aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/ExpandVectorPredication.cpp
blob: 0fe4cfefdb16006d9ef916bf3926494b68f88973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//===----- CodeGen/ExpandVectorPredication.cpp - Expand VP intrinsics -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements IR expansion for vector predication intrinsics, allowing
// targets to enable vector predication until just before codegen.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExpandVectorPredication.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include <optional>

using namespace llvm;

using VPLegalization = TargetTransformInfo::VPLegalization;
using VPTransform = TargetTransformInfo::VPLegalization::VPTransform;

// Keep this in sync with TargetTransformInfo::VPLegalization.
#define VPINTERNAL_VPLEGAL_CASES                                               \
  VPINTERNAL_CASE(Legal)                                                       \
  VPINTERNAL_CASE(Discard)                                                     \
  VPINTERNAL_CASE(Convert)

#define VPINTERNAL_CASE(X) "|" #X

// Override options.
static cl::opt<std::string> EVLTransformOverride(
    "expandvp-override-evl-transform", cl::init(""), cl::Hidden,
    cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
             ". If non-empty, ignore "
             "TargetTransformInfo and "
             "always use this transformation for the %evl parameter (Used in "
             "testing)."));

static cl::opt<std::string> MaskTransformOverride(
    "expandvp-override-mask-transform", cl::init(""), cl::Hidden,
    cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
             ". If non-empty, Ignore "
             "TargetTransformInfo and "
             "always use this transformation for the %mask parameter (Used in "
             "testing)."));

#undef VPINTERNAL_CASE
#define VPINTERNAL_CASE(X) .Case(#X, VPLegalization::X)

static VPTransform parseOverrideOption(const std::string &TextOpt) {
  return StringSwitch<VPTransform>(TextOpt) VPINTERNAL_VPLEGAL_CASES;
}

#undef VPINTERNAL_VPLEGAL_CASES

// Whether any override options are set.
static bool anyExpandVPOverridesSet() {
  return !EVLTransformOverride.empty() || !MaskTransformOverride.empty();
}

#define DEBUG_TYPE "expandvp"

STATISTIC(NumFoldedVL, "Number of folded vector length params");
STATISTIC(NumLoweredVPOps, "Number of folded vector predication operations");

///// Helpers {

/// \returns Whether the vector mask \p MaskVal has all lane bits set.
static bool isAllTrueMask(Value *MaskVal) {
  if (Value *SplattedVal = getSplatValue(MaskVal))
    if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
      return ConstValue->isAllOnesValue();

  return false;
}

/// \returns A non-excepting divisor constant for this type.
static Constant *getSafeDivisor(Type *DivTy) {
  assert(DivTy->isIntOrIntVectorTy() && "Unsupported divisor type");
  return ConstantInt::get(DivTy, 1u, false);
}

/// Transfer operation properties from \p OldVPI to \p NewVal.
static void transferDecorations(Value &NewVal, VPIntrinsic &VPI) {
  auto *NewInst = dyn_cast<Instruction>(&NewVal);
  if (!NewInst || !isa<FPMathOperator>(NewVal))
    return;

  auto *OldFMOp = dyn_cast<FPMathOperator>(&VPI);
  if (!OldFMOp)
    return;

  NewInst->setFastMathFlags(OldFMOp->getFastMathFlags());
}

/// Transfer all properties from \p OldOp to \p NewOp and replace all uses.
/// OldVP gets erased.
static void replaceOperation(Value &NewOp, VPIntrinsic &OldOp) {
  transferDecorations(NewOp, OldOp);
  OldOp.replaceAllUsesWith(&NewOp);
  OldOp.eraseFromParent();
}

static bool maySpeculateLanes(VPIntrinsic &VPI) {
  // The result of VP reductions depends on the mask and evl.
  if (isa<VPReductionIntrinsic>(VPI))
    return false;
  // Fallback to whether the intrinsic is speculatable.
  if (auto IntrID = VPI.getFunctionalIntrinsicID())
    return Intrinsic::getAttributes(VPI.getContext(), *IntrID)
        .hasFnAttr(Attribute::AttrKind::Speculatable);
  if (auto Opc = VPI.getFunctionalOpcode())
    return isSafeToSpeculativelyExecuteWithOpcode(*Opc, &VPI);
  return false;
}

