aboutsummaryrefslogtreecommitdiff
path: root/flang/lib/Lower/IterationSpace.cpp
blob: 6bf310b5cfb769b83ab53c2ce5140115f356a3da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
//===-- IterationSpace.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/IterationSpace.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Support/Utils.h"
#include "llvm/Support/Debug.h"
#include <optional>

#define DEBUG_TYPE "flang-lower-iteration-space"

unsigned Fortran::lower::getHashValue(
    const Fortran::lower::ExplicitIterSpace::ArrayBases &x) {
  return std::visit(
      [&](const auto *p) { return HashEvaluateExpr::getHashValue(*p); }, x);
}

bool Fortran::lower::isEqual(
    const Fortran::lower::ExplicitIterSpace::ArrayBases &x,
    const Fortran::lower::ExplicitIterSpace::ArrayBases &y) {
  return std::visit(
      Fortran::common::visitors{
          // Fortran::semantics::Symbol * are the exception here. These pointers
          // have identity; if two Symbol * values are the same (different) then
          // they are the same (different) logical symbol.
          [&](Fortran::lower::FrontEndSymbol p,
              Fortran::lower::FrontEndSymbol q) { return p == q; },
          [&](const auto *p, const auto *q) {
            if constexpr (std::is_same_v<decltype(p), decltype(q)>) {
              LLVM_DEBUG(llvm::dbgs()
                         << "is equal: " << p << ' ' << q << ' '
                         << IsEqualEvaluateExpr::isEqual(*p, *q) << '\n');
              return IsEqualEvaluateExpr::isEqual(*p, *q);
            } else {
              // Different subtree types are never equal.
              return false;
            }
          }},
      x, y);
}

namespace {

/// This class can recover the base array in an expression that contains
/// explicit iteration space symbols. Most of the class can be ignored as it is
/// boilerplate Fortran::evaluate::Expr traversal.
class ArrayBaseFinder {
public:
  using RT = bool;

  ArrayBaseFinder(llvm::ArrayRef<Fortran::lower::FrontEndSymbol> syms)
      : controlVars(syms.begin(), syms.end()) {}

  template <typename T>
  void operator()(const T &x) {
    (void)find(x);
  }

  /// Get the list of bases.
  llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases>
  getBases() const {
    LLVM_DEBUG(llvm::dbgs()
               << "number of array bases found: " << bases.size() << '\n');
    return bases;
  }

private:
  // First, the cases that are of interest.
  RT find(const Fortran::semantics::Symbol &symbol) {
    if (symbol.Rank() > 0) {
      bases.push_back(&symbol);
      return true;
    }
    return {};
  }
  RT find(const Fortran::evaluate::Component &x) {
    auto found = find(x.base());
    if (!found && x.base().Rank() == 0 && x.Rank() > 0) {
      bases.push_back(&x);
      return true;
    }
    return found;
  }
  RT find(const Fortran::evaluate::ArrayRef &x) {
    for (const auto &sub : x.subscript())
      (void)find(sub);
    if (x.base().IsSymbol()) {
      if (x.Rank() > 0 || intersection(x.subscript())) {
        bases.push_back(&x);
        return true;
      }
      return {};
    }
    auto found = find(x.base());
    if (!found && ((x.base().Rank() == 0 && x.Rank() > 0) ||
                   intersection(x.subscript()))) {
      bases.push_back(&x);
      return true;
    }
    return found;
  }
  RT find(const Fortran::evaluate::Triplet &x) {
    if (const auto *lower = x.GetLower())
      (void)find(*lower);
    if (const auto *upper = x.GetUpper())
      (void)find(*upper);
    return find(x.GetStride());
  }
  RT find(const Fortran::evaluate::IndirectSubscriptIntegerExpr &x) {
    return find(x.value());
  }
  RT find(const Fortran::evaluate::Subscript &x) { return find(x.u); }
  RT find(const Fortran::evaluate::DataRef &x) { return find(x.u); }
  RT find(const Fortran::evaluate::CoarrayRef &x) {
    assert(false && "coarray reference");
    return {};
  }

  template <typename A>
  bool intersection(const A &subscripts) {
    return Fortran::lower::symbolsIntersectSubscripts(controlVars, subscripts);
  }

