aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaStmt.cpp
blob: d8f213a973c222f3111588d2970de286959296b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Stmt.h"
#include "clang/Parse/Scope.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;

Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) {
  Expr *E = static_cast<Expr*>(expr);
  assert(E && "ActOnExprStmt(): missing expression");
  return E;
}


Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
  return new NullStmt(SemiLoc);
}

Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc,
                                     SourceLocation EndLoc) {
  if (decl == 0)
    return true;
  
  ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
  return new DeclStmt(SD, StartLoc, EndLoc);
}

Action::StmtResult 
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
                        StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
  Stmt **Elts = reinterpret_cast<Stmt**>(elts);
  // If we're in C89 mode, check that we don't have any decls after stmts.  If
  // so, emit an extension diagnostic.
  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
    // Note that __extension__ can be around a decl.
    unsigned i = 0;
    // Skip over all declarations.
    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;

    // We found the end of the list or a statement.  Scan for another declstmt.
    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;
    
    if (i != NumElts) {
      ScopedDecl *D = cast<DeclStmt>(Elts[i])->getDecl();
      Diag(D->getLocation(), diag::ext_mixed_decls_code);
    }
  }
  // Warn about unused expressions in statements.
  for (unsigned i = 0; i != NumElts; ++i) {
    Expr *E = dyn_cast<Expr>(Elts[i]);
    if (!E) continue;
    
    // Warn about expressions with unused results.
    if (E->hasLocalSideEffect() || E->getType()->isVoidType())
      continue;
    
    // The last expr in a stmt expr really is used.
    if (isStmtExpr && i == NumElts-1)
      continue;
    
    /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
    /// a context where the result is unused.  Emit a diagnostic to warn about
    /// this.
    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
      Diag(BO->getOperatorLoc(), diag::warn_unused_expr,
           BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange());
    else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
      Diag(UO->getOperatorLoc(), diag::warn_unused_expr,
           UO->getSubExpr()->getSourceRange());
    else 
      Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange());
  }
  
  return new CompoundStmt(Elts, NumElts, L, R);
}

Action::StmtResult
Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
                    SourceLocation DotDotDotLoc, ExprTy *rhsval,
                    SourceLocation ColonLoc, StmtTy *subStmt) {
  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
  Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
  assert((LHSVal != 0) && "missing expression in case statement");
  
  SourceLocation ExpLoc;
  // C99 6.8.4.2p3: The expression shall be an integer constant.
  if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
    Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
         LHSVal->getSourceRange());
    return SubStmt;
  }

  // GCC extension: The expression shall be an integer constant.
  if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
    Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
         RHSVal->getSourceRange());
    RHSVal = 0;  // Recover by just forgetting about it.
  }
  
  if (SwitchStack.empty()) {
    Diag(CaseLoc, diag::err_case_not_in_switch);
    return SubStmt;
  }

  CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
  SwitchStack.back()->addSwitchCase(CS);
  return CS;
}

Action::StmtResult
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 
                       StmtTy *subStmt, Scope *CurScope) {
  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
  
  if (SwitchStack.empty()) {
    Diag(DefaultLoc, diag::err_default_not_in_switch);
    return SubStmt;
  }
  
  DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
  SwitchStack.back()->addSwitchCase(DS);

  return DS;
}

Action::StmtResult
Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
                     SourceLocation ColonLoc, StmtTy *subStmt) {
  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
  // Look up the record for this label identifier.
  LabelStmt *&LabelDecl = LabelMap[II];
  
  // If not forward referenced or defined already, just create a new LabelStmt.
  if (LabelDecl == 0)
    return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
  
  assert(LabelDecl->getID() == II && "Label mismatch!");
  
  // Otherwise, this label was either forward reference or multiply defined.  If
  // multiply defined, reject it now.
  if (LabelDecl->getSubStmt()) {
    Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName());
    Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition);
    return SubStmt;
  }
  
  // Otherwise, this label was forward declared, and we just found its real
  // definition.  Fill in the forward definition and return it.
  LabelDecl->setIdentLoc(IdentLoc);
  LabelDecl->setSubStmt(SubStmt);
  return LabelDecl;
}

