aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/ScalarEvolutionDivision.cpp
blob: e1dd834cfb100d19015ab08c00fd2c330a5185a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//===- ScalarEvolutionDivision.h - See below --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the class that knows how to divide SCEV's.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionDivision.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>

namespace llvm {
class Type;
}

using namespace llvm;

namespace {

static inline int sizeOfSCEV(const SCEV *S) {
  struct FindSCEVSize {
    int Size = 0;

    FindSCEVSize() = default;

    bool follow(const SCEV *S) {
      ++Size;
      // Keep looking at all operands of S.
      return true;
    }

    bool isDone() const { return false; }
  };

  FindSCEVSize F;
  SCEVTraversal<FindSCEVSize> ST(F);
  ST.visitAll(S);
  return F.Size;
}

} // namespace

// Computes the Quotient and Remainder of the division of Numerator by
// Denominator.
void SCEVDivision::divide(ScalarEvolution &SE, const SCEV *Numerator,
                          const SCEV *Denominator, const SCEV **Quotient,
                          const SCEV **Remainder) {
  assert(Numerator && Denominator && "Uninitialized SCEV");

  SCEVDivision D(SE, Numerator, Denominator);

  // Check for the trivial case here to avoid having to check for it in the
  // rest of the code.
  if (Numerator == Denominator) {
    *Quotient = D.One;
    *Remainder = D.Zero;
    return;
  }

  if (Numerator->isZero()) {
    *Quotient = D.Zero;
    *Remainder = D.Zero;
    return;
  }

  // A simple case when N/1. The quotient is N.
  if (Denominator->isOne()) {
    *Quotient = Numerator;
    *Remainder = D.Zero;
    return;
  }

  // Split the Denominator when it is a product.
  if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
    const SCEV *Q, *R;
    *Quotient = Numerator;
    for (const SCEV *Op : T->operands()) {
      divide(SE, *Quotient, Op, &Q, &R);
      *Quotient = Q;

      // Bail out when the Numerator is not divisible by one of the terms of
      // the Denominator.
      if (!R->isZero()) {
        *Quotient = D.Zero;
        *Remainder = Numerator;
        return;
      }
    }
    *Remainder = D.Zero;
    return;
  }

  D.visit(Numerator);
  *Quotient = D.Quotient;
  *Remainder = D.Remainder;
}

void SCEVDivision::visitConstant(const SCEVConstant *Numerator) {
  if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
    APInt NumeratorVal = Numerator->getAPInt();
    APInt DenominatorVal = D->getAPInt();
    uint32_t NumeratorBW = NumeratorVal.getBitWidth();
    uint32_t DenominatorBW = DenominatorVal.getBitWidth();

    if (NumeratorBW > DenominatorBW)
      DenominatorVal = DenominatorVal.sext(NumeratorBW);
    else if (NumeratorBW < DenominatorBW)
      NumeratorVal = NumeratorVal.sext(DenominatorBW);

    APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
    APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
    APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
    Quotient = SE.getConstant(QuotientVal);
    Remainder = SE.getConstant(RemainderVal);
    return;
  }
}

void SCEVDivision::visitVScale(const SCEVVScale *Numerator) {
  return cannotDivide(Numerator);
}

void SCEVDivision::visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
  const SCEV *StartQ, *StartR, *StepQ, *StepR;
  if (!Numerator->isAffine())
    return cannotDivide(Numerator);
  divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
  divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
  // Bail out if the types do not match.
  Type *Ty = Denominator->getType();
  if (Ty != StartQ->getType() || Ty != StartR->getType() ||
      Ty != StepQ->getType() || Ty != StepR->getType())
    return cannotDivide(Numerator);
  Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
                              Numerator->getNoWrapFlags());
  Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
                               Numerator->getNoWrapFlags());
}

void SCEVDivision::visitAddExpr(const SCEVAddExpr *Numerator) {
  SmallVector<const SCEV *, 2> Qs, Rs;
  Type *Ty = Denominator->getType();

  for (const SCEV *Op : Numerator->operands()) {
    const SCEV *Q, *R;
    divide(SE, Op, Denominator, &Q, &R);

    // Bail out if types do not match.
    if (Ty != Q->getType() || Ty != R->getType())
      return cannotDivide(Numerator);

    Qs.push_back(Q);
    Rs.push_back(R);
  }

  if (Qs.size() == 1) {
    Quotient = Qs[0];
    Remainder = Rs[0];
    return;
  }

  Quotient = SE.getAddExpr(Qs);
  Remainder = SE.getAddExpr(Rs);
}

void SCEVDivision::visitMulExpr(const SCEVMulExpr *Numerator) {
  SmallVector<const SCEV *, 2> Qs;
  Type *Ty = Denominator->getType();

  bool FoundDenominatorTerm = false;
  for (const SCEV *Op : Numerator->operands()) {
    // Bail out if types do not match.
    if (Ty != Op->getType())
      return cannotDivide(Numerator);

    if (FoundDenominatorTerm) {
      Qs.push_back(Op);
      continue;
    }

    // Check whether Denominator divides one of the product operands.
    const SCEV *Q, *R;
    divide(SE, Op, Denominator, &Q, &R);
    if (!R->isZero()) {
      Qs.push_back(Op);
      continue;
    }

    // Bail out if types do not match.
    if (Ty != Q->getType())
      return cannotDivide(Numerator);

    FoundDenominatorTerm = true;
    Qs.push_back(Q);
  }

  if (FoundDenominatorTerm) {
    Remainder = Zero;
    if (Qs.size() == 1)
      Quotient = Qs[0];
    else
      Quotient = SE.getMulExpr(Qs);
    return;
  }

  if (!isa<SCEVUnknown>(Denominator))
    return cannotDivide(Numerator);

  // The Remainder is obtained by replacing Denominator by 0 in Numerator.
  ValueToSCEVMapTy RewriteMap;
  RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = Zero;
  Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap);

  if (Remainder->isZero()) {
    // The Quotient is obtained by replacing Denominator by 1 in Numerator.
    RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = One;
    Quotient = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap);
    return;
  }

  // Quotient is (Numerator - Remainder) divided by Denominator.
  const SCEV *Q, *R;
  const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
  // This SCEV does not seem to simplify: fail the division here.
  if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
    return cannotDivide(Numerator);
  divide(SE, Diff, Denominator, &Q, &R);
  if (R != Zero)
    return cannotDivide(Numerator);
  Quotient = Q;
}

SCEVDivision::SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
                           const SCEV *Denominator)
    : SE(S), Denominator(Denominator) {
  Zero = SE.getZero(Denominator->getType());
  One = SE.getOne(Denominator->getType());

  // We generally do not know how to divide Expr by Denominator. We initialize
  // the division to a "cannot divide" state to simplify the rest of the code.
  cannotDivide(Numerator);
}

// Convenience function for giving up on the division. We set the quotient to
// be equal to zero and the remainder to be equal to the numerator.
void SCEVDivision::cannotDivide(const SCEV *Numerator) {
  Quotient = Zero;
  Remainder = Numerator;
}