aboutsummaryrefslogtreecommitdiff
path: root/llgo/irgen/cabi.go
blob: 02def37de7635479e1d43d7653904a38a9ec4137 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
//===- cabi.go - C ABI abstraction layer ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an abstraction layer for the platform's C ABI (currently
// supports only Linux/x86_64).
//
//===----------------------------------------------------------------------===//

package irgen

import (
	"llvm.org/llgo/third_party/gotools/go/types"
	"llvm.org/llvm/bindings/go/llvm"
)

type abiArgInfo int

const (
	AIK_Direct = abiArgInfo(iota)
	AIK_Indirect
)

type backendType interface {
	ToLLVM(llvm.Context) llvm.Type
}

type ptrBType struct {
}

func (t ptrBType) ToLLVM(c llvm.Context) llvm.Type {
	return llvm.PointerType(c.Int8Type(), 0)
}

type intBType struct {
	width  int
	signed bool
}

func (t intBType) ToLLVM(c llvm.Context) llvm.Type {
	return c.IntType(t.width * 8)
}

type floatBType struct {
	isDouble bool
}

func (t floatBType) ToLLVM(c llvm.Context) llvm.Type {
	if t.isDouble {
		return c.DoubleType()
	} else {
		return c.FloatType()
	}
}

type structBType struct {
	fields []backendType
}

func (t structBType) ToLLVM(c llvm.Context) llvm.Type {
	var lfields []llvm.Type
	for _, f := range t.fields {
		lfields = append(lfields, f.ToLLVM(c))
	}
	return c.StructType(lfields, false)
}

type arrayBType struct {
	length uint64
	elem   backendType
}

func (t arrayBType) ToLLVM(c llvm.Context) llvm.Type {
	return llvm.ArrayType(t.elem.ToLLVM(c), int(t.length))
}

// align returns the smallest y >= x such that y % a == 0.
func align(x, a int64) int64 {
	y := x + a - 1
	return y - y%a
}

func (tm *llvmTypeMap) sizeofStruct(fields ...types.Type) int64 {
	var o int64
	for _, f := range fields {
		a := tm.Alignof(f)
		o = align(o, a)
		o += tm.Sizeof(f)
	}
	return o
}

// This decides whether the x86_64 classification algorithm produces MEMORY for
// the given type. Given the subset of types that Go supports, this is exactly
// equivalent to testing the type's size.  See in particular the first step of
// the algorithm and its footnote.
func (tm *llvmTypeMap) classify(t ...types.Type) abiArgInfo {
	if tm.sizeofStruct(t...) > 16 {
		return AIK_Indirect
	}
	return AIK_Direct
}

func (tm *llvmTypeMap) sliceBackendType() backendType {
	i8ptr := &ptrBType{}
	uintptr := &intBType{tm.target.PointerSize(), false}
	return &structBType{[]backendType{i8ptr, uintptr, uintptr}}
}

func (tm *llvmTypeMap) getBackendType(t types.Type) backendType {
	switch t := t.(type) {
	case *types.Named:
		return tm.getBackendType(t.Underlying())

	case *types.Basic:
		switch t.Kind() {
		case types.Bool, types.Uint8:
			return &intBType{1, false}
		case types.Int8:
			return &intBType{1, true}
		case types.Uint16:
			return &intBType{2, false}
		case types.Int16:
			return &intBType{2, true}
		case types.Uint32:
			return &intBType{4, false}
		case types.Int32:
			return &intBType{4, true}
		case types.Uint64:
			return &intBType{8, false}
		case types.Int64:
			return &intBType{8, true}
		case types.Uint, types.Uintptr:
			return &intBType{tm.target.PointerSize(), false}
		case types.Int:
			return &intBType{tm.target.PointerSize(), true}
		case types.Float32:
			return &floatBType{false}
		case types.Float64:
			return &floatBType{true}
		case types.UnsafePointer:
			return &ptrBType{}
		case types.Complex64:
			f32 := &floatBType{false}
			return &structBType{[]backendType{f32, f32}}
		case types.Complex128:
			f64 := &floatBType{true}
			return &structBType{[]backendType{f64, f64}}
		case types.String:
			return &structBType{[]backendType{&ptrBType{}, &intBType{tm.target.PointerSize(), false}}}
		}