Action::StmtResult 
Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
                  StmtTy *ThenVal, SourceLocation ElseLoc,
                  StmtTy *ElseVal) {
  Expr *condExpr = (Expr *)CondVal;
  Stmt *thenStmt = (Stmt *)ThenVal;
    
  assert(condExpr && "ActOnIfStmt(): missing expression");
  
  DefaultFunctionArrayConversion(condExpr);
  QualType condType = condExpr->getType();
  
  if (!condType->isScalarType()) // C99 6.8.4.1p1
    return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar,
             condType.getAsString(), condExpr->getSourceRange());

  // Warn if the if block has a null body without an else value.
  // this helps prevent bugs due to typos, such as
  // if (condition);
  //   do_stuff();
  if (!ElseVal) { 
    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
  }

  return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
}

Action::StmtResult
Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
  Expr *Cond = static_cast<Expr*>(cond);
  
  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
  UsualUnaryConversions(Cond);
  
  SwitchStmt *SS = new SwitchStmt(Cond);
  SwitchStack.push_back(SS);
  return SS;
}

/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign.  If an overflow occurs, detect it and emit
/// the specified diagnostic.
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
                                              unsigned NewWidth, bool NewSign,
                                              SourceLocation Loc, 
                                              unsigned DiagID) {
  // Perform a conversion to the promoted condition type if needed.
  if (NewWidth > Val.getBitWidth()) {
    // If this is an extension, just do it.
    llvm::APSInt OldVal(Val);
    Val.extend(NewWidth);
    
    // If the input was signed and negative and the output is unsigned,
    // warn.
    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
      Diag(Loc, DiagID, OldVal.toString(), Val.toString());
    
    Val.setIsSigned(NewSign);
  } else if (NewWidth < Val.getBitWidth()) {
    // If this is a truncation, check for overflow.
    llvm::APSInt ConvVal(Val);
    ConvVal.trunc(NewWidth);
    ConvVal.setIsSigned(NewSign);
    ConvVal.extend(Val.getBitWidth());
    ConvVal.setIsSigned(Val.isSigned());
    if (ConvVal != Val)
      Diag(Loc, DiagID, Val.toString(), ConvVal.toString());
    
    // Regardless of whether a diagnostic was emitted, really do the
    // truncation.
    Val.trunc(NewWidth);
    Val.setIsSigned(NewSign);
  } else if (NewSign != Val.isSigned()) {
    // Convert the sign to match the sign of the condition.  This can cause
    // overflow as well: unsigned(INTMIN)
    llvm::APSInt OldVal(Val);
    Val.setIsSigned(NewSign);
    
    if (Val.isNegative())  // Sign bit changes meaning.
      Diag(Loc, DiagID, OldVal.toString(), Val.toString());
  }
}

namespace {
  struct CaseCompareFunctor {
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const llvm::APSInt &RHS) {
      return LHS.first < RHS;
    }
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS.first < RHS.first;
    }
    bool operator()(const llvm::APSInt &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS < RHS.first;
    }
  };
}

/// CmpCaseVals - Comparison predicate for sorting case values.
///
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
  if (lhs.first < rhs.first)
    return true;

  if (lhs.first == rhs.first &&
      lhs.second->getCaseLoc().getRawEncoding()
       < rhs.second->getCaseLoc().getRawEncoding())
    return true;
  return false;
}

Action::StmtResult
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
                            ExprTy *Body) {
  Stmt *BodyStmt = (Stmt*)Body;
  
  SwitchStmt *SS = SwitchStack.back();
  assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
    
  SS->setBody(BodyStmt, SwitchLoc);
  SwitchStack.pop_back(); 

  Expr *CondExpr = SS->getCond();
  QualType CondType = CondExpr->getType();
  
  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer,
         CondType.getAsString(), CondExpr->getSourceRange());
    return true;
  }
  
