aboutsummaryrefslogtreecommitdiff
path: root/flang/lib/Lower/HlfirIntrinsics.cpp
blob: bda04fa9689beb4c08589a2978d4598826912c8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//===-- HlfirIntrinsics.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/HlfirIntrinsics.h"

#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/SmallVector.h"
#include <mlir/IR/ValueRange.h>

namespace {

class HlfirTransformationalIntrinsic {
public:
  explicit HlfirTransformationalIntrinsic(fir::FirOpBuilder &builder,
                                          mlir::Location loc)
      : builder(builder), loc(loc) {}

  virtual ~HlfirTransformationalIntrinsic() = default;

  hlfir::EntityWithAttributes
  lower(const Fortran::lower::PreparedActualArguments &loweredActuals,
        const fir::IntrinsicArgumentLoweringRules *argLowering,
        mlir::Type stmtResultType) {
    mlir::Value res = lowerImpl(loweredActuals, argLowering, stmtResultType);
    for (const hlfir::CleanupFunction &fn : cleanupFns)
      fn();
    return {hlfir::EntityWithAttributes{res}};
  }

protected:
  fir::FirOpBuilder &builder;
  mlir::Location loc;
  llvm::SmallVector<hlfir::CleanupFunction, 3> cleanupFns;

  virtual mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) = 0;

  llvm::SmallVector<mlir::Value> getOperandVector(
      const Fortran::lower::PreparedActualArguments &loweredActuals,
      const fir::IntrinsicArgumentLoweringRules *argLowering);

  mlir::Type computeResultType(mlir::Value argArray, mlir::Type stmtResultType);

  template <typename OP, typename... BUILD_ARGS>
  inline OP createOp(BUILD_ARGS... args) {
    return builder.create<OP>(loc, args...);
  }

  mlir::Value loadBoxAddress(
      const std::optional<Fortran::lower::PreparedActualArgument> &arg);

  void addCleanup(std::optional<hlfir::CleanupFunction> cleanup) {
    if (cleanup)
      cleanupFns.emplace_back(std::move(*cleanup));
  }
};

template <typename OP, bool HAS_MASK>
class HlfirReductionIntrinsic : public HlfirTransformationalIntrinsic {
public:
  using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;
};
using HlfirSumLowering = HlfirReductionIntrinsic<hlfir::SumOp, true>;
using HlfirProductLowering = HlfirReductionIntrinsic<hlfir::ProductOp, true>;
using HlfirMaxvalLowering = HlfirReductionIntrinsic<hlfir::MaxvalOp, true>;
using HlfirMinvalLowering = HlfirReductionIntrinsic<hlfir::MinvalOp, true>;
using HlfirAnyLowering = HlfirReductionIntrinsic<hlfir::AnyOp, false>;
using HlfirAllLowering = HlfirReductionIntrinsic<hlfir::AllOp, false>;

template <typename OP>
class HlfirMinMaxLocIntrinsic : public HlfirTransformationalIntrinsic {
public:
  using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;
};
using HlfirMinlocLowering = HlfirMinMaxLocIntrinsic<hlfir::MinlocOp>;
using HlfirMaxlocLowering = HlfirMinMaxLocIntrinsic<hlfir::MaxlocOp>;

template <typename OP>
class HlfirProductIntrinsic : public HlfirTransformationalIntrinsic {
public:
  using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;
};
using HlfirMatmulLowering = HlfirProductIntrinsic<hlfir::MatmulOp>;
using HlfirDotProductLowering = HlfirProductIntrinsic<hlfir::DotProductOp>;

class HlfirTransposeLowering : public HlfirTransformationalIntrinsic {
public:
  using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;
};

class HlfirCountLowering : public HlfirTransformationalIntrinsic {
public:
  using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;
};

class HlfirCharExtremumLowering : public HlfirTransformationalIntrinsic {
public:
  HlfirCharExtremumLowering(fir::FirOpBuilder &builder, mlir::Location loc,
                            hlfir::CharExtremumPredicate pred)
      : HlfirTransformationalIntrinsic(builder, loc), pred{pred} {}

protected:
  mlir::Value
  lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
            const fir::IntrinsicArgumentLoweringRules *argLowering,
            mlir::Type stmtResultType) override;

protected:
  hlfir::CharExtremumPredicate pred;
};