//// } Helpers

namespace {

// Expansion pass state at function scope.
struct CachingVPExpander {
  Function &F;
  const TargetTransformInfo &TTI;

  /// \returns A (fixed length) vector with ascending integer indices
  /// (<0, 1, ..., NumElems-1>).
  /// \p Builder
  ///    Used for instruction creation.
  /// \p LaneTy
  ///    Integer element type of the result vector.
  /// \p NumElems
  ///    Number of vector elements.
  Value *createStepVector(IRBuilder<> &Builder, Type *LaneTy,
                          unsigned NumElems);

  /// \returns A bitmask that is true where the lane position is less-than \p
  /// EVLParam
  ///
  /// \p Builder
  ///    Used for instruction creation.
  /// \p VLParam
  ///    The explicit vector length parameter to test against the lane
  ///    positions.
  /// \p ElemCount
  ///    Static (potentially scalable) number of vector elements.
  Value *convertEVLToMask(IRBuilder<> &Builder, Value *EVLParam,
                          ElementCount ElemCount);

  Value *foldEVLIntoMask(VPIntrinsic &VPI);

  /// "Remove" the %evl parameter of \p PI by setting it to the static vector
  /// length of the operation.
  void discardEVLParameter(VPIntrinsic &PI);

  /// Lower this VP binary operator to a unpredicated binary operator.
  Value *expandPredicationInBinaryOperator(IRBuilder<> &Builder,
                                           VPIntrinsic &PI);

  /// Lower this VP int call to a unpredicated int call.
  Value *expandPredicationToIntCall(IRBuilder<> &Builder, VPIntrinsic &PI,
                                    unsigned UnpredicatedIntrinsicID);

  /// Lower this VP fp call to a unpredicated fp call.
  Value *expandPredicationToFPCall(IRBuilder<> &Builder, VPIntrinsic &PI,
                                   unsigned UnpredicatedIntrinsicID);

  /// Lower this VP reduction to a call to an unpredicated reduction intrinsic.
  Value *expandPredicationInReduction(IRBuilder<> &Builder,
                                      VPReductionIntrinsic &PI);

  /// Lower this VP cast operation to a non-VP intrinsic.
  Value *expandPredicationToCastIntrinsic(IRBuilder<> &Builder,
                                          VPIntrinsic &VPI);

  /// Lower this VP memory operation to a non-VP intrinsic.
  Value *expandPredicationInMemoryIntrinsic(IRBuilder<> &Builder,
                                            VPIntrinsic &VPI);

  /// Lower this VP comparison to a call to an unpredicated comparison.
  Value *expandPredicationInComparison(IRBuilder<> &Builder,
                                       VPCmpIntrinsic &PI);

  /// Query TTI and expand the vector predication in \p P accordingly.
  Value *expandPredication(VPIntrinsic &PI);

  /// Determine how and whether the VPIntrinsic \p VPI shall be expanded. This
  /// overrides TTI with the cl::opts listed at the top of this file.
  VPLegalization getVPLegalizationStrategy(const VPIntrinsic &VPI) const;
  bool UsingTTIOverrides;

public:
  CachingVPExpander(Function &F, const TargetTransformInfo &TTI)
      : F(F), TTI(TTI), UsingTTIOverrides(anyExpandVPOverridesSet()) {}

  bool expandVectorPredication();
};