  // The rest is traversal boilerplate and can be ignored.
  RT find(const Fortran::evaluate::Substring &x) { return find(x.parent()); }
  template <typename A>
  RT find(const Fortran::semantics::SymbolRef x) {
    return find(*x);
  }
  RT find(const Fortran::evaluate::NamedEntity &x) {
    if (x.IsSymbol())
      return find(x.GetFirstSymbol());
    return find(x.GetComponent());
  }

  template <typename A, bool C>
  RT find(const Fortran::common::Indirection<A, C> &x) {
    return find(x.value());
  }
  template <typename A>
  RT find(const std::unique_ptr<A> &x) {
    return find(x.get());
  }
  template <typename A>
  RT find(const std::shared_ptr<A> &x) {
    return find(x.get());
  }
  template <typename A>
  RT find(const A *x) {
    if (x)
      return find(*x);
    return {};
  }
  template <typename A>
  RT find(const std::optional<A> &x) {
    if (x)
      return find(*x);
    return {};
  }
  template <typename... A>
  RT find(const std::variant<A...> &u) {
    return std::visit([&](const auto &v) { return find(v); }, u);
  }
  template <typename A>
  RT find(const std::vector<A> &x) {
    for (auto &v : x)
      (void)find(v);
    return {};
  }
  RT find(const Fortran::evaluate::BOZLiteralConstant &) { return {}; }
  RT find(const Fortran::evaluate::NullPointer &) { return {}; }
  template <typename T>
  RT find(const Fortran::evaluate::Constant<T> &x) {
    return {};
  }
  RT find(const Fortran::evaluate::StaticDataObject &) { return {}; }
  RT find(const Fortran::evaluate::ImpliedDoIndex &) { return {}; }
  RT find(const Fortran::evaluate::BaseObject &x) {
    (void)find(x.u);
    return {};
  }
  RT find(const Fortran::evaluate::TypeParamInquiry &) { return {}; }
  RT find(const Fortran::evaluate::ComplexPart &x) { return {}; }
  template <typename T>
  RT find(const Fortran::evaluate::Designator<T> &x) {
    return find(x.u);
  }
  template <typename T>
  RT find(const Fortran::evaluate::Variable<T> &x) {
    return find(x.u);
  }
  RT find(const Fortran::evaluate::DescriptorInquiry &) { return {}; }
  RT find(const Fortran::evaluate::SpecificIntrinsic &) { return {}; }
  RT find(const Fortran::evaluate::ProcedureDesignator &x) { return {}; }
  RT find(const Fortran::evaluate::ProcedureRef &x) {
    (void)find(x.proc());
    if (x.IsElemental())
      (void)find(x.arguments());
    return {};
  }
  RT find(const Fortran::evaluate::ActualArgument &x) {
    if (const auto *sym = x.GetAssumedTypeDummy())
      (void)find(*sym);
    else
      (void)find(x.UnwrapExpr());
    return {};
  }
  template <typename T>
  RT find(const Fortran::evaluate::FunctionRef<T> &x) {
    (void)find(static_cast<const Fortran::evaluate::ProcedureRef &>(x));
    return {};
  }
  template <typename T>
  RT find(const Fortran::evaluate::ArrayConstructorValue<T> &) {
    return {};
  }
  template <typename T>
  RT find(const Fortran::evaluate::ArrayConstructorValues<T> &) {
    return {};
  }
  template <typename T>
  RT find(const Fortran::evaluate::ImpliedDo<T> &) {
    return {};
  }
  RT find(const Fortran::semantics::ParamValue &) { return {}; }
  RT find(const Fortran::semantics::DerivedTypeSpec &) { return {}; }
  RT find(const Fortran::evaluate::StructureConstructor &) { return {}; }
  template <typename D, typename R, typename O>
  RT find(const Fortran::evaluate::Operation<D, R, O> &op) {
    (void)find(op.left());
    return false;
  }
  template <typename D, typename R, typename LO, typename RO>
  RT find(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
    (void)find(op.left());
    (void)find(op.right());
    return false;
  }
  RT find(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
    (void)find(x.u);
    return {};
  }
  template <typename T>
  RT find(const Fortran::evaluate::Expr<T> &x) {
    (void)find(x.u);
    return {};
  }

  llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases> bases;
  llvm::SmallVector<Fortran::lower::FrontEndSymbol> controlVars;
};

