aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaModule.cpp
blob: 2ddf9d70263a094d1cf0d9e7fa387247771521a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
//===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for modules (C++ modules syntax,
//  Objective-C modules syntax, and Clang header modules).
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTConsumer.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/StringExtras.h"
#include <optional>

using namespace clang;
using namespace sema;

static void checkModuleImportContext(Sema &S, Module *M,
                                     SourceLocation ImportLoc, DeclContext *DC,
                                     bool FromInclude = false) {
  SourceLocation ExternCLoc;

  if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
    switch (LSD->getLanguage()) {
    case LinkageSpecLanguageIDs::C:
      if (ExternCLoc.isInvalid())
        ExternCLoc = LSD->getBeginLoc();
      break;
    case LinkageSpecLanguageIDs::CXX:
      break;
    }
    DC = LSD->getParent();
  }

  while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
    DC = DC->getParent();

  if (!isa<TranslationUnitDecl>(DC)) {
    S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
                          ? diag::ext_module_import_not_at_top_level_noop
                          : diag::err_module_import_not_at_top_level_fatal)
        << M->getFullModuleName() << DC;
    S.Diag(cast<Decl>(DC)->getBeginLoc(),
           diag::note_module_import_not_at_top_level)
        << DC;
  } else if (!M->IsExternC && ExternCLoc.isValid()) {
    S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
      << M->getFullModuleName();
    S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
  }
}

// We represent the primary and partition names as 'Paths' which are sections
// of the hierarchical access path for a clang module.  However for C++20
// the periods in a name are just another character, and we will need to
// flatten them into a string.
static std::string stringFromPath(ModuleIdPath Path) {
  std::string Name;
  if (Path.empty())
    return Name;

  for (auto &Piece : Path) {
    if (!Name.empty())
      Name += ".";
    Name += Piece.first->getName();
  }
  return Name;
}

/// Helper function for makeTransitiveImportsVisible to decide whether
/// the \param Imported module unit is in the same module with the \param
/// CurrentModule.
/// \param FoundPrimaryModuleInterface is a helper parameter to record the
/// primary module interface unit corresponding to the module \param
/// CurrentModule. Since currently it is expensive to decide whether two module
/// units come from the same module by comparing the module name.
static bool
isImportingModuleUnitFromSameModule(Module *Imported, Module *CurrentModule,
                                    Module *&FoundPrimaryModuleInterface) {
  if (!Imported->isNamedModule())
    return false;

  // The a partition unit we're importing must be in the same module of the
  // current module.
  if (Imported->isModulePartition())
    return true;

  // If we found the primary module interface during the search process, we can
  // return quickly to avoid expensive string comparison.
  if (FoundPrimaryModuleInterface)
    return Imported == FoundPrimaryModuleInterface;

  if (!CurrentModule)
    return false;

  // Then the imported module must be a primary module interface unit.  It
  // is only allowed to import the primary module interface unit from the same
  // module in the implementation unit and the implementation partition unit.

  // Since we'll handle implementation unit above. We can only care
  // about the implementation partition unit here.
  if (!CurrentModule->isModulePartitionImplementation())
    return false;

  if (Imported->getPrimaryModuleInterfaceName() ==
      CurrentModule->getPrimaryModuleInterfaceName()) {
    assert(!FoundPrimaryModuleInterface ||
           FoundPrimaryModuleInterface == Imported);
    FoundPrimaryModuleInterface = Imported;
    return true;
  }

  return false;
}

/// [module.import]p7:
///   Additionally, when a module-import-declaration in a module unit of some
///   module M imports another module unit U of M, it also imports all
///   translation units imported by non-exported module-import-declarations in
///   the module unit purview of U. These rules can in turn lead to the
///   importation of yet more translation units.
static void
makeTransitiveImportsVisible(VisibleModuleSet &VisibleModules, Module *Imported,
                             Module *CurrentModule, SourceLocation ImportLoc,
                             bool IsImportingPrimaryModuleInterface = false) {
  assert(Imported->isNamedModule() &&
         "'makeTransitiveImportsVisible()' is intended for standard C++ named "
         "modules only.");

  llvm::SmallVector<Module *, 4> Worklist;
  Worklist.push_back(Imported);

  Module *FoundPrimaryModuleInterface =
      IsImportingPrimaryModuleInterface ? Imported : nullptr;

  while (!Worklist.empty()) {
    Module *Importing = Worklist.pop_back_val();

    if (VisibleModules.isVisible(Importing))
      continue;