//// CachingVPExpander {

Value *CachingVPExpander::createStepVector(IRBuilder<> &Builder, Type *LaneTy,
                                           unsigned NumElems) {
  // TODO add caching
  SmallVector<Constant *, 16> ConstElems;

  for (unsigned Idx = 0; Idx < NumElems; ++Idx)
    ConstElems.push_back(ConstantInt::get(LaneTy, Idx, false));

  return ConstantVector::get(ConstElems);
}

Value *CachingVPExpander::convertEVLToMask(IRBuilder<> &Builder,
                                           Value *EVLParam,
                                           ElementCount ElemCount) {
  // TODO add caching
  // Scalable vector %evl conversion.
  if (ElemCount.isScalable()) {
    auto *M = Builder.GetInsertBlock()->getModule();
    Type *BoolVecTy = VectorType::get(Builder.getInt1Ty(), ElemCount);
    Function *ActiveMaskFunc = Intrinsic::getDeclaration(
        M, Intrinsic::get_active_lane_mask, {BoolVecTy, EVLParam->getType()});
    // `get_active_lane_mask` performs an implicit less-than comparison.
    Value *ConstZero = Builder.getInt32(0);
    return Builder.CreateCall(ActiveMaskFunc, {ConstZero, EVLParam});
  }

  // Fixed vector %evl conversion.
  Type *LaneTy = EVLParam->getType();
  unsigned NumElems = ElemCount.getFixedValue();
  Value *VLSplat = Builder.CreateVectorSplat(NumElems, EVLParam);
  Value *IdxVec = createStepVector(Builder, LaneTy, NumElems);
  return Builder.CreateICmp(CmpInst::ICMP_ULT, IdxVec, VLSplat);
}

Value *
CachingVPExpander::expandPredicationInBinaryOperator(IRBuilder<> &Builder,
                                                     VPIntrinsic &VPI) {
  assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  auto OC = static_cast<Instruction::BinaryOps>(*VPI.getFunctionalOpcode());
  assert(Instruction::isBinaryOp(OC));

  Value *Op0 = VPI.getOperand(0);
  Value *Op1 = VPI.getOperand(1);
  Value *Mask = VPI.getMaskParam();

  // Blend in safe operands.
  if (Mask && !isAllTrueMask(Mask)) {
    switch (OC) {
    default:
      // Can safely ignore the predicate.
      break;

    // Division operators need a safe divisor on masked-off lanes (1).
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      // 2nd operand must not be zero.
      Value *SafeDivisor = getSafeDivisor(VPI.getType());
      Op1 = Builder.CreateSelect(Mask, Op1, SafeDivisor);
    }
  }

  Value *NewBinOp = Builder.CreateBinOp(OC, Op0, Op1, VPI.getName());

  replaceOperation(*NewBinOp, VPI);
  return NewBinOp;
}

Value *CachingVPExpander::expandPredicationToIntCall(
    IRBuilder<> &Builder, VPIntrinsic &VPI, unsigned UnpredicatedIntrinsicID) {
  switch (UnpredicatedIntrinsicID) {
  case Intrinsic::abs:
  case Intrinsic::smax:
  case Intrinsic::smin:
  case Intrinsic::umax:
  case Intrinsic::umin: {
    Value *Op0 = VPI.getOperand(0);
    Value *Op1 = VPI.getOperand(1);
    Function *Fn = Intrinsic::getDeclaration(
        VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()});
    Value *NewOp = Builder.CreateCall(Fn, {Op0, Op1}, VPI.getName());
    replaceOperation(*NewOp, VPI);
    return NewOp;
  }
  case Intrinsic::bswap:
  case Intrinsic::bitreverse: {
    Value *Op = VPI.getOperand(0);
    Function *Fn = Intrinsic::getDeclaration(
        VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()});
    Value *NewOp = Builder.CreateCall(Fn, {Op}, VPI.getName());
    replaceOperation(*NewOp, VPI);
    return NewOp;
  }
  }
  return nullptr;
}