} // namespace

mlir::Value HlfirTransformationalIntrinsic::loadBoxAddress(
    const std::optional<Fortran::lower::PreparedActualArgument> &arg) {
  if (!arg)
    return mlir::Value{};

  hlfir::Entity actual = arg->getActual(loc, builder);

  if (!arg->handleDynamicOptional()) {
    if (actual.isMutableBox()) {
      // this is a box address type but is not dynamically optional. Just load
      // the box, assuming it is well formed (!fir.ref<!fir.box<...>> ->
      // !fir.box<...>)
      return builder.create<fir::LoadOp>(loc, actual.getBase());
    }
    return actual;
  }

  auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, actual);
  addCleanup(cleanup);

  mlir::Value isPresent = arg->getIsPresent();
  // createBox will not do create any invalid memory dereferences if exv is
  // absent. The created fir.box will not be usable, but the SelectOp below
  // ensures it won't be.
  mlir::Value box = builder.createBox(loc, exv);
  mlir::Type boxType = box.getType();
  auto absent = builder.create<fir::AbsentOp>(loc, boxType);
  auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
      loc, boxType, isPresent, box, absent);

  return boxOrAbsent;
}

static mlir::Value loadOptionalValue(
    mlir::Location loc, fir::FirOpBuilder &builder,
    const std::optional<Fortran::lower::PreparedActualArgument> &arg,
    hlfir::Entity actual) {
  if (!arg->handleDynamicOptional())
    return hlfir::loadTrivialScalar(loc, builder, actual);

  mlir::Value isPresent = arg->getIsPresent();
  mlir::Type eleType = hlfir::getFortranElementType(actual.getType());
  return builder
      .genIfOp(loc, {eleType}, isPresent,
               /*withElseRegion=*/true)
      .genThen([&]() {
        assert(actual.isScalar() && fir::isa_trivial(eleType) &&
               "must be a numerical or logical scalar");
        hlfir::Entity val = hlfir::loadTrivialScalar(loc, builder, actual);
        builder.create<fir::ResultOp>(loc, val);
      })
      .genElse([&]() {
        mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
        builder.create<fir::ResultOp>(loc, zero);
      })
      .getResults()[0];
}

llvm::SmallVector<mlir::Value> HlfirTransformationalIntrinsic::getOperandVector(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering) {
  llvm::SmallVector<mlir::Value> operands;
  operands.reserve(loweredActuals.size());

  for (size_t i = 0; i < loweredActuals.size(); ++i) {
    std::optional<Fortran::lower::PreparedActualArgument> arg =
        loweredActuals[i];
    if (!arg) {
      operands.emplace_back();
      continue;
    }
    hlfir::Entity actual = arg->getActual(loc, builder);
    mlir::Value valArg;

    if (!argLowering) {
      valArg = hlfir::loadTrivialScalar(loc, builder, actual);
    } else {
      fir::ArgLoweringRule argRules =
          fir::lowerIntrinsicArgumentAs(*argLowering, i);
      if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box)
        valArg = loadBoxAddress(arg);
      else if (!argRules.handleDynamicOptional &&
               argRules.lowerAs != fir::LowerIntrinsicArgAs::Inquired)
        valArg = hlfir::derefPointersAndAllocatables(loc, builder, actual);
      else if (argRules.handleDynamicOptional &&
               argRules.lowerAs == fir::LowerIntrinsicArgAs::Value)
        valArg = loadOptionalValue(loc, builder, arg, actual);
      else if (argRules.handleDynamicOptional)
        TODO(loc, "hlfir transformational intrinsic dynamically optional "
                  "argument without box lowering");
      else
        valArg = actual.getBase();
    }

    operands.emplace_back(valArg);
  }
  return operands;
}

mlir::Type
HlfirTransformationalIntrinsic::computeResultType(mlir::Value argArray,
                                                  mlir::Type stmtResultType) {
  mlir::Type normalisedResult =
      hlfir::getFortranElementOrSequenceType(stmtResultType);
  if (auto array = normalisedResult.dyn_cast<fir::SequenceType>()) {
    hlfir::ExprType::Shape resultShape =
        hlfir::ExprType::Shape{array.getShape()};
    mlir::Type elementType = array.getEleTy();
    return hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
                                /*polymorphic=*/false);
  } else if (auto resCharType =
                 mlir::dyn_cast<fir::CharacterType>(stmtResultType)) {
    normalisedResult = hlfir::ExprType::get(
        builder.getContext(), hlfir::ExprType::Shape{}, resCharType, false);
  }
  return normalisedResult;
}

template <typename OP, bool HAS_MASK>
mlir::Value HlfirReductionIntrinsic<OP, HAS_MASK>::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  mlir::Value array = operands[0];
  mlir::Value dim = operands[1];
  // dim, mask can be NULL if these arguments are not given
  if (dim)
    dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});

  mlir::Type resultTy = computeResultType(array, stmtResultType);