  // Get the bitwidth of the switched-on value before promotions.  We must
  // convert the integer case values to this width before comparison.
  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
  bool CondIsSigned = CondType->isSignedIntegerType();
  
  // Accumulate all of the case values in a vector so that we can sort them
  // and detect duplicates.  This vector contains the APInt for the case after
  // it has been converted to the condition type.
  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
  CaseValsTy CaseVals;
  
  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
  
  DefaultStmt *TheDefaultStmt = 0;
  
  bool CaseListIsErroneous = false;
  
  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
       SC = SC->getNextSwitchCase()) {
    
    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
      if (TheDefaultStmt) {
        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
        Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label);
            
        // FIXME: Remove the default statement from the switch block so that
        // we'll return a valid AST.  This requires recursing down the
        // AST and finding it, not something we are set up to do right now.  For
        // now, just lop the entire switch stmt out of the AST.
        CaseListIsErroneous = true;
      }
      TheDefaultStmt = DS;
      
    } else {
      CaseStmt *CS = cast<CaseStmt>(SC);
      
      // We already verified that the expression has a i-c-e value (C99
      // 6.8.4.2p3) - get that value now.
      llvm::APSInt LoVal(32);
      Expr *Lo = CS->getLHS();
      Lo->isIntegerConstantExpr(LoVal, Context);
      
      // Convert the value to the same width/sign as the condition.
      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
                                         CS->getLHS()->getLocStart(),
                                         diag::warn_case_value_overflow);

      // If the LHS is not the same type as the condition, insert an implicit
      // cast.
      ImpCastExprToType(Lo, CondType);
      CS->setLHS(Lo);
      
      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
      if (CS->getRHS())
        CaseRanges.push_back(std::make_pair(LoVal, CS));
      else 
        CaseVals.push_back(std::make_pair(LoVal, CS));
    }
  }
  
  // Sort all the scalar case values so we can easily detect duplicates.
  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
  
  if (!CaseVals.empty()) {
    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
      if (CaseVals[i].first == CaseVals[i+1].first) {
        // If we have a duplicate, report it.
        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
             diag::err_duplicate_case, CaseVals[i].first.toString());
        Diag(CaseVals[i].second->getLHS()->getLocStart(), 
             diag::err_duplicate_case_prev);
        // FIXME: We really want to remove the bogus case stmt from the substmt,
        // but we have no way to do this right now.
        CaseListIsErroneous = true;
      }
    }
  }
  
  // Detect duplicate case ranges, which usually don't exist at all in the first
  // place.
  if (!CaseRanges.empty()) {
    // Sort all the case ranges by their low value so we can easily detect
    // overlaps between ranges.
    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
    
    // Scan the ranges, computing the high values and removing empty ranges.
    std::vector<llvm::APSInt> HiVals;
    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
      CaseStmt *CR = CaseRanges[i].second;
      llvm::APSInt HiVal(32);
      Expr *Hi = CR->getRHS();
      Hi->isIntegerConstantExpr(HiVal, Context);

      // Convert the value to the same width/sign as the condition.
      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
                                         CR->getRHS()->getLocStart(),
                                         diag::warn_case_value_overflow);
      
      // If the LHS is not the same type as the condition, insert an implicit
      // cast.
      ImpCastExprToType(Hi, CondType);
      CR->setRHS(Hi);
      
      // If the low value is bigger than the high value, the case is empty.
      if (CaseRanges[i].first > HiVal) {
        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range,
             SourceRange(CR->getLHS()->getLocStart(),
                         CR->getRHS()->getLocEnd()));
        CaseRanges.erase(CaseRanges.begin()+i);
        --i, --e;
        continue;
      }
      HiVals.push_back(HiVal);
    }

    // Rescan the ranges, looking for overlap with singleton values and other
    // ranges.  Since the range list is sorted, we only need to compare case
    // ranges with their neighbors.
    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
      llvm::APSInt &CRLo = CaseRanges[i].first;
      llvm::APSInt &CRHi = HiVals[i];
      CaseStmt *CR = CaseRanges[i].second;
      
