aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/sincosf.cpp
blob: 1611567eef9779ee923a33ff98c68ed48fd101c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//===-- Single-precision sincos function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/sincosf.h"
#include "sincosf_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA

#include <errno.h>

namespace __llvm_libc {

// Exceptional values
static constexpr int N_EXCEPTS = 6;

static constexpr uint32_t EXCEPT_INPUTS[N_EXCEPTS] = {
    0x46199998, // x = 0x1.33333p13   x
    0x55325019, // x = 0x1.64a032p43  x
    0x5922aa80, // x = 0x1.4555p51    x
    0x5f18b878, // x = 0x1.3170fp63   x
    0x6115cb11, // x = 0x1.2b9622p67  x
    0x7beef5ef, // x = 0x1.ddebdep120 x
};

static constexpr uint32_t EXCEPT_OUTPUTS_SIN[N_EXCEPTS][4] = {
    {0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ)
    {0xbf171adf, 0, 1, 1}, // x = 0x1.64a032p43, sin(x) = -0x1.2e35bep-1 (RZ)
    {0xbf587521, 0, 1, 1}, // x = 0x1.4555p51, sin(x) = -0x1.b0ea42p-1 (RZ)
    {0x3dad60f6, 1, 0, 1}, // x = 0x1.3170fp63, sin(x) = 0x1.5ac1ecp-4 (RZ)
    {0xbe7cc1e0, 0, 1, 1}, // x = 0x1.2b9622p67, sin(x) = -0x1.f983cp-3 (RZ)
    {0xbf587d1b, 0, 1, 1}, // x = 0x1.ddebdep120, sin(x) = -0x1.b0fa36p-1 (RZ)
};

static constexpr uint32_t EXCEPT_OUTPUTS_COS[N_EXCEPTS][4] = {
    {0xbf70090b, 0, 1, 0}, // x = 0x1.33333p13, cos(x) = -0x1.e01216p-1 (RZ)
    {0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
    {0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
    {0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
    {0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
    {0x3f08a21c, 1, 0, 0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
};

LLVM_LIBC_FUNCTION(void, sincosf, (float x, float *sinp, float *cosp)) {
  using FPBits = typename fputil::FPBits<float>;
  FPBits xbits(x);

  uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
  double xd = static_cast<double>(x);

  // Range reduction:
  // For |x| >= 2^-12, we perform range reduction as follows:
  // Find k and y such that:
  //   x = (k + y) * pi/32
  //   k is an integer
  //   |y| < 0.5
  // For small range (|x| < 2^45 when FMA instructions are available, 2^22
  // otherwise), this is done by performing:
  //   k = round(x * 32/pi)
  //   y = x * 32/pi - k
  // For large range, we will omit all the higher parts of 32/pi such that the
  // least significant bits of their full products with x are larger than 63,
  // since:
  //     sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x), and
  //     cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
  //
  // When FMA instructions are not available, we store the digits of 32/pi in
  // chunks of 28-bit precision.  This will make sure that the products:
  //   x * THIRTYTWO_OVER_PI_28[i] are all exact.
  // When FMA instructions are available, we simply store the digits of326/pi in
  // chunks of doubles (53-bit of precision).
  // So when multiplying by the largest values of single precision, the
  // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80.  By the
  // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
  // us more than 40 bits of accuracy. For the worst-case estimation of range
  // reduction, see for instances:
  //   Elementary Functions by J-M. Muller, Chapter 11,
  //   Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
  //   Chapter 10.2.
  //
  // Once k and y are computed, we then deduce the answer by the sine and cosine
  // of sum formulas:
  //   sin(x) = sin((k + y)*pi/32)
  //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
  //   cos(x) = cos((k + y)*pi/32)
  //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
  // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
  // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
  // computed using degree-7 and degree-6 minimax polynomials generated by
  // Sollya respectively.

