aboutsummaryrefslogtreecommitdiff
path: root/libc/benchmarks/LibcMemoryBenchmark.h
blob: 5ba8b936a0cafa685541099cec0537cd8436955f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//===-- Benchmark memory specific tools -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// This file complements the `benchmark` header with memory specific tools and
// benchmarking facilities.

#ifndef LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#define LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H

#include "LibcBenchmark.h"
#include "LibcFunctionPrototypes.h"
#include "MemorySizeDistributions.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MathExtras.h"
#include <cstdint>
#include <optional>
#include <random>

namespace llvm {
namespace libc_benchmarks {

//--------------
// Configuration
//--------------

struct StudyConfiguration {
  // One of 'memcpy', 'memset', 'memcmp'.
  // The underlying implementation is always the llvm libc one.
  // e.g. 'memcpy' will test 'LIBC_NAMESPACE::memcpy'
  std::string Function;

  // The number of trials to run for this benchmark.
  // If in SweepMode, each individual sizes are measured 'NumTrials' time.
  // i.e 'NumTrials' measurements for 0, 'NumTrials' measurements for 1 ...
  uint32_t NumTrials = 1;

  // Toggles between Sweep Mode and Distribution Mode (default).
  // See 'SweepModeMaxSize' and 'SizeDistributionName' below.
  bool IsSweepMode = false;

  // Maximum size to use when measuring a ramp of size values (SweepMode).
  // The benchmark measures all sizes from 0 to SweepModeMaxSize.
  // Note: in sweep mode the same size is sampled several times in a row this
  // will allow the processor to learn it and optimize the branching pattern.
  // The resulting measurement is likely to be idealized.
  uint32_t SweepModeMaxSize = 0; // inclusive

  // The name of the distribution to be used to randomize the size parameter.
  // This is used when SweepMode is false (default).
  std::string SizeDistributionName;

  // This parameter allows to control how the buffers are accessed during
  // benchmark:
  // None : Use a fixed address that is at least cache line aligned,
  //    1 : Use random address,
  //   >1 : Use random address aligned to value.
  MaybeAlign AccessAlignment = std::nullopt;

  // When Function == 'memcmp', this is the buffers mismatch position.
  //  0 : Buffers always compare equal,
  // >0 : Buffers compare different at byte N-1.
  uint32_t MemcmpMismatchAt = 0;
};

struct Runtime {
  // Details about the Host (cpu name, cpu frequency, cache hierarchy).
  HostState Host;

  // The framework will populate this value so all data accessed during the
  // benchmark will stay in L1 data cache. This includes bookkeeping data.
  uint32_t BufferSize = 0;

  // This is the number of distinct parameters used in a single batch.
  // The framework always tests a batch of randomized parameter to prevent the
  // cpu from learning branching patterns.
  uint32_t BatchParameterCount = 0;

  // The benchmark options that were used to perform the measurement.
  // This is decided by the framework.
  BenchmarkOptions BenchmarkOptions;
};

//--------
// Results
//--------

// The root object containing all the data (configuration and measurements).
struct Study {
  std::string StudyName;
  Runtime Runtime;
  StudyConfiguration Configuration;
  std::vector<Duration> Measurements;
};

//------
// Utils
//------

// Provides an aligned, dynamically allocated buffer.
class AlignedBuffer {
  char *const Buffer = nullptr;
  size_t Size = 0;

public:
  static constexpr size_t Alignment = 512;

  explicit AlignedBuffer(size_t Size)
      : Buffer(static_cast<char *>(
            aligned_alloc(Alignment, alignTo(Size, Alignment)))),
        Size(Size) {}
  ~AlignedBuffer() { free(Buffer); }

  inline char *operator+(size_t Index) { return Buffer + Index; }
  inline const char *operator+(size_t Index) const { return Buffer + Index; }
  inline char &operator[](size_t Index) { return Buffer[Index]; }
  inline const char &operator[](size_t Index) const { return Buffer[Index]; }
  inline char *begin() { return Buffer; }
  inline char *end() { return Buffer + Size; }
};

// Helper to generate random buffer offsets that satisfy the configuration
// constraints.
class OffsetDistribution {
  std::uniform_int_distribution<uint32_t> Distribution;
  uint32_t Factor;

public:
  explicit OffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
                              MaybeAlign AccessAlignment);

  template <class Generator> uint32_t operator()(Generator &G) {
    return Distribution(G) * Factor;
  }
};