      // Check to see whether the case range overlaps with any singleton cases.
      CaseStmt *OverlapStmt = 0;
      llvm::APSInt OverlapVal(32);
      
      // Find the smallest value >= the lower bound.  If I is in the case range,
      // then we have overlap.
      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
                                                CaseVals.end(), CRLo,
                                                CaseCompareFunctor());
      if (I != CaseVals.end() && I->first < CRHi) {
        OverlapVal  = I->first;   // Found overlap with scalar.
        OverlapStmt = I->second;
      }

      // Find the smallest value bigger than the upper bound.
      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
        OverlapStmt = (I-1)->second;
      }

      // Check to see if this case stmt overlaps with the subsequent case range.
      if (i && CRLo <= HiVals[i-1]) {
        OverlapVal  = HiVals[i-1];       // Found overlap with range.
        OverlapStmt = CaseRanges[i-1].second;
      }
      
      if (OverlapStmt) {
        // If we have a duplicate, report it.
        Diag(CR->getLHS()->getLocStart(),
             diag::err_duplicate_case, OverlapVal.toString());
        Diag(OverlapStmt->getLHS()->getLocStart(), 
             diag::err_duplicate_case_prev);
        // FIXME: We really want to remove the bogus case stmt from the substmt,
        // but we have no way to do this right now.
        CaseListIsErroneous = true;
      }
    }
  }
  
  // FIXME: If the case list was broken is some way, we don't have a good system
  // to patch it up.  Instead, just return the whole substmt as broken.
  if (CaseListIsErroneous)
    return true;
  
  return SS;
}

Action::StmtResult
Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
  Expr *condExpr = (Expr *)Cond;
  assert(condExpr && "ActOnWhileStmt(): missing expression");
  
  DefaultFunctionArrayConversion(condExpr);
  QualType condType = condExpr->getType();
  
  if (!condType->isScalarType()) // C99 6.8.5p2
    return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar,
             condType.getAsString(), condExpr->getSourceRange());

  return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
}

Action::StmtResult
Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
                  SourceLocation WhileLoc, ExprTy *Cond) {
  Expr *condExpr = (Expr *)Cond;
  assert(condExpr && "ActOnDoStmt(): missing expression");
  
  DefaultFunctionArrayConversion(condExpr);
  QualType condType = condExpr->getType();
  
  if (!condType->isScalarType()) // C99 6.8.5p2
    return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar,
             condType.getAsString(), condExpr->getSourceRange());

  return new DoStmt((Stmt*)Body, condExpr, DoLoc);
}

Action::StmtResult 
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 
                   StmtTy *first, ExprTy *second, ExprTy *third,
                   SourceLocation RParenLoc, StmtTy *body) {
  Stmt *First  = static_cast<Stmt*>(first);
  Expr *Second = static_cast<Expr*>(second);
  Expr *Third  = static_cast<Expr*>(third);
  Stmt *Body  = static_cast<Stmt*>(body);
  
  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
    // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
    // identifiers for objects having storage class 'auto' or 'register'.
    for (ScopedDecl *D = DS->getDecl(); D; D = D->getNextDeclarator()) {
      VarDecl *VD = dyn_cast<VarDecl>(D);
      if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
        VD = 0;
      if (VD == 0)
        Diag(dyn_cast<ScopedDecl>(D)->getLocation(), 
             diag::err_non_variable_decl_in_for);
      // FIXME: mark decl erroneous!
    }
  }
  if (Second) {
    DefaultFunctionArrayConversion(Second);
    QualType SecondType = Second->getType();
    
    if (!SecondType->isScalarType()) // C99 6.8.5p2
      return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar,
               SecondType.getAsString(), Second->getSourceRange());
  }
  return new ForStmt(First, Second, Third, Body, ForLoc);
}