} // namespace

void Fortran::lower::ExplicitIterSpace::leave() {
  ccLoopNest.pop_back();
  --forallContextOpen;
  conditionalCleanup();
}

void Fortran::lower::ExplicitIterSpace::addSymbol(
    Fortran::lower::FrontEndSymbol sym) {
  assert(!symbolStack.empty());
  symbolStack.back().push_back(sym);
}

void Fortran::lower::ExplicitIterSpace::exprBase(Fortran::lower::FrontEndExpr x,
                                                 bool lhs) {
  ArrayBaseFinder finder(collectAllSymbols());
  finder(*x);
  llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases> bases =
      finder.getBases();
  if (rhsBases.empty())
    endAssign();
  if (lhs) {
    if (bases.empty()) {
      lhsBases.push_back(std::nullopt);
      return;
    }
    assert(bases.size() >= 1 && "must detect an array reference on lhs");
    if (bases.size() > 1)
      rhsBases.back().append(bases.begin(), bases.end() - 1);
    lhsBases.push_back(bases.back());
    return;
  }
  rhsBases.back().append(bases.begin(), bases.end());
}

void Fortran::lower::ExplicitIterSpace::endAssign() { rhsBases.emplace_back(); }

void Fortran::lower::ExplicitIterSpace::pushLevel() {
  symbolStack.push_back(llvm::SmallVector<Fortran::lower::FrontEndSymbol>{});
}

void Fortran::lower::ExplicitIterSpace::popLevel() { symbolStack.pop_back(); }

void Fortran::lower::ExplicitIterSpace::conditionalCleanup() {
  if (forallContextOpen == 0) {
    // Exiting the outermost FORALL context.
    // Cleanup any residual mask buffers.
    outermostContext().finalizeAndReset();
    // Clear and reset all the cached information.
    symbolStack.clear();
    lhsBases.clear();
    rhsBases.clear();
    loadBindings.clear();
    ccLoopNest.clear();
    innerArgs.clear();
    outerLoop = std::nullopt;
    clearLoops();
    counter = 0;
  }
}

std::optional<size_t>
Fortran::lower::ExplicitIterSpace::findArgPosition(fir::ArrayLoadOp load) {
  if (lhsBases[counter]) {
    auto ld = loadBindings.find(*lhsBases[counter]);
    std::optional<size_t> optPos;
    if (ld != loadBindings.end() && ld->second == load)
      optPos = static_cast<size_t>(0u);
    assert(optPos.has_value() && "load does not correspond to lhs");
    return optPos;
  }
  return std::nullopt;
}

llvm::SmallVector<Fortran::lower::FrontEndSymbol>
Fortran::lower::ExplicitIterSpace::collectAllSymbols() {
  llvm::SmallVector<Fortran::lower::FrontEndSymbol> result;
  for (llvm::SmallVector<FrontEndSymbol> vec : symbolStack)
    result.append(vec.begin(), vec.end());
  return result;
}

llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
                           const Fortran::lower::ImplicitIterSpace &e) {
  for (const llvm::SmallVector<
           Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr> &xs :
       e.getMasks()) {
    s << "{ ";
    for (const Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr &x : xs)
      x->AsFortran(s << '(') << "), ";
    s << "}\n";
  }
  return s;
}

llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
                           const Fortran::lower::ExplicitIterSpace &e) {
  auto dump = [&](const auto &u) {
    std::visit(Fortran::common::visitors{
                   [&](const Fortran::semantics::Symbol *y) {
                     s << "  " << *y << '\n';
                   },
                   [&](const Fortran::evaluate::ArrayRef *y) {
                     s << "  ";
                     if (y->base().IsSymbol())
                       s << y->base().GetFirstSymbol();
                     else
                       s << y->base().GetComponent().GetLastSymbol();
                     s << '\n';
                   },
                   [&](const Fortran::evaluate::Component *y) {
                     s << "  " << y->GetLastSymbol() << '\n';
                   }},
               u);
  };
  s << "LHS bases:\n";
  for (const std::optional<Fortran::lower::ExplicitIterSpace::ArrayBases> &u :
       e.lhsBases)
    if (u)
      dump(*u);
  s << "RHS bases:\n";
  for (const llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases>
           &bases : e.rhsBases) {
    for (const Fortran::lower::ExplicitIterSpace::ArrayBases &u : bases)
      dump(u);
    s << '\n';
  }
  return s;
}

void Fortran::lower::ImplicitIterSpace::dump() const {
  llvm::errs() << *this << '\n';
}

void Fortran::lower::ExplicitIterSpace::dump() const {
  llvm::errs() << *this << '\n';
}