    // FIXME: The ImportLoc here is not meaningful. It may be problematic if we
    // use the sourcelocation loaded from the visible modules.
    VisibleModules.setVisible(Importing, ImportLoc);

    if (isImportingModuleUnitFromSameModule(Importing, CurrentModule,
                                            FoundPrimaryModuleInterface))
      for (Module *TransImported : Importing->Imports)
        if (!VisibleModules.isVisible(TransImported))
          Worklist.push_back(TransImported);
  }
}

Sema::DeclGroupPtrTy
Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
  // We start in the global module;
  Module *GlobalModule =
      PushGlobalModuleFragment(ModuleLoc);

  // All declarations created from now on are owned by the global module.
  auto *TU = Context.getTranslationUnitDecl();
  // [module.global.frag]p2
  // A global-module-fragment specifies the contents of the global module
  // fragment for a module unit. The global module fragment can be used to
  // provide declarations that are attached to the global module and usable
  // within the module unit.
  //
  // So the declations in the global module shouldn't be visible by default.
  TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
  TU->setLocalOwningModule(GlobalModule);

  // FIXME: Consider creating an explicit representation of this declaration.
  return nullptr;
}

void Sema::HandleStartOfHeaderUnit() {
  assert(getLangOpts().CPlusPlusModules &&
         "Header units are only valid for C++20 modules");
  SourceLocation StartOfTU =
      SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());

  StringRef HUName = getLangOpts().CurrentModule;
  if (HUName.empty()) {
    HUName =
        SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName();
    const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
  }

  // TODO: Make the C++20 header lookup independent.
  // When the input is pre-processed source, we need a file ref to the original
  // file for the header map.
  auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
  // For the sake of error recovery (if someone has moved the original header
  // after creating the pre-processed output) fall back to obtaining the file
  // ref for the input file, which must be present.
  if (!F)
    F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
  assert(F && "failed to find the header unit source?");
  Module::Header H{HUName.str(), HUName.str(), *F};
  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
  Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
  assert(Mod && "module creation should not fail");
  ModuleScopes.push_back({}); // No GMF
  ModuleScopes.back().BeginLoc = StartOfTU;
  ModuleScopes.back().Module = Mod;
  VisibleModules.setVisible(Mod, StartOfTU);

  // From now on, we have an owning module for all declarations we see.
  // All of these are implicitly exported.
  auto *TU = Context.getTranslationUnitDecl();
  TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
  TU->setLocalOwningModule(Mod);
}

/// Tests whether the given identifier is reserved as a module name and
/// diagnoses if it is. Returns true if a diagnostic is emitted and false
/// otherwise.
static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
                                   SourceLocation Loc) {
  enum {
    Valid = -1,
    Invalid = 0,
    Reserved = 1,
  } Reason = Valid;

  if (II->isStr("module") || II->isStr("import"))
    Reason = Invalid;
  else if (II->isReserved(S.getLangOpts()) !=
           ReservedIdentifierStatus::NotReserved)
    Reason = Reserved;

  // If the identifier is reserved (not invalid) but is in a system header,
  // we do not diagnose (because we expect system headers to use reserved
  // identifiers).
  if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
    Reason = Valid;

  switch (Reason) {
  case Valid:
    return false;
  case Invalid:
    return S.Diag(Loc, diag::err_invalid_module_name) << II;
  case Reserved:
    S.Diag(Loc, diag::warn_reserved_module_name) << II;
    return false;
  }
  llvm_unreachable("fell off a fully covered switch");
}

Sema::DeclGroupPtrTy
Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
                      ModuleDeclKind MDK, ModuleIdPath Path,
                      ModuleIdPath Partition, ModuleImportState &ImportState) {
  assert(getLangOpts().CPlusPlusModules &&
         "should only have module decl in standard C++ modules");

  bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
  bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
  // If any of the steps here fail, we count that as invalidating C++20
  // module state;
  ImportState = ModuleImportState::NotACXX20Module;

  bool IsPartition = !Partition.empty();
  if (IsPartition)
    switch (MDK) {
    case ModuleDeclKind::Implementation:
      MDK = ModuleDeclKind::PartitionImplementation;
      break;
    case ModuleDeclKind::Interface:
      MDK = ModuleDeclKind::PartitionInterface;
      break;
    default:
      llvm_unreachable("how did we get a partition type set?");
    }

  // A (non-partition) module implementation unit requires that we are not
  // compiling a module of any kind.  A partition implementation emits an
  // interface (and the AST for the implementation), which will subsequently
  // be consumed to emit a binary.
  // A module interface unit requires that we are not compiling a module map.
  switch (getLangOpts().getCompilingModule()) {
  case LangOptions::CMK_None:
    // It's OK to compile a module interface as a normal translation unit.
    break;

  case LangOptions::CMK_ModuleInterface:
    if (MDK != ModuleDeclKind::Implementation)
      break;

    // We were asked to compile a module interface unit but this is a module
    // implementation unit.
    Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
      << FixItHint::CreateInsertion(ModuleLoc, "export ");
    MDK = ModuleDeclKind::Interface;
    break;

  case LangOptions::CMK_ModuleMap:
    Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
    return nullptr;

  case LangOptions::CMK_HeaderUnit:
    Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
    return nullptr;
  }

  assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");

  // FIXME: Most of this work should be done by the preprocessor rather than
  // here, in order to support macro import.