Value *CachingVPExpander::expandPredicationToFPCall(
    IRBuilder<> &Builder, VPIntrinsic &VPI, unsigned UnpredicatedIntrinsicID) {
  assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  switch (UnpredicatedIntrinsicID) {
  case Intrinsic::fabs:
  case Intrinsic::sqrt: {
    Value *Op0 = VPI.getOperand(0);
    Function *Fn = Intrinsic::getDeclaration(
        VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()});
    Value *NewOp = Builder.CreateCall(Fn, {Op0}, VPI.getName());
    replaceOperation(*NewOp, VPI);
    return NewOp;
  }
  case Intrinsic::maxnum:
  case Intrinsic::minnum: {
    Value *Op0 = VPI.getOperand(0);
    Value *Op1 = VPI.getOperand(1);
    Function *Fn = Intrinsic::getDeclaration(
        VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()});
    Value *NewOp = Builder.CreateCall(Fn, {Op0, Op1}, VPI.getName());
    replaceOperation(*NewOp, VPI);
    return NewOp;
  }
  case Intrinsic::experimental_constrained_fma:
  case Intrinsic::experimental_constrained_fmuladd: {
    Value *Op0 = VPI.getOperand(0);
    Value *Op1 = VPI.getOperand(1);
    Value *Op2 = VPI.getOperand(2);
    Function *Fn = Intrinsic::getDeclaration(
        VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()});
    Value *NewOp =
        Builder.CreateConstrainedFPCall(Fn, {Op0, Op1, Op2}, VPI.getName());
    replaceOperation(*NewOp, VPI);
    return NewOp;
  }
  }

  return nullptr;
}

static Value *getNeutralReductionElement(const VPReductionIntrinsic &VPI,
                                         Type *EltTy) {
  bool Negative = false;
  unsigned EltBits = EltTy->getScalarSizeInBits();
  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Expecting a VP reduction intrinsic");
  case Intrinsic::vp_reduce_add:
  case Intrinsic::vp_reduce_or:
  case Intrinsic::vp_reduce_xor:
  case Intrinsic::vp_reduce_umax:
    return Constant::getNullValue(EltTy);
  case Intrinsic::vp_reduce_mul:
    return ConstantInt::get(EltTy, 1, /*IsSigned*/ false);
  case Intrinsic::vp_reduce_and:
  case Intrinsic::vp_reduce_umin:
    return ConstantInt::getAllOnesValue(EltTy);
  case Intrinsic::vp_reduce_smin:
    return ConstantInt::get(EltTy->getContext(),
                            APInt::getSignedMaxValue(EltBits));
  case Intrinsic::vp_reduce_smax:
    return ConstantInt::get(EltTy->getContext(),
                            APInt::getSignedMinValue(EltBits));
  case Intrinsic::vp_reduce_fmax:
    Negative = true;
    [[fallthrough]];
  case Intrinsic::vp_reduce_fmin: {
    FastMathFlags Flags = VPI.getFastMathFlags();
    const fltSemantics &Semantics = EltTy->getFltSemantics();
    return !Flags.noNaNs() ? ConstantFP::getQNaN(EltTy, Negative)
           : !Flags.noInfs()
               ? ConstantFP::getInfinity(EltTy, Negative)
               : ConstantFP::get(EltTy,
                                 APFloat::getLargest(Semantics, Negative));
  }
  case Intrinsic::vp_reduce_fadd:
    return ConstantFP::getNegativeZero(EltTy);
  case Intrinsic::vp_reduce_fmul:
    return ConstantFP::get(EltTy, 1.0);
  }
}

Value *
CachingVPExpander::expandPredicationInReduction(IRBuilder<> &Builder,
                                                VPReductionIntrinsic &VPI) {
  assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  Value *Mask = VPI.getMaskParam();
  Value *RedOp = VPI.getOperand(VPI.getVectorParamPos());

  // Insert neutral element in masked-out positions
  if (Mask && !isAllTrueMask(Mask)) {
    auto *NeutralElt = getNeutralReductionElement(VPI, VPI.getType());
    auto *NeutralVector = Builder.CreateVectorSplat(
        cast<VectorType>(RedOp->getType())->getElementCount(), NeutralElt);
    RedOp = Builder.CreateSelect(Mask, RedOp, NeutralVector);
  }