Action::StmtResult 
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 
                                 SourceLocation LParenLoc, 
                                 StmtTy *first, ExprTy *second,
                                 SourceLocation RParenLoc, StmtTy *body) {
  Stmt *First  = static_cast<Stmt*>(first);
  Expr *Second = static_cast<Expr*>(second);
  Stmt *Body  = static_cast<Stmt*>(body);
  if (First) {
    QualType FirstType;
    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
      FirstType = cast<ValueDecl>(DS->getDecl())->getType();
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
      // identifiers for objects having storage class 'auto' or 'register'.
      ScopedDecl *D = DS->getDecl();
      VarDecl *VD = cast<VarDecl>(D);
      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
        return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for);
      if (D->getNextDeclarator())
        return Diag(D->getLocation(), diag::err_toomany_element_decls);
    } else
      FirstType = static_cast<Expr*>(first)->getType();
    if (!isObjCObjectPointerType(FirstType))
        Diag(ForLoc, diag::err_selector_element_type,
             FirstType.getAsString(), First->getSourceRange());
  }
  if (Second) {
    DefaultFunctionArrayConversion(Second);
    QualType SecondType = Second->getType();
    if (!isObjCObjectPointerType(SecondType))
      Diag(ForLoc, diag::err_collection_expr_type,
           SecondType.getAsString(), Second->getSourceRange());
  }
  return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
}

Action::StmtResult 
Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
                    IdentifierInfo *LabelII) {
  // Look up the record for this label identifier.
  LabelStmt *&LabelDecl = LabelMap[LabelII];

  // If we haven't seen this label yet, create a forward reference.
  if (LabelDecl == 0)
    LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
  
  return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
}

Action::StmtResult 
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
                            ExprTy *DestExp) {
  // FIXME: Verify that the operand is convertible to void*.
  
  return new IndirectGotoStmt((Expr*)DestExp);
}

Action::StmtResult 
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
  Scope *S = CurScope->getContinueParent();
  if (!S) {
    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
    Diag(ContinueLoc, diag::err_continue_not_in_loop);
    return true;
  }
  
  return new ContinueStmt(ContinueLoc);
}

Action::StmtResult 
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
  Scope *S = CurScope->getBreakParent();
  if (!S) {
    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
    Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
    return true;
  }
  
  return new BreakStmt(BreakLoc);
}


Action::StmtResult
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
  Expr *RetValExp = static_cast<Expr *>(rex);
  QualType FnRetType = CurFunctionDecl ? CurFunctionDecl->getResultType() : 
                                         CurMethodDecl->getResultType();

  if (FnRetType->isVoidType()) {
    if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns)
      Diag(ReturnLoc, diag::ext_return_has_expr,
           (CurFunctionDecl ? CurFunctionDecl->getIdentifier()->getName() :
            CurMethodDecl->getSelector().getName()),
           RetValExp->getSourceRange());
    return new ReturnStmt(ReturnLoc, RetValExp);
  } else {
    if (!RetValExp) {
      const char *funcName = CurFunctionDecl ? 
                               CurFunctionDecl->getIdentifier()->getName() : 
                               CurMethodDecl->getSelector().getName().c_str();
      if (getLangOptions().C99)  // C99 6.8.6.4p1 (ext_ since GCC warns)
        Diag(ReturnLoc, diag::ext_return_missing_expr, funcName);
      else  // C90 6.6.6.4p4
        Diag(ReturnLoc, diag::warn_return_missing_expr, funcName);
      return new ReturnStmt(ReturnLoc, (Expr*)0);
    }
  }
  // we have a non-void function with an expression, continue checking
  QualType RetValType = RetValExp->getType();

  // C99 6.8.6.4p3(136): The return statement is not an assignment. The 
  // overlap restriction of subclause 6.5.16.1 does not apply to the case of 
  // function return.  
  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(FnRetType, 
                                                              RetValExp);
  if (DiagnoseAssignmentResult(ConvTy, ReturnLoc, FnRetType,
                               RetValType, RetValExp, "returning"))
    return true;
  
  if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
  
  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
}

Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
                                    bool IsSimple,                                    
                                    bool IsVolatile,
                                    unsigned NumOutputs,
                                    unsigned NumInputs,
                                    std::string *Names,
                                    ExprTy **Constraints,
                                    ExprTy **Exprs,
                                    ExprTy *AsmString,
                                    unsigned NumClobbers,
                                    ExprTy **Clobbers,
                                    SourceLocation RParenLoc) {
  Expr *E = (Expr *)AsmString;
 
  for (unsigned i = 0; i < NumOutputs; i++) {
    StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
    assert(!Literal->isWide() && 
           "Output constraint strings should not be wide!");

    std::string OutputConstraint(Literal->getStrData(), 
                                 Literal->getByteLength());
    