  // Only one module-declaration is permitted per source file.
  if (isCurrentModulePurview()) {
    Diag(ModuleLoc, diag::err_module_redeclaration);
    Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
         diag::note_prev_module_declaration);
    return nullptr;
  }

  assert((!getLangOpts().CPlusPlusModules ||
          SeenGMF == (bool)this->TheGlobalModuleFragment) &&
         "mismatched global module state");

  // In C++20, the module-declaration must be the first declaration if there
  // is no global module fragment.
  if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
    Diag(ModuleLoc, diag::err_module_decl_not_at_start);
    SourceLocation BeginLoc =
        ModuleScopes.empty()
            ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
            : ModuleScopes.back().BeginLoc;
    if (BeginLoc.isValid()) {
      Diag(BeginLoc, diag::note_global_module_introducer_missing)
          << FixItHint::CreateInsertion(BeginLoc, "module;\n");
    }
  }

  // C++23 [module.unit]p1: ... The identifiers module and import shall not
  // appear as identifiers in a module-name or module-partition. All
  // module-names either beginning with an identifier consisting of std
  // followed by zero or more digits or containing a reserved identifier
  // ([lex.name]) are reserved and shall not be specified in a
  // module-declaration; no diagnostic is required.

  // Test the first part of the path to see if it's std[0-9]+ but allow the
  // name in a system header.
  StringRef FirstComponentName = Path[0].first->getName();
  if (!getSourceManager().isInSystemHeader(Path[0].second) &&
      (FirstComponentName == "std" ||
       (FirstComponentName.starts_with("std") &&
        llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit))))
    Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first;

  // Then test all of the components in the path to see if any of them are
  // using another kind of reserved or invalid identifier.
  for (auto Part : Path) {
    if (DiagReservedModuleName(*this, Part.first, Part.second))
      return nullptr;
  }

  // Flatten the dots in a module name. Unlike Clang's hierarchical module map
  // modules, the dots here are just another character that can appear in a
  // module name.
  std::string ModuleName = stringFromPath(Path);
  if (IsPartition) {
    ModuleName += ":";
    ModuleName += stringFromPath(Partition);
  }
  // If a module name was explicitly specified on the command line, it must be
  // correct.
  if (!getLangOpts().CurrentModule.empty() &&
      getLangOpts().CurrentModule != ModuleName) {
    Diag(Path.front().second, diag::err_current_module_name_mismatch)
        << SourceRange(Path.front().second, IsPartition
                                                ? Partition.back().second
                                                : Path.back().second)
        << getLangOpts().CurrentModule;
    return nullptr;
  }
  const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;

  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
  Module *Mod;                 // The module we are creating.
  Module *Interface = nullptr; // The interface for an implementation.
  switch (MDK) {
  case ModuleDeclKind::Interface:
  case ModuleDeclKind::PartitionInterface: {
    // We can't have parsed or imported a definition of this module or parsed a
    // module map defining it already.
    if (auto *M = Map.findModule(ModuleName)) {
      Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
      if (M->DefinitionLoc.isValid())
        Diag(M->DefinitionLoc, diag::note_prev_module_definition);
      else if (OptionalFileEntryRef FE = M->getASTFile())
        Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
            << FE->getName();
      Mod = M;
      break;
    }

    // Create a Module for the module that we're defining.
    Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
    if (MDK == ModuleDeclKind::PartitionInterface)
      Mod->Kind = Module::ModulePartitionInterface;
    assert(Mod && "module creation should not fail");
    break;
  }

  case ModuleDeclKind::Implementation: {
    // C++20 A module-declaration that contains neither an export-
    // keyword nor a module-partition implicitly imports the primary
    // module interface unit of the module as if by a module-import-
    // declaration.
    std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
        PP.getIdentifierInfo(ModuleName), Path[0].second);