  OP op;
  if constexpr (HAS_MASK)
    op = createOp<OP>(resultTy, array, dim,
                      /*mask=*/operands[2]);
  else
    op = createOp<OP>(resultTy, array, dim);
  return op;
}

template <typename OP>
mlir::Value HlfirMinMaxLocIntrinsic<OP>::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  mlir::Value array = operands[0];
  mlir::Value dim = operands[1];
  mlir::Value mask = operands[2];
  mlir::Value back = operands[4];
  // dim, mask and back can be NULL if these arguments are not given.
  if (dim)
    dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
  if (back)
    back = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{back});

  mlir::Type resultTy = computeResultType(array, stmtResultType);

  return createOp<OP>(resultTy, array, dim, mask, back);
}

template <typename OP>
mlir::Value HlfirProductIntrinsic<OP>::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  mlir::Type resultType = computeResultType(operands[0], stmtResultType);
  return createOp<OP>(resultType, operands[0], operands[1]);
}

mlir::Value HlfirTransposeLowering::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  hlfir::ExprType::Shape resultShape;
  mlir::Type normalisedResult =
      hlfir::getFortranElementOrSequenceType(stmtResultType);
  auto array = normalisedResult.cast<fir::SequenceType>();
  llvm::ArrayRef<int64_t> arrayShape = array.getShape();
  assert(arrayShape.size() == 2 && "arguments to transpose have a rank of 2");
  mlir::Type elementType = array.getEleTy();
  resultShape.push_back(arrayShape[0]);
  resultShape.push_back(arrayShape[1]);
  if (auto resCharType = mlir::dyn_cast<fir::CharacterType>(elementType))
    if (!resCharType.hasConstantLen()) {
      // The FunctionRef expression might have imprecise character
      // type at this point, and we can improve it by propagating
      // the constant length from the argument.
      auto argCharType = mlir::dyn_cast<fir::CharacterType>(
          hlfir::getFortranElementType(operands[0].getType()));
      if (argCharType && argCharType.hasConstantLen())
        elementType = fir::CharacterType::get(
            builder.getContext(), resCharType.getFKind(), argCharType.getLen());
    }

  mlir::Type resultTy =
      hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
                           fir::isPolymorphicType(stmtResultType));
  return createOp<hlfir::TransposeOp>(resultTy, operands[0]);
}

mlir::Value HlfirCountLowering::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  mlir::Value array = operands[0];
  mlir::Value dim = operands[1];
  if (dim)
    dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
  mlir::Type resultType = computeResultType(array, stmtResultType);
  return createOp<hlfir::CountOp>(resultType, array, dim);
}

mlir::Value HlfirCharExtremumLowering::lowerImpl(
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  auto operands = getOperandVector(loweredActuals, argLowering);
  assert(operands.size() >= 2);
  return createOp<hlfir::CharExtremumOp>(pred, mlir::ValueRange{operands});
}

std::optional<hlfir::EntityWithAttributes> Fortran::lower::lowerHlfirIntrinsic(
    fir::FirOpBuilder &builder, mlir::Location loc, const std::string &name,
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    mlir::Type stmtResultType) {
  // If the result is of a derived type that may need finalization,
  // we have to use DestroyOp with 'finalize' attribute for the result
  // of the intrinsic operation.
  if (name == "sum")
    return HlfirSumLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                stmtResultType);
  if (name == "product")
    return HlfirProductLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                    stmtResultType);
  if (name == "any")
    return HlfirAnyLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                stmtResultType);
  if (name == "all")
    return HlfirAllLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                stmtResultType);
  if (name == "matmul")
    return HlfirMatmulLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                   stmtResultType);
  if (name == "dot_product")
    return HlfirDotProductLowering{builder, loc}.lower(
        loweredActuals, argLowering, stmtResultType);
  // FIXME: the result may need finalization.
  if (name == "transpose")
    return HlfirTransposeLowering{builder, loc}.lower(
        loweredActuals, argLowering, stmtResultType);
  if (name == "count")
    return HlfirCountLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                  stmtResultType);
  if (name == "maxval")
    return HlfirMaxvalLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                   stmtResultType);
  if (name == "minval")
    return HlfirMinvalLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                   stmtResultType);
  if (name == "minloc")
    return HlfirMinlocLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                   stmtResultType);
  if (name == "maxloc")
    return HlfirMaxlocLowering{builder, loc}.lower(loweredActuals, argLowering,
                                                   stmtResultType);
  if (mlir::isa<fir::CharacterType>(stmtResultType)) {
    if (name == "min")
      return HlfirCharExtremumLowering{builder, loc,
                                       hlfir::CharExtremumPredicate::min}
          .lower(loweredActuals, argLowering, stmtResultType);
    if (name == "max")
      return HlfirCharExtremumLowering{builder, loc,
                                       hlfir::CharExtremumPredicate::max}
          .lower(loweredActuals, argLowering, stmtResultType);
  }
  return std::nullopt;
}