  Value *Reduction;
  Value *Start = VPI.getOperand(VPI.getStartParamPos());

  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Impossible reduction kind");
  case Intrinsic::vp_reduce_add:
    Reduction = Builder.CreateAddReduce(RedOp);
    Reduction = Builder.CreateAdd(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_mul:
    Reduction = Builder.CreateMulReduce(RedOp);
    Reduction = Builder.CreateMul(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_and:
    Reduction = Builder.CreateAndReduce(RedOp);
    Reduction = Builder.CreateAnd(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_or:
    Reduction = Builder.CreateOrReduce(RedOp);
    Reduction = Builder.CreateOr(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_xor:
    Reduction = Builder.CreateXorReduce(RedOp);
    Reduction = Builder.CreateXor(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_smax:
    Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ true);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::smax, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_smin:
    Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ true);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::smin, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_umax:
    Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ false);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::umax, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_umin:
    Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ false);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::umin, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fmax:
    Reduction = Builder.CreateFPMaxReduce(RedOp);
    transferDecorations(*Reduction, VPI);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fmin:
    Reduction = Builder.CreateFPMinReduce(RedOp);
    transferDecorations(*Reduction, VPI);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::minnum, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fadd:
    Reduction = Builder.CreateFAddReduce(Start, RedOp);
    break;
  case Intrinsic::vp_reduce_fmul:
    Reduction = Builder.CreateFMulReduce(Start, RedOp);
    break;
  }

  replaceOperation(*Reduction, VPI);
  return Reduction;
}

Value *CachingVPExpander::expandPredicationToCastIntrinsic(IRBuilder<> &Builder,
                                                           VPIntrinsic &VPI) {
  Value *CastOp = nullptr;
  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Not a VP cast intrinsic");
  case Intrinsic::vp_sext:
    CastOp =
        Builder.CreateSExt(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_zext:
    CastOp =
        Builder.CreateZExt(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_trunc:
    CastOp =
        Builder.CreateTrunc(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_inttoptr:
    CastOp =
        Builder.CreateIntToPtr(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_ptrtoint:
    CastOp =
        Builder.CreatePtrToInt(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_fptosi:
    CastOp =
        Builder.CreateFPToSI(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;

  case Intrinsic::vp_fptoui:
    CastOp =
        Builder.CreateFPToUI(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_sitofp:
    CastOp =
        Builder.CreateSIToFP(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_uitofp:
    CastOp =
        Builder.CreateUIToFP(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_fptrunc:
    CastOp =
        Builder.CreateFPTrunc(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  case Intrinsic::vp_fpext:
    CastOp =
        Builder.CreateFPExt(VPI.getOperand(0), VPI.getType(), VPI.getName());
    break;
  }
  replaceOperation(*CastOp, VPI);
  return CastOp;
}

Value *
CachingVPExpander::expandPredicationInMemoryIntrinsic(IRBuilder<> &Builder,
                                                      VPIntrinsic &VPI) {
  assert(VPI.canIgnoreVectorLengthParam());

  const auto &DL = F.getParent()->getDataLayout();

  Value *MaskParam = VPI.getMaskParam();
  Value *PtrParam = VPI.getMemoryPointerParam();
  Value *DataParam = VPI.getMemoryDataParam();
  bool IsUnmasked = isAllTrueMask(MaskParam);

  MaybeAlign AlignOpt = VPI.getPointerAlignment();