	case *types.Struct:
		var fields []backendType
		for i := 0; i != t.NumFields(); i++ {
			f := t.Field(i)
			fields = append(fields, tm.getBackendType(f.Type()))
		}
		return &structBType{fields}

	case *types.Pointer, *types.Signature, *types.Map, *types.Chan:
		return &ptrBType{}

	case *types.Interface:
		i8ptr := &ptrBType{}
		return &structBType{[]backendType{i8ptr, i8ptr}}

	case *types.Slice:
		return tm.sliceBackendType()

	case *types.Array:
		return &arrayBType{uint64(t.Len()), tm.getBackendType(t.Elem())}
	}

	panic("unhandled type: " + t.String())
}

type offsetedType struct {
	typ    backendType
	offset uint64
}

func (tm *llvmTypeMap) getBackendOffsets(bt backendType) (offsets []offsetedType) {
	switch bt := bt.(type) {
	case *structBType:
		t := bt.ToLLVM(tm.ctx)
		for i, f := range bt.fields {
			offset := tm.target.ElementOffset(t, i)
			fieldOffsets := tm.getBackendOffsets(f)
			for _, fo := range fieldOffsets {
				offsets = append(offsets, offsetedType{fo.typ, offset + fo.offset})
			}
		}

	case *arrayBType:
		size := tm.target.TypeAllocSize(bt.elem.ToLLVM(tm.ctx))
		fieldOffsets := tm.getBackendOffsets(bt.elem)
		for i := uint64(0); i != bt.length; i++ {
			for _, fo := range fieldOffsets {
				offsets = append(offsets, offsetedType{fo.typ, i*size + fo.offset})
			}
		}

	default:
		offsets = []offsetedType{offsetedType{bt, 0}}
	}

	return
}

func (tm *llvmTypeMap) classifyEightbyte(offsets []offsetedType, numInt, numSSE *int) llvm.Type {
	if len(offsets) == 1 {
		if _, ok := offsets[0].typ.(*floatBType); ok {
			*numSSE++
		} else {
			*numInt++
		}
		return offsets[0].typ.ToLLVM(tm.ctx)
	}
	// This implements classification for the basic types and step 4 of the
	// classification algorithm. At this point, the only two possible
	// classifications are SSE (floats) and INTEGER (everything else).
	sse := true
	for _, ot := range offsets {
		if _, ok := ot.typ.(*floatBType); !ok {
			sse = false
			break
		}
	}
	if sse {
		// This can only be (float, float), which uses an SSE vector.
		*numSSE++
		return llvm.VectorType(tm.ctx.FloatType(), 2)
	} else {
		*numInt++
		width := offsets[len(offsets)-1].offset + tm.target.TypeAllocSize(offsets[len(offsets)-1].typ.ToLLVM(tm.ctx)) - offsets[0].offset
		return tm.ctx.IntType(int(width) * 8)
	}
}

func (tm *llvmTypeMap) expandType(argTypes []llvm.Type, argAttrs []llvm.Attribute, bt backendType) ([]llvm.Type, []llvm.Attribute, int, int) {
	var numInt, numSSE int
	var argAttr llvm.Attribute

	switch bt := bt.(type) {
	case *structBType, *arrayBType:
		noneAttr := tm.ctx.CreateEnumAttribute(0, 0)
		bo := tm.getBackendOffsets(bt)
		sp := 0
		for sp != len(bo) && bo[sp].offset < 8 {
			sp++
		}
		eb1 := bo[0:sp]
		eb2 := bo[sp:]
		if len(eb2) > 0 {
			argTypes = append(argTypes, tm.classifyEightbyte(eb1, &numInt, &numSSE), tm.classifyEightbyte(eb2, &numInt, &numSSE))
			argAttrs = append(argAttrs, noneAttr, noneAttr)
		} else {
			argTypes = append(argTypes, tm.classifyEightbyte(eb1, &numInt, &numSSE))
			argAttrs = append(argAttrs, noneAttr)
		}