    TargetInfo::ConstraintInfo info;
    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),
                                                 info)) {
      // FIXME: We currently leak memory here.
      Diag(Literal->getLocStart(),
           diag::err_invalid_output_constraint_in_asm);
      return true;
    }
    
    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = (Expr *)Exprs[i];
    Expr::isLvalueResult Result = OutputExpr->isLvalue();
    if (Result != Expr::LV_Valid) {
      ParenExpr *PE = cast<ParenExpr>(OutputExpr);
      
      Diag(PE->getSubExpr()->getLocStart(), 
           diag::err_invalid_lvalue_in_asm_output,
           PE->getSubExpr()->getSourceRange());
      
      // FIXME: We currently leak memory here.
      return true;
    }
  }
  
  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
    assert(!Literal->isWide() && 
           "Output constraint strings should not be wide!");
    
    std::string InputConstraint(Literal->getStrData(), 
                                Literal->getByteLength());
    
    TargetInfo::ConstraintInfo info;
    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
                                                NumOutputs,                                                
                                                info)) {
      // FIXME: We currently leak memory here.
      Diag(Literal->getLocStart(),
           diag::err_invalid_input_constraint_in_asm);
      return true;
    }
    
    // Check that the input exprs aren't of type void.
    Expr *InputExpr = (Expr *)Exprs[i];    
    if (InputExpr->getType()->isVoidType()) {
      ParenExpr *PE = cast<ParenExpr>(InputExpr);
      
      Diag(PE->getSubExpr()->getLocStart(),
           diag::err_invalid_type_in_asm_input,
           PE->getType().getAsString(), 
           PE->getSubExpr()->getSourceRange());
      
      // FIXME: We currently leak memory here.
      return true;
    }
  }
  
  // Check that the clobbers are valid.
  for (unsigned i = 0; i < NumClobbers; i++) {
    StringLiteral *Literal = cast<StringLiteral>((Expr *)Clobbers[i]);
    assert(!Literal->isWide() && "Clobber strings should not be wide!");
    
    llvm::SmallString<16> Clobber(Literal->getStrData(), 
                                  Literal->getStrData() + 
                                  Literal->getByteLength());
    
    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) {
      Diag(Literal->getLocStart(),
           diag::err_unknown_register_name_in_asm,
           Clobber.c_str());
      
      // FIXME: We currently leak memory here.
      return true;
    }
  }
  
  return new AsmStmt(AsmLoc,
                     IsSimple,
                     IsVolatile,
                     NumOutputs,
                     NumInputs, 
                     Names,
                     reinterpret_cast<StringLiteral**>(Constraints),
                     reinterpret_cast<Expr**>(Exprs),
                     cast<StringLiteral>(E),
                     NumClobbers,
                     reinterpret_cast<StringLiteral**>(Clobbers),
                     RParenLoc);
}

Action::StmtResult
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 
                           SourceLocation RParen, StmtTy *Parm, 
                           StmtTy *Body, StmtTy *CatchList) {
  ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen, 
    static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body), 
    static_cast<Stmt*>(CatchList));
  return CatchList ? CatchList : CS;
}

Action::StmtResult
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
  ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc, 
                                                static_cast<Stmt*>(Body));
  return FS;
}

Action::StmtResult
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, 
                         StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
  ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try), 
                                        static_cast<Stmt*>(Catch), 
                                        static_cast<Stmt*>(Finally));
  return TS;
}

Action::StmtResult
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
  ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
  return TS;
}

Action::StmtResult
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr, 
                                  StmtTy *SynchBody) {
  ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc, 
    static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
  return SS;
}