  Value *NewMemoryInst = nullptr;
  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Not a VP memory intrinsic");
  case Intrinsic::vp_store:
    if (IsUnmasked) {
      StoreInst *NewStore =
          Builder.CreateStore(DataParam, PtrParam, /*IsVolatile*/ false);
      if (AlignOpt.has_value())
        NewStore->setAlignment(*AlignOpt);
      NewMemoryInst = NewStore;
    } else
      NewMemoryInst = Builder.CreateMaskedStore(
          DataParam, PtrParam, AlignOpt.valueOrOne(), MaskParam);

    break;
  case Intrinsic::vp_load:
    if (IsUnmasked) {
      LoadInst *NewLoad =
          Builder.CreateLoad(VPI.getType(), PtrParam, /*IsVolatile*/ false);
      if (AlignOpt.has_value())
        NewLoad->setAlignment(*AlignOpt);
      NewMemoryInst = NewLoad;
    } else
      NewMemoryInst = Builder.CreateMaskedLoad(
          VPI.getType(), PtrParam, AlignOpt.valueOrOne(), MaskParam);

    break;
  case Intrinsic::vp_scatter: {
    auto *ElementType =
        cast<VectorType>(DataParam->getType())->getElementType();
    NewMemoryInst = Builder.CreateMaskedScatter(
        DataParam, PtrParam,
        AlignOpt.value_or(DL.getPrefTypeAlign(ElementType)), MaskParam);
    break;
  }
  case Intrinsic::vp_gather: {
    auto *ElementType = cast<VectorType>(VPI.getType())->getElementType();
    NewMemoryInst = Builder.CreateMaskedGather(
        VPI.getType(), PtrParam,
        AlignOpt.value_or(DL.getPrefTypeAlign(ElementType)), MaskParam, nullptr,
        VPI.getName());
    break;
  }
  }

  assert(NewMemoryInst);
  replaceOperation(*NewMemoryInst, VPI);
  return NewMemoryInst;
}

Value *CachingVPExpander::expandPredicationInComparison(IRBuilder<> &Builder,
                                                        VPCmpIntrinsic &VPI) {
  assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  assert(*VPI.getFunctionalOpcode() == Instruction::ICmp ||
         *VPI.getFunctionalOpcode() == Instruction::FCmp);

  Value *Op0 = VPI.getOperand(0);
  Value *Op1 = VPI.getOperand(1);
  auto Pred = VPI.getPredicate();

  auto *NewCmp = Builder.CreateCmp(Pred, Op0, Op1);

  replaceOperation(*NewCmp, VPI);
  return NewCmp;
}

void CachingVPExpander::discardEVLParameter(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Discard EVL parameter in " << VPI << "\n");

  if (VPI.canIgnoreVectorLengthParam())
    return;

  Value *EVLParam = VPI.getVectorLengthParam();
  if (!EVLParam)
    return;

  ElementCount StaticElemCount = VPI.getStaticVectorLength();
  Value *MaxEVL = nullptr;
  Type *Int32Ty = Type::getInt32Ty(VPI.getContext());
  if (StaticElemCount.isScalable()) {
    // TODO add caching
    auto *M = VPI.getModule();
    Function *VScaleFunc =
        Intrinsic::getDeclaration(M, Intrinsic::vscale, Int32Ty);
    IRBuilder<> Builder(VPI.getParent(), VPI.getIterator());
    Value *FactorConst = Builder.getInt32(StaticElemCount.getKnownMinValue());
    Value *VScale = Builder.CreateCall(VScaleFunc, {}, "vscale");
    MaxEVL = Builder.CreateMul(VScale, FactorConst, "scalable_size",
                               /*NUW*/ true, /*NSW*/ false);
  } else {
    MaxEVL = ConstantInt::get(Int32Ty, StaticElemCount.getFixedValue(), false);
  }
  VPI.setVectorLengthParam(MaxEVL);
}

Value *CachingVPExpander::foldEVLIntoMask(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Folding vlen for " << VPI << '\n');

  IRBuilder<> Builder(&VPI);

  // Ineffective %evl parameter and so nothing to do here.
  if (VPI.canIgnoreVectorLengthParam())
    return &VPI;

  // Only VP intrinsics can have an %evl parameter.
  Value *OldMaskParam = VPI.getMaskParam();
  Value *OldEVLParam = VPI.getVectorLengthParam();
  assert(OldMaskParam && "no mask param to fold the vl param into");
  assert(OldEVLParam && "no EVL param to fold away");