		return argTypes, argAttrs, numInt, numSSE

	case *intBType:
		if bt.width < 4 {
			var argAttrKind uint
			if bt.signed {
				argAttrKind = llvm.AttributeKindID("signext")
			} else {
				argAttrKind = llvm.AttributeKindID("zeroext")
			}
			argAttr = tm.ctx.CreateEnumAttribute(argAttrKind, 0)
		}
	}

	argTypes = append(argTypes, tm.classifyEightbyte([]offsetedType{{bt, 0}}, &numInt, &numSSE))
	argAttrs = append(argAttrs, argAttr)

	return argTypes, argAttrs, numInt, numSSE
}

type argInfo interface {
	// Emit instructions to builder to ABI encode val and store result to args.
	encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value)

	// Emit instructions to builder to ABI decode and return the resulting Value.
	decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value
}

type retInfo interface {
	// Prepare args to receive a value. allocaBuilder refers to a builder in the entry block.
	prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value)

	// Emit instructions to builder to ABI decode the return value(s), if any. call is the
	// call instruction. Must be called after prepare().
	decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value

	// Emit instructions to builder to ABI encode the return value(s), if any, and return.
	encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value)
}

type directArgInfo struct {
	argOffset int
	argTypes  []llvm.Type
	valType   llvm.Type
}

func directEncode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, argTypes []llvm.Type, args []llvm.Value, val llvm.Value) {
	valType := val.Type()

	switch len(argTypes) {
	case 0:
		// do nothing

	case 1:
		if argTypes[0].C == valType.C {
			args[0] = val
			return
		}
		alloca := allocaBuilder.CreateAlloca(valType, "")
		bitcast := builder.CreateBitCast(alloca, llvm.PointerType(argTypes[0], 0), "")
		builder.CreateStore(val, alloca)
		args[0] = builder.CreateLoad(bitcast, "")

	case 2:
		encodeType := llvm.StructType(argTypes, false)
		alloca := allocaBuilder.CreateAlloca(valType, "")
		bitcast := builder.CreateBitCast(alloca, llvm.PointerType(encodeType, 0), "")
		builder.CreateStore(val, alloca)
		args[0] = builder.CreateLoad(builder.CreateStructGEP(bitcast, 0, ""), "")
		args[1] = builder.CreateLoad(builder.CreateStructGEP(bitcast, 1, ""), "")

	default:
		panic("unexpected argTypes size")
	}
}

func (ai *directArgInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value) {
	directEncode(ctx, allocaBuilder, builder, ai.argTypes, args[ai.argOffset:ai.argOffset+len(ai.argTypes)], val)
}

func directDecode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, valType llvm.Type, args []llvm.Value) llvm.Value {
	var alloca llvm.Value

	switch len(args) {
	case 0:
		return llvm.ConstNull(ctx.StructType(nil, false))

	case 1:
		if args[0].Type().C == valType.C {
			return args[0]
		}
		alloca = allocaBuilder.CreateAlloca(valType, "")
		bitcast := builder.CreateBitCast(alloca, llvm.PointerType(args[0].Type(), 0), "")
		builder.CreateStore(args[0], bitcast)

	case 2:
		alloca = allocaBuilder.CreateAlloca(valType, "")
		var argTypes []llvm.Type
		for _, a := range args {
			argTypes = append(argTypes, a.Type())
		}
		encodeType := ctx.StructType(argTypes, false)
		bitcast := builder.CreateBitCast(alloca, llvm.PointerType(encodeType, 0), "")
		builder.CreateStore(args[0], builder.CreateStructGEP(bitcast, 0, ""))
		builder.CreateStore(args[1], builder.CreateStructGEP(bitcast, 1, ""))