// Helper to generate random buffer offsets that satisfy the configuration
// constraints. It is specifically designed to benchmark `memcmp` functions
// where we may want the Nth byte to differ.
class MismatchOffsetDistribution {
  std::uniform_int_distribution<size_t> MismatchIndexSelector;
  llvm::SmallVector<uint32_t, 16> MismatchIndices;
  const uint32_t MismatchAt;

public:
  explicit MismatchOffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
                                      size_t MismatchAt);

  explicit operator bool() const { return !MismatchIndices.empty(); }

  const llvm::SmallVectorImpl<uint32_t> &getMismatchIndices() const {
    return MismatchIndices;
  }

  template <class Generator> uint32_t operator()(Generator &G, uint32_t Size) {
    const uint32_t MismatchIndex = MismatchIndices[MismatchIndexSelector(G)];
    // We need to position the offset so that a mismatch occurs at MismatchAt.
    if (Size >= MismatchAt)
      return MismatchIndex - MismatchAt;
    // Size is too small to trigger the mismatch.
    return MismatchIndex - Size - 1;
  }
};

/// This structure holds a vector of ParameterType.
/// It makes sure that BufferCount x BufferSize Bytes and the vector of
/// ParameterType can all fit in the L1 cache.
struct ParameterBatch {
  struct ParameterType {
    unsigned OffsetBytes : 16; // max : 16 KiB - 1
    unsigned SizeBytes : 16;   // max : 16 KiB - 1
  };

  ParameterBatch(size_t BufferCount);

  /// Verifies that memory accessed through this parameter is valid.
  void checkValid(const ParameterType &) const;

  /// Computes the number of bytes processed during within this batch.
  size_t getBatchBytes() const;

  const size_t BufferSize;
  const size_t BatchSize;
  std::vector<ParameterType> Parameters;
};

/// Provides source and destination buffers for the Copy operation as well as
/// the associated size distributions.
struct CopySetup : public ParameterBatch {
  CopySetup();

  inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
    return getMemcpySizeDistributions();
  }

  inline void *Call(ParameterType Parameter, MemcpyFunction Memcpy) {
    return Memcpy(DstBuffer + Parameter.OffsetBytes,
                  SrcBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
  }

private:
  AlignedBuffer SrcBuffer;
  AlignedBuffer DstBuffer;
};

/// Provides source and destination buffers for the Move operation as well as
/// the associated size distributions.
struct MoveSetup : public ParameterBatch {
  MoveSetup();

  inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
    return getMemmoveSizeDistributions();
  }

  inline void *Call(ParameterType Parameter, MemmoveFunction Memmove) {
    return Memmove(Buffer + ParameterBatch::BufferSize / 3,
                   Buffer + Parameter.OffsetBytes, Parameter.SizeBytes);
  }

private:
  AlignedBuffer Buffer;
};

/// Provides destination buffer for the Set operation as well as the associated
/// size distributions.
struct SetSetup : public ParameterBatch {
  SetSetup();

  inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
    return getMemsetSizeDistributions();
  }

  inline void *Call(ParameterType Parameter, MemsetFunction Memset) {
    return Memset(DstBuffer + Parameter.OffsetBytes,
                  Parameter.OffsetBytes % 0xFF, Parameter.SizeBytes);
  }

  inline void *Call(ParameterType Parameter, BzeroFunction Bzero) {
    Bzero(DstBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
    return DstBuffer.begin();
  }

private:
  AlignedBuffer DstBuffer;
};

/// Provides left and right buffers for the Comparison operation as well as the
/// associated size distributions.
struct ComparisonSetup : public ParameterBatch {
  ComparisonSetup();

  inline static const ArrayRef<MemorySizeDistribution> getDistributions() {
    return getMemcmpSizeDistributions();
  }

  inline int Call(ParameterType Parameter, MemcmpOrBcmpFunction MemcmpOrBcmp) {
    return MemcmpOrBcmp(LhsBuffer + Parameter.OffsetBytes,
                        RhsBuffer + Parameter.OffsetBytes, Parameter.SizeBytes);
  }

private:
  AlignedBuffer LhsBuffer;
  AlignedBuffer RhsBuffer;
};

} // namespace libc_benchmarks
} // namespace llvm

#endif // LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H