  LLVM_DEBUG(dbgs() << "OLD evl: " << *OldEVLParam << '\n');
  LLVM_DEBUG(dbgs() << "OLD mask: " << *OldMaskParam << '\n');

  // Convert the %evl predication into vector mask predication.
  ElementCount ElemCount = VPI.getStaticVectorLength();
  Value *VLMask = convertEVLToMask(Builder, OldEVLParam, ElemCount);
  Value *NewMaskParam = Builder.CreateAnd(VLMask, OldMaskParam);
  VPI.setMaskParam(NewMaskParam);

  // Drop the %evl parameter.
  discardEVLParameter(VPI);
  assert(VPI.canIgnoreVectorLengthParam() &&
         "transformation did not render the evl param ineffective!");

  // Reassess the modified instruction.
  return &VPI;
}

Value *CachingVPExpander::expandPredication(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Lowering to unpredicated op: " << VPI << '\n');

  IRBuilder<> Builder(&VPI);

  // Try lowering to a LLVM instruction first.
  auto OC = VPI.getFunctionalOpcode();

  if (OC && Instruction::isBinaryOp(*OC))
    return expandPredicationInBinaryOperator(Builder, VPI);

  if (auto *VPRI = dyn_cast<VPReductionIntrinsic>(&VPI))
    return expandPredicationInReduction(Builder, *VPRI);

  if (auto *VPCmp = dyn_cast<VPCmpIntrinsic>(&VPI))
    return expandPredicationInComparison(Builder, *VPCmp);

  if (VPCastIntrinsic::isVPCast(VPI.getIntrinsicID())) {
    return expandPredicationToCastIntrinsic(Builder, VPI);
  }

  switch (VPI.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::vp_fneg: {
    Value *NewNegOp = Builder.CreateFNeg(VPI.getOperand(0), VPI.getName());
    replaceOperation(*NewNegOp, VPI);
    return NewNegOp;
  }
  case Intrinsic::vp_abs:
  case Intrinsic::vp_smax:
  case Intrinsic::vp_smin:
  case Intrinsic::vp_umax:
  case Intrinsic::vp_umin:
  case Intrinsic::vp_bswap:
  case Intrinsic::vp_bitreverse:
    return expandPredicationToIntCall(Builder, VPI,
                                      VPI.getFunctionalIntrinsicID().value());
  case Intrinsic::vp_fabs:
  case Intrinsic::vp_sqrt:
  case Intrinsic::vp_maxnum:
  case Intrinsic::vp_minnum:
  case Intrinsic::vp_maximum:
  case Intrinsic::vp_minimum:
    return expandPredicationToFPCall(Builder, VPI,
                                     VPI.getFunctionalIntrinsicID().value());
  case Intrinsic::vp_load:
  case Intrinsic::vp_store:
  case Intrinsic::vp_gather:
  case Intrinsic::vp_scatter:
    return expandPredicationInMemoryIntrinsic(Builder, VPI);
  }

  if (auto CID = VPI.getConstrainedIntrinsicID())
    if (Value *Call = expandPredicationToFPCall(Builder, VPI, *CID))
      return Call;

  return &VPI;
}

//// } CachingVPExpander

struct TransformJob {
  VPIntrinsic *PI;
  TargetTransformInfo::VPLegalization Strategy;
  TransformJob(VPIntrinsic *PI, TargetTransformInfo::VPLegalization InitStrat)
      : PI(PI), Strategy(InitStrat) {}

  bool isDone() const { return Strategy.shouldDoNothing(); }
};

void sanitizeStrategy(VPIntrinsic &VPI, VPLegalization &LegalizeStrat) {
  // Operations with speculatable lanes do not strictly need predication.
  if (maySpeculateLanes(VPI)) {
    // Converting a speculatable VP intrinsic means dropping %mask and %evl.
    // No need to expand %evl into the %mask only to ignore that code.
    if (LegalizeStrat.OpStrategy == VPLegalization::Convert)
      LegalizeStrat.EVLParamStrategy = VPLegalization::Discard;
    return;
  }