	default:
		panic("unexpected argTypes size")
	}

	return builder.CreateLoad(alloca, "")
}

func (ai *directArgInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value {
	var args []llvm.Value
	fn := builder.GetInsertBlock().Parent()
	for i, _ := range ai.argTypes {
		args = append(args, fn.Param(ai.argOffset+i))
	}
	return directDecode(ctx, allocaBuilder, builder, ai.valType, args)
}

type indirectArgInfo struct {
	argOffset int
}

func (ai *indirectArgInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value) {
	alloca := allocaBuilder.CreateAlloca(val.Type(), "")
	builder.CreateStore(val, alloca)
	args[ai.argOffset] = alloca
}

func (ai *indirectArgInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value {
	fn := builder.GetInsertBlock().Parent()
	return builder.CreateLoad(fn.Param(ai.argOffset), "")
}

type directRetInfo struct {
	numResults  int
	retTypes    []llvm.Type
	resultsType llvm.Type
}

func (ri *directRetInfo) prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value) {
}

func (ri *directRetInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value {
	var args []llvm.Value
	switch len(ri.retTypes) {
	case 0:
		return nil
	case 1:
		args = []llvm.Value{call}
	default:
		args = make([]llvm.Value, len(ri.retTypes))
		for i := 0; i != len(ri.retTypes); i++ {
			args[i] = builder.CreateExtractValue(call, i, "")
		}
	}

	d := directDecode(ctx, allocaBuilder, builder, ri.resultsType, args)

	if ri.numResults == 1 {
		return []llvm.Value{d}
	} else {
		results := make([]llvm.Value, ri.numResults)
		for i := 0; i != ri.numResults; i++ {
			results[i] = builder.CreateExtractValue(d, i, "")
		}
		return results
	}
}

func (ri *directRetInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value) {
	if len(ri.retTypes) == 0 {
		builder.CreateRetVoid()
		return
	}

	var val llvm.Value
	switch ri.numResults {
	case 1:
		val = vals[0]
	default:
		val = llvm.Undef(ri.resultsType)
		for i, v := range vals {
			val = builder.CreateInsertValue(val, v, i, "")
		}
	}

	args := make([]llvm.Value, len(ri.retTypes))
	directEncode(ctx, allocaBuilder, builder, ri.retTypes, args, val)

	var retval llvm.Value
	switch len(ri.retTypes) {
	case 1:
		retval = args[0]
	default:
		retval = llvm.Undef(ctx.StructType(ri.retTypes, false))
		for i, a := range args {
			retval = builder.CreateInsertValue(retval, a, i, "")
		}
	}
	builder.CreateRet(retval)
}

type indirectRetInfo struct {
	numResults  int
	sretSlot    llvm.Value
	resultsType llvm.Type
}

func (ri *indirectRetInfo) prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value) {
	ri.sretSlot = allocaBuilder.CreateAlloca(ri.resultsType, "")
	args[0] = ri.sretSlot
}

func (ri *indirectRetInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value {
	if ri.numResults == 1 {
		return []llvm.Value{builder.CreateLoad(ri.sretSlot, "")}
	} else {
		vals := make([]llvm.Value, ri.numResults)
		for i, _ := range vals {
			vals[i] = builder.CreateLoad(builder.CreateStructGEP(ri.sretSlot, i, ""), "")
		}
		return vals
	}
}

func (ri *indirectRetInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value) {
	fn := builder.GetInsertBlock().Parent()
	sretSlot := fn.Param(0)

	if ri.numResults == 1 {
		builder.CreateStore(vals[0], sretSlot)
	} else {
		for i, v := range vals {
			builder.CreateStore(v, builder.CreateStructGEP(sretSlot, i, ""))
		}
	}
	builder.CreateRetVoid()
}