  // |x| < 0x1.0p-12f
  if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) {
    if (LIBC_UNLIKELY(x_abs == 0U)) {
      // For signed zeros.
      *sinp = x;
      *cosp = 1.0f;
      return;
    }
    // When |x| < 2^-12, the relative errors of the approximations
    //   sin(x) ~ x, cos(x) ~ 1
    // are:
    //   |sin(x) - x| / |sin(x)| < |x^3| / (6|x|)
    //                           = x^2 / 6
    //                           < 2^-25
    //                           < epsilon(1)/2.
    //   |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
    // So the correctly rounded values of sin(x) and cos(x) are:
    //   sin(x) = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
    //                        or (rounding mode = FE_UPWARD and x is
    //                        negative),
    //          = x otherwise.
    //   cos(x) = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
    //          = 1 otherwise.
    // To simplify the rounding decision and make it more efficient and to
    // prevent compiler to perform constant folding, we use
    //   sin(x) = fma(x, -2^-25, x),
    //   cos(x) = fma(x*0.5f, -x, 1)
    // instead.
    // Note: to use the formula x - 2^-25*x to decide the correct rounding, we
    // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when
    // |x| < 2^-125. For targets without FMA instructions, we simply use
    // double for intermediate results as it is more efficient than using an
    // emulated version of FMA.
#if defined(LIBC_TARGET_CPU_HAS_FMA)
    *sinp = fputil::multiply_add(x, -0x1.0p-25f, x);
    *cosp = fputil::multiply_add(FPBits(x_abs).get_val(), -0x1.0p-25f, 1.0f);
#else
    *sinp = static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd));
    *cosp = static_cast<float>(fputil::multiply_add(
        static_cast<double>(FPBits(x_abs).get_val()), -0x1.0p-25, 1.0));
#endif // LIBC_TARGET_CPU_HAS_FMA
    return;
  }

  // x is inf or nan.
  if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
    if (x_abs == 0x7f80'0000U) {
      fputil::set_errno_if_required(EDOM);
      fputil::raise_except_if_required(FE_INVALID);
    }
    *sinp =
        x + FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
    *cosp = *sinp;
    return;
  }

  // Check exceptional values.
  for (int i = 0; i < N_EXCEPTS; ++i) {
    if (LIBC_UNLIKELY(x_abs == EXCEPT_INPUTS[i])) {
      uint32_t s = EXCEPT_OUTPUTS_SIN[i][0]; // FE_TOWARDZERO
      uint32_t c = EXCEPT_OUTPUTS_COS[i][0]; // FE_TOWARDZERO
      bool x_sign = x < 0;
      switch (fputil::quick_get_round()) {
      case FE_UPWARD:
        s += x_sign ? EXCEPT_OUTPUTS_SIN[i][2] : EXCEPT_OUTPUTS_SIN[i][1];
        c += EXCEPT_OUTPUTS_COS[i][1];
        break;
      case FE_DOWNWARD:
        s += x_sign ? EXCEPT_OUTPUTS_SIN[i][1] : EXCEPT_OUTPUTS_SIN[i][2];
        c += EXCEPT_OUTPUTS_COS[i][2];
        break;
      case FE_TONEAREST:
        s += EXCEPT_OUTPUTS_SIN[i][3];
        c += EXCEPT_OUTPUTS_COS[i][3];
        break;
      }
      *sinp = x_sign ? -FPBits(s).get_val() : FPBits(s).get_val();
      *cosp = FPBits(c).get_val();

      return;
    }
  }

  // Combine the results with the sine and cosine of sum formulas:
  //   sin(x) = sin((k + y)*pi/32)
  //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
  //          = sin_y * cos_k + (1 + cosm1_y) * sin_k
  //          = sin_y * cos_k + (cosm1_y * sin_k + sin_k)
  //   cos(x) = cos((k + y)*pi/32)
  //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
  //          = cosm1_y * cos_k + sin_y * sin_k
  //          = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
  double sin_k, cos_k, sin_y, cosm1_y;

  sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);

  *sinp = static_cast<float>(fputil::multiply_add(
      sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k)));
  *cosp = static_cast<float>(fputil::multiply_add(
      sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k)));
}

} // namespace __llvm_libc