  // We have to preserve the predicating effect of %evl for this
  // non-speculatable VP intrinsic.
  // 1) Never discard %evl.
  // 2) If this VP intrinsic will be expanded to non-VP code, make sure that
  //    %evl gets folded into %mask.
  if ((LegalizeStrat.EVLParamStrategy == VPLegalization::Discard) ||
      (LegalizeStrat.OpStrategy == VPLegalization::Convert)) {
    LegalizeStrat.EVLParamStrategy = VPLegalization::Convert;
  }
}

VPLegalization
CachingVPExpander::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
  auto VPStrat = TTI.getVPLegalizationStrategy(VPI);
  if (LLVM_LIKELY(!UsingTTIOverrides)) {
    // No overrides - we are in production.
    return VPStrat;
  }

  // Overrides set - we are in testing, the following does not need to be
  // efficient.
  VPStrat.EVLParamStrategy = parseOverrideOption(EVLTransformOverride);
  VPStrat.OpStrategy = parseOverrideOption(MaskTransformOverride);
  return VPStrat;
}

/// Expand llvm.vp.* intrinsics as requested by \p TTI.
bool CachingVPExpander::expandVectorPredication() {
  SmallVector<TransformJob, 16> Worklist;

  // Collect all VPIntrinsics that need expansion and determine their expansion
  // strategy.
  for (auto &I : instructions(F)) {
    auto *VPI = dyn_cast<VPIntrinsic>(&I);
    if (!VPI)
      continue;
    auto VPStrat = getVPLegalizationStrategy(*VPI);
    sanitizeStrategy(*VPI, VPStrat);
    if (!VPStrat.shouldDoNothing())
      Worklist.emplace_back(VPI, VPStrat);
  }
  if (Worklist.empty())
    return false;

  // Transform all VPIntrinsics on the worklist.
  LLVM_DEBUG(dbgs() << "\n:::: Transforming " << Worklist.size()
                    << " instructions ::::\n");
  for (TransformJob Job : Worklist) {
    // Transform the EVL parameter.
    switch (Job.Strategy.EVLParamStrategy) {
    case VPLegalization::Legal:
      break;
    case VPLegalization::Discard:
      discardEVLParameter(*Job.PI);
      break;
    case VPLegalization::Convert:
      if (foldEVLIntoMask(*Job.PI))
        ++NumFoldedVL;
      break;
    }
    Job.Strategy.EVLParamStrategy = VPLegalization::Legal;

    // Replace with a non-predicated operation.
    switch (Job.Strategy.OpStrategy) {
    case VPLegalization::Legal:
      break;
    case VPLegalization::Discard:
      llvm_unreachable("Invalid strategy for operators.");
    case VPLegalization::Convert:
      expandPredication(*Job.PI);
      ++NumLoweredVPOps;
      break;
    }
    Job.Strategy.OpStrategy = VPLegalization::Legal;

    assert(Job.isDone() && "incomplete transformation");
  }

  return true;
}
class ExpandVectorPredication : public FunctionPass {
public:
  static char ID;
  ExpandVectorPredication() : FunctionPass(ID) {
    initializeExpandVectorPredicationPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    CachingVPExpander VPExpander(F, *TTI);
    return VPExpander.expandVectorPredication();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};
} // namespace

char ExpandVectorPredication::ID;
INITIALIZE_PASS_BEGIN(ExpandVectorPredication, "expandvp",
                      "Expand vector predication intrinsics", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(ExpandVectorPredication, "expandvp",
                    "Expand vector predication intrinsics", false, false)

FunctionPass *llvm::createExpandVectorPredicationPass() {
  return new ExpandVectorPredication();
}

PreservedAnalyses
ExpandVectorPredicationPass::run(Function &F, FunctionAnalysisManager &AM) {
  const auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  CachingVPExpander VPExpander(F, TTI);
  if (!VPExpander.expandVectorPredication())
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}