type functionTypeInfo struct {
	functionType llvm.Type
	argAttrs     []llvm.Attribute
	retAttr      llvm.Attribute
	argInfos     []argInfo
	retInf       retInfo
	chainIndex   int
}

func (fi *functionTypeInfo) declare(m llvm.Module, name string) llvm.Value {
	fn := llvm.AddFunction(m, name, fi.functionType)
	if fi.retAttr.GetEnumKind() != 0 {
		fn.AddAttributeAtIndex(0, fi.retAttr)
	}
	for i, a := range fi.argAttrs {
		if a.GetEnumKind() != 0 {
			fn.AddAttributeAtIndex(i + 1, a)
		}
	}
	return fn
}

func (fi *functionTypeInfo) call(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, callee llvm.Value, chain llvm.Value, args []llvm.Value) []llvm.Value {
	callArgs := make([]llvm.Value, len(fi.argAttrs))
	if chain.C == nil {
		chain = llvm.Undef(llvm.PointerType(ctx.Int8Type(), 0))
	}
	callArgs[fi.chainIndex] = chain
	for i, a := range args {
		fi.argInfos[i].encode(ctx, allocaBuilder, builder, callArgs, a)
	}
	fi.retInf.prepare(ctx, allocaBuilder, callArgs)
	typedCallee := builder.CreateBitCast(callee, llvm.PointerType(fi.functionType, 0), "")
	call := builder.CreateCall(typedCallee, callArgs, "")
	if fi.retAttr.GetEnumKind() != 0 {
		call.AddCallSiteAttribute(0, fi.retAttr)
	}
	for i, a := range fi.argAttrs {
		if a.GetEnumKind() != 0 {
			call.AddCallSiteAttribute(i + 1, a)
		}
	}
	return fi.retInf.decode(ctx, allocaBuilder, builder, call)
}

func (fi *functionTypeInfo) invoke(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, callee llvm.Value, chain llvm.Value, args []llvm.Value, cont, lpad llvm.BasicBlock) []llvm.Value {
	callArgs := make([]llvm.Value, len(fi.argAttrs))
	if chain.C == nil {
		chain = llvm.Undef(llvm.PointerType(ctx.Int8Type(), 0))
	}
	callArgs[fi.chainIndex] = chain
	for i, a := range args {
		fi.argInfos[i].encode(ctx, allocaBuilder, builder, callArgs, a)
	}
	fi.retInf.prepare(ctx, allocaBuilder, callArgs)
	typedCallee := builder.CreateBitCast(callee, llvm.PointerType(fi.functionType, 0), "")
	call := builder.CreateInvoke(typedCallee, callArgs, cont, lpad, "")
	if fi.retAttr.GetEnumKind() != 0 {
		call.AddCallSiteAttribute(0, fi.retAttr)
	}
	for i, a := range fi.argAttrs {
		if a.GetEnumKind() != 0 {
			call.AddCallSiteAttribute(i + 1, a)
		}
	}
	builder.SetInsertPointAtEnd(cont)
	return fi.retInf.decode(ctx, allocaBuilder, builder, call)
}

func (tm *llvmTypeMap) getFunctionTypeInfo(args []types.Type, results []types.Type) (fi functionTypeInfo) {
	var returnType llvm.Type
	var argTypes []llvm.Type
	var argAttrKind uint
	if len(results) == 0 {
		returnType = llvm.VoidType()
		fi.retInf = &directRetInfo{}
	} else {
		aik := tm.classify(results...)

