructions in the
/// function are redirected to this common switch.
///
/// While this is generically useful if a target is unable to codegen
/// `indirectbr` natively, it is primarily useful when there is some desire to
/// get the builtin non-jump-table lowering of a switch even when the input
/// source contained an explicit indirect branch construct.
///
/// Note that it doesn't make any sense to enable this pass unless a target also
/// disables jump-table lowering of switches. Doing that is likely to pessimize
/// the code.
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/CodeGen/IndirectBrExpand.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <optional>

using namespace llvm;

#define DEBUG_TYPE "indirectbr-expand"

namespace {

class IndirectBrExpandLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  IndirectBrExpandLegacyPass() : FunctionPass(ID) {
    initializeIndirectBrExpandLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override;
};

} // end anonymous namespace

static bool runImpl(Function &F, const TargetLowering *TLI,
                    DomTreeUpdater *DTU);

PreservedAnalyses IndirectBrExpandPass::run(Function &F,
                                            FunctionAnalysisManager &FAM) {
  auto *STI = TM->getSubtargetImpl(F);
  if (!STI->enableIndirectBrExpand())
    return PreservedAnalyses::all();

  auto *TLI = STI->getTargetLowering();
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);

  bool Changed = runImpl(F, TLI, DT ? &DTU : nullptr);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}

char IndirectBrExpandLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(IndirectBrExpandLegacyPass, DEBUG_TYPE,
                      "Expand indirectbr instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(IndirectBrExpandLegacyPass, DEBUG_TYPE,
                    "Expand indirectbr instructions", false, false)

FunctionPass *llvm::createIndirectBrExpandPass() {
  return new IndirectBrExpandLegacyPass();
}

bool runImpl(Function &F, const TargetLowering *TLI, DomTreeUpdater *DTU) {
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<IndirectBrInst *, 1> IndirectBrs;

  // Set of all potential successors for indirectbr instructions.
  SmallPtrSet<BasicBlock *, 4> IndirectBrSuccs;

  // Build a list of indirectbrs that we want to rewrite.
  for (BasicBlock &BB : F)
    if (auto *IBr = dyn_cast<IndirectBrInst>(BB.getTerminator())) {
      // Handle the degenerate case of no successors by replacing the indirectbr
      // with unreachable as there is no successor available.
      if (IBr->getNumSuccessors() == 0) {
        (void)new UnreachableInst(F.getContext(), IBr->getIterator());
        IBr->eraseFromParent();
        continue;
      }

      IndirectBrs.push_back(IBr);
      for (BasicBlock *SuccBB : IBr->successors())
        IndirectBrSuccs.insert(SuccBB);
    }

  if (IndirectBrs.empty())
    return false;

  // If we need to replace any indirectbrs we need to establish integer
  // constants that will correspond to each of the basic blocks in the function
  // whose address escapes. We do that here and rewrite all the blockaddress
  // constants to just be those integer constants cast to a pointer type.
  SmallVector<BasicBlock *, 4> BBs;

  for (BasicBlock &BB : F) {
    // Skip blocks that aren't successors to an indirectbr we're going to
    // rewrite.
    if (!IndirectBrSuccs.count(&BB))
      continue;

    auto IsBlockAddressUse = [&](const Use &U) {
      return isa<BlockAddress>(U.getUser());
    };
    auto BlockAddressUseIt = llvm::find_if(BB.uses(), IsBlockAddressUse);
    if (BlockAddressUseIt == BB.use_end())
      continue;

    assert(std::find_if(std::next(BlockAddressUseIt), BB.use_end(),
                        IsBlockAddressUse) == BB.use_end() &&
           "There should only ever be a single blockaddress use because it is "
           "a constant and should be uniqued.");

    auto *BA = cast<BlockAddress>(BlockAddressUseIt->getUser());

    // Skip if the constant was formed but ended up not being used (due to DCE
    // or whatever).
    if (!BA->isConstantUsed())
      continue;

    // Compute the index we want to use for this basic block. We can't use zero
    // because null can be compared with block addresses.
    int BBIndex = BBs.size() + 1;
    BBs.push_back(&BB);

    auto *ITy = cast<IntegerType>(DL.getIntPtrType(BA->getType()));
    ConstantInt *BBIndexC = ConstantInt::get(ITy, BBIndex);

