aboutsummaryrefslogtreecommitdiff
path: root/libc/test/src/math/RIntTest.h
blob: 272112142e21e0f3fb90e4fb856ea585846b22d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
//===-- Utility class to test different flavors of rint ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_TEST_SRC_MATH_RINTTEST_H
#define LLVM_LIBC_TEST_SRC_MATH_RINTTEST_H

#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "utils/MPFRWrapper/MPFRUtils.h"

#include <fenv.h>
#include <math.h>
#include <stdio.h>

namespace mpfr = LIBC_NAMESPACE::testing::mpfr;

static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO,
                                          FE_TONEAREST};

template <typename T>
class RIntTestTemplate : public LIBC_NAMESPACE::testing::Test {
public:
  typedef T (*RIntFunc)(T);

private:
  using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>;
  using UIntType = typename FPBits::UIntType;

  const T zero = T(FPBits::zero());
  const T neg_zero = T(FPBits::neg_zero());
  const T inf = T(FPBits::inf());
  const T neg_inf = T(FPBits::neg_inf());
  const T nan = T(FPBits::build_quiet_nan(1));

  static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) {
    switch (mode) {
    case FE_UPWARD:
      return mpfr::RoundingMode::Upward;
    case FE_DOWNWARD:
      return mpfr::RoundingMode::Downward;
    case FE_TOWARDZERO:
      return mpfr::RoundingMode::TowardZero;
    case FE_TONEAREST:
      return mpfr::RoundingMode::Nearest;
    default:
      __builtin_unreachable();
    }
  }

public:
  void testSpecialNumbers(RIntFunc func) {
    for (int mode : ROUNDING_MODES) {
      LIBC_NAMESPACE::fputil::set_round(mode);
      ASSERT_FP_EQ(inf, func(inf));
      ASSERT_FP_EQ(neg_inf, func(neg_inf));
      ASSERT_FP_EQ(nan, func(nan));
      ASSERT_FP_EQ(zero, func(zero));
      ASSERT_FP_EQ(neg_zero, func(neg_zero));
    }
  }

  void testRoundNumbers(RIntFunc func) {
    for (int mode : ROUNDING_MODES) {
      LIBC_NAMESPACE::fputil::set_round(mode);
      mpfr::RoundingMode mpfr_mode = to_mpfr_rounding_mode(mode);
      ASSERT_FP_EQ(func(T(1.0)), mpfr::round(T(1.0), mpfr_mode));
      ASSERT_FP_EQ(func(T(-1.0)), mpfr::round(T(-1.0), mpfr_mode));
      ASSERT_FP_EQ(func(T(10.0)), mpfr::round(T(10.0), mpfr_mode));
      ASSERT_FP_EQ(func(T(-10.0)), mpfr::round(T(-10.0), mpfr_mode));
      ASSERT_FP_EQ(func(T(1234.0)), mpfr::round(T(1234.0), mpfr_mode));
      ASSERT_FP_EQ(func(T(-1234.0)), mpfr::round(T(-1234.0), mpfr_mode));
    }
  }

  void testFractions(RIntFunc func) {
    for (int mode : ROUNDING_MODES) {
      LIBC_NAMESPACE::fputil::set_round(mode);
      mpfr::RoundingMode mpfr_mode = to_mpfr_rounding_mode(mode);
      ASSERT_FP_EQ(func(T(0.5)), mpfr::round(T(0.5), mpfr_mode));
      ASSERT_FP_EQ(func(T(-0.5)), mpfr::round(T(-0.5), mpfr_mode));
      ASSERT_FP_EQ(func(T(0.115)), mpfr::round(T(0.115), mpfr_mode));
      ASSERT_FP_EQ(func(T(-0.115)), mpfr::round(T(-0.115), mpfr_mode));
      ASSERT_FP_EQ(func(T(0.715)), mpfr::round(T(0.715), mpfr_mode));
      ASSERT_FP_EQ(func(T(-0.715)), mpfr::round(T(-0.715), mpfr_mode));
    }
  }

  void testSubnormalRange(RIntFunc func) {
    constexpr UIntType COUNT = 100'001;
    constexpr UIntType STEP =
        (UIntType(FPBits::MAX_SUBNORMAL) - UIntType(FPBits::MIN_SUBNORMAL)) /
        COUNT;
    for (UIntType i = FPBits::MIN_SUBNORMAL; i <= FPBits::MAX_SUBNORMAL;
         i += STEP) {
      T x = T(FPBits(i));
      for (int mode : ROUNDING_MODES) {
        LIBC_NAMESPACE::fputil::set_round(mode);
        mpfr::RoundingMode mpfr_mode = to_mpfr_rounding_mode(mode);
        ASSERT_FP_EQ(func(x), mpfr::round(x, mpfr_mode));
      }
    }
  }

  void testNormalRange(RIntFunc func) {
    constexpr UIntType COUNT = 100'001;
    constexpr UIntType STEP =
        (UIntType(FPBits::MAX_NORMAL) - UIntType(FPBits::MIN_NORMAL)) / COUNT;
    for (UIntType i = FPBits::MIN_NORMAL; i <= FPBits::MAX_NORMAL; i += STEP) {
      T x = T(FPBits(i));
      // In normal range on x86 platforms, the long double implicit 1 bit can be
      // zero making the numbers NaN. We will skip them.
      if (isnan(x)) {
        continue;
      }

      for (int mode : ROUNDING_MODES) {
        LIBC_NAMESPACE::fputil::set_round(mode);
        mpfr::RoundingMode mpfr_mode = to_mpfr_rounding_mode(mode);
        ASSERT_FP_EQ(func(x), mpfr::round(x, mpfr_mode));
      }
    }
  }
};

#define LIST_RINT_TESTS(F, func)                                               \
  using LlvmLibcRIntTest = RIntTestTemplate<F>;                                \
  TEST_F(LlvmLibcRIntTest, specialNumbers) { testSpecialNumbers(&func); }      \
  TEST_F(LlvmLibcRIntTest, RoundNumbers) { testRoundNumbers(&func); }          \
  TEST_F(LlvmLibcRIntTest, Fractions) { testFractions(&func); }                \
  TEST_F(LlvmLibcRIntTest, SubnormalRange) { testSubnormalRange(&func); }      \
  TEST_F(LlvmLibcRIntTest, NormalRange) { testNormalRange(&func); }

#endif // LLVM_LIBC_TEST_SRC_MATH_RINTTEST_H