		var resultsType llvm.Type
		if len(results) == 1 {
			resultsType = tm.ToLLVM(results[0])
		} else {
			elements := make([]llvm.Type, len(results))
			for i := range elements {
				elements[i] = tm.ToLLVM(results[i])
			}
			resultsType = tm.ctx.StructType(elements, false)
		}

		switch aik {
		case AIK_Direct:
			var retFields []backendType
			for _, t := range results {
				retFields = append(retFields, tm.getBackendType(t))
			}
			bt := &structBType{retFields}

			retTypes, retAttrs, _, _ := tm.expandType(nil, nil, bt)
			switch len(retTypes) {
			case 0: // e.g., empty struct
				returnType = llvm.VoidType()
			case 1:
				returnType = retTypes[0]
				fi.retAttr = retAttrs[0]
			case 2:
				returnType = llvm.StructType(retTypes, false)
			default:
				panic("unexpected expandType result")
			}
			fi.retInf = &directRetInfo{numResults: len(results), retTypes: retTypes, resultsType: resultsType}

		case AIK_Indirect:
			returnType = llvm.VoidType()
			argTypes = []llvm.Type{llvm.PointerType(resultsType, 0)}
			argAttrKind = llvm.AttributeKindID("sret")
			fi.argAttrs = []llvm.Attribute{tm.ctx.CreateEnumAttribute(argAttrKind, 0)}
			fi.retInf = &indirectRetInfo{numResults: len(results), resultsType: resultsType}
		}
	}

	// Allocate an argument for the call chain.
	fi.chainIndex = len(argTypes)
	argTypes = append(argTypes, llvm.PointerType(tm.ctx.Int8Type(), 0))
	argAttrKind = llvm.AttributeKindID("nest")
	fi.argAttrs = append(fi.argAttrs, tm.ctx.CreateEnumAttribute(argAttrKind, 0))

	// Keep track of the number of INTEGER/SSE class registers remaining.
	remainingInt := 6
	remainingSSE := 8

	for _, arg := range args {
		aik := tm.classify(arg)

		isDirect := aik == AIK_Direct
		if isDirect {
			bt := tm.getBackendType(arg)
			directArgTypes, directArgAttrs, numInt, numSSE := tm.expandType(argTypes, fi.argAttrs, bt)

			// Check if the argument can fit into the remaining registers, or if
			// it would just occupy one register (which pushes the whole argument
			// onto the stack anyway).
			if numInt <= remainingInt && numSSE <= remainingSSE || numInt+numSSE == 1 {
				remainingInt -= numInt
				remainingSSE -= numSSE
				argInfo := &directArgInfo{argOffset: len(argTypes), valType: bt.ToLLVM(tm.ctx)}
				fi.argInfos = append(fi.argInfos, argInfo)
				argTypes = directArgTypes
				fi.argAttrs = directArgAttrs
				argInfo.argTypes = argTypes[argInfo.argOffset:len(argTypes)]
			} else {
				// No remaining registers; pass on the stack.
				isDirect = false
			}
		}

		if !isDirect {
			fi.argInfos = append(fi.argInfos, &indirectArgInfo{len(argTypes)})
			argTypes = append(argTypes, llvm.PointerType(tm.ToLLVM(arg), 0))
			argAttrKind = llvm.AttributeKindID("byval")
			fi.argAttrs = append(fi.argAttrs, tm.ctx.CreateEnumAttribute(argAttrKind, 0))
		}
	}

	fi.functionType = llvm.FunctionType(returnType, argTypes, false)
	return
}

func (tm *llvmTypeMap) getSignatureInfo(sig *types.Signature) functionTypeInfo {
	var args, results []types.Type
	if sig.Recv() != nil {
		recvtype := sig.Recv().Type()
		if _, ok := recvtype.Underlying().(*types.Pointer); !ok && recvtype != types.Typ[types.UnsafePointer] {
			recvtype = types.NewPointer(recvtype)
		}
		args = []types.Type{recvtype}
	}

	for i := 0; i != sig.Params().Len(); i++ {
		args = append(args, sig.Params().At(i).Type())
	}
	for i := 0; i != sig.Results().Len(); i++ {
		results = append(results, sig.Results().At(i).Type())
	}
	return tm.getFunctionTypeInfo(args, results)
}