    // Now rewrite the blockaddress to an integer constant based on the index.
    // FIXME: This part doesn't properly recognize other uses of blockaddress
    // expressions, for instance, where they are used to pass labels to
    // asm-goto. This part of the pass needs a rework.
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(BBIndexC, BA->getType()));
  }

  if (BBs.empty()) {
    // There are no blocks whose address is taken, so any indirectbr instruction
    // cannot get a valid input and we can replace all of them with unreachable.
    SmallVector<DominatorTree::UpdateType, 8> Updates;
    if (DTU)
      Updates.reserve(IndirectBrSuccs.size());
    for (auto *IBr : IndirectBrs) {
      if (DTU) {
        for (BasicBlock *SuccBB : IBr->successors())
          Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB});
      }
      (void)new UnreachableInst(F.getContext(), IBr->getIterator());
      IBr->eraseFromParent();
    }
    if (DTU) {
      assert(Updates.size() == IndirectBrSuccs.size() &&
             "Got unexpected update count.");
      DTU->applyUpdates(Updates);
    }
    return true;
  }

  BasicBlock *SwitchBB;
  Value *SwitchValue;

  // Compute a common integer type across all the indirectbr instructions.
  IntegerType *CommonITy = nullptr;
  for (auto *IBr : IndirectBrs) {
    auto *ITy =
        cast<IntegerType>(DL.getIntPtrType(IBr->getAddress()->getType()));
    if (!CommonITy || ITy->getBitWidth() > CommonITy->getBitWidth())
      CommonITy = ITy;
  }

  auto GetSwitchValue = [CommonITy](IndirectBrInst *IBr) {
    return CastInst::CreatePointerCast(IBr->getAddress(), CommonITy,
                                       Twine(IBr->getAddress()->getName()) +
                                           ".switch_cast",
                                       IBr->getIterator());
  };

  SmallVector<DominatorTree::UpdateType, 8> Updates;

  if (IndirectBrs.size() == 1) {
    // If we only have one indirectbr, we can just directly replace it within
    // its block.
    IndirectBrInst *IBr = IndirectBrs[0];
    SwitchBB = IBr->getParent();
    SwitchValue = GetSwitchValue(IBr);
    if (DTU) {
      Updates.reserve(IndirectBrSuccs.size());
      for (BasicBlock *SuccBB : IBr->successors())
        Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB});
      assert(Updates.size() == IndirectBrSuccs.size() &&
             "Got unexpected update count.");
    }
    IBr->eraseFromParent();
  } else {
    // Otherwise we need to create a new block to hold the switch across BBs,
    // jump to that block instead of each indirectbr, and phi together the
    // values for the switch.
    SwitchBB = BasicBlock::Create(F.getContext(), "switch_bb", &F);
    auto *SwitchPN = PHINode::Create(CommonITy, IndirectBrs.size(),
                                     "switch_value_phi", SwitchBB);
    SwitchValue = SwitchPN;

    // Now replace the indirectbr instructions with direct branches to the
    // switch block and fill out the PHI operands.
    if (DTU)
      Updates.reserve(IndirectBrs.size() + 2 * IndirectBrSuccs.size());
    for (auto *IBr : IndirectBrs) {
      SwitchPN->addIncoming(GetSwitchValue(IBr), IBr->getParent());
      BranchInst::Create(SwitchBB, IBr->getIterator());
      if (DTU) {
        Updates.push_back({DominatorTree::Insert, IBr->getParent(), SwitchBB});
        for (BasicBlock *SuccBB : IBr->successors())
          Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB});
      }
      IBr->eraseFromParent();
    }
  }

  // Now build the switch in the block. The block will have no terminator
  // already.
  auto *SI = SwitchInst::Create(SwitchValue, BBs[0], BBs.size(), SwitchBB);

  // Add a case for each block.
  for (int i : llvm::seq<int>(1, BBs.size()))
    SI->addCase(ConstantInt::get(CommonITy, i + 1), BBs[i]);

  if (DTU) {
    // If there were multiple indirectbr's, they may have common successors,
    // but in the dominator tree, we only track unique edges.
    SmallPtrSet<BasicBlock *, 8> UniqueSuccessors;
    Updates.reserve(Updates.size() + BBs.size());
    for (BasicBlock *BB : BBs) {
      if (UniqueSuccessors.insert(BB).second)
        Updates.push_back({DominatorTree::Insert, SwitchBB, BB});
    }
    DTU->applyUpdates(Updates);
  }

  return true;
}

bool IndirectBrExpandLegacyPass::runOnFunction(Function &F) {
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  auto &TM = TPC->getTM<TargetMachine>();
  auto &STI = *TM.getSubtargetImpl(F);
  if (!STI.enableIndirectBrExpand())
    return false;
  auto *TLI = STI.getTargetLowering();

  std::optional<DomTreeUpdater> DTU;
  if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
    DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);

  return runImpl(F, TLI, DTU ? &*DTU : nullptr);
}