    // The module loader will assume we're trying to import the module that
    // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
    // Change the value for `LangOpts.CurrentModule` temporarily to make the
    // module loader work properly.
    const_cast<LangOptions &>(getLangOpts()).CurrentModule = "";
    Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
                                             Module::AllVisible,
                                             /*IsInclusionDirective=*/false);
    const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;

    if (!Interface) {
      Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
      // Create an empty module interface unit for error recovery.
      Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
    } else {
      Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName);
    }
  } break;

  case ModuleDeclKind::PartitionImplementation:
    // Create an interface, but note that it is an implementation
    // unit.
    Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
    Mod->Kind = Module::ModulePartitionImplementation;
    break;
  }

  if (!this->TheGlobalModuleFragment) {
    ModuleScopes.push_back({});
    if (getLangOpts().ModulesLocalVisibility)
      ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
  } else {
    // We're done with the global module fragment now.
    ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
  }

  // Switch from the global module fragment (if any) to the named module.
  ModuleScopes.back().BeginLoc = StartLoc;
  ModuleScopes.back().Module = Mod;
  VisibleModules.setVisible(Mod, ModuleLoc);

  // From now on, we have an owning module for all declarations we see.
  // In C++20 modules, those declaration would be reachable when imported
  // unless explicitily exported.
  // Otherwise, those declarations are module-private unless explicitly
  // exported.
  auto *TU = Context.getTranslationUnitDecl();
  TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
  TU->setLocalOwningModule(Mod);

  // We are in the module purview, but before any other (non import)
  // statements, so imports are allowed.
  ImportState = ModuleImportState::ImportAllowed;

  getASTContext().setCurrentNamedModule(Mod);

  // We already potentially made an implicit import (in the case of a module
  // implementation unit importing its interface).  Make this module visible
  // and return the import decl to be added to the current TU.
  if (Interface) {

    makeTransitiveImportsVisible(VisibleModules, Interface, Mod, ModuleLoc,
                                 /*IsImportingPrimaryModuleInterface=*/true);

    // Make the import decl for the interface in the impl module.
    ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc,
                                            Interface, Path[0].second);
    CurContext->addDecl(Import);

    // Sequence initialization of the imported module before that of the current
    // module, if any.
    Context.addModuleInitializer(ModuleScopes.back().Module, Import);
    Mod->Imports.insert(Interface); // As if we imported it.
    // Also save this as a shortcut to checking for decls in the interface
    ThePrimaryInterface = Interface;
    // If we made an implicit import of the module interface, then return the
    // imported module decl.
    return ConvertDeclToDeclGroup(Import);
  }

  return nullptr;
}

Sema::DeclGroupPtrTy
Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
                                     SourceLocation PrivateLoc) {
  // C++20 [basic.link]/2:
  //   A private-module-fragment shall appear only in a primary module
  //   interface unit.
  switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment
                               : ModuleScopes.back().Module->Kind) {
  case Module::ModuleMapModule:
  case Module::ExplicitGlobalModuleFragment:
  case Module::ImplicitGlobalModuleFragment:
  case Module::ModulePartitionImplementation:
  case Module::ModulePartitionInterface:
  case Module::ModuleHeaderUnit:
    Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
    return nullptr;

  case Module::PrivateModuleFragment:
    Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
    Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
    return nullptr;

  case Module::ModuleImplementationUnit:
    Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
    Diag(ModuleScopes.back().BeginLoc,
         diag::note_not_module_interface_add_export)
        << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
    return nullptr;

  case Module::ModuleInterfaceUnit:
    break;
  }

  // FIXME: Check that this translation unit does not import any partitions;
  // such imports would violate [basic.link]/2's "shall be the only module unit"
  // restriction.

  // We've finished the public fragment of the translation unit.
  ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);

  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
  Module *PrivateModuleFragment =
      Map.createPrivateModuleFragmentForInterfaceUnit(
          ModuleScopes.back().Module, PrivateLoc);
  assert(PrivateModuleFragment && "module creation should not fail");

  // Enter the scope of the private module fragment.
  ModuleScopes.push_back({});
  ModuleScopes.back().BeginLoc = ModuleLoc;
  ModuleScopes.back().Module = PrivateModuleFragment;
  VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);

  // All declarations created from now on are scoped to the private module
  // fragment (and are neither visible nor reachable in importers of the module
  // interface).
  auto *TU = Context.getTranslationUnitDecl();
  TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
  TU->setLocalOwningModule(PrivateModuleFragment);

  // FIXME: Consider creating an explicit representation of this declaration.
  return nullptr;
}

DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
                                   SourceLocation ExportLoc,
                                   SourceLocation ImportLoc, ModuleIdPath Path,
                                   bool IsPartition) {
  assert((!IsPartition || getLangOpts().CPlusPlusModules) &&
         "partition seen in non-C++20 code?");

  // For a C++20 module name, flatten into a single identifier with the source
  // location of the first component.
  std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;

  std::string ModuleName;
  if (IsPartition) {
    // We already checked that we are in a module purview in the parser.
    assert(!ModuleScopes.empty() && "in a module purview, but no module?");
    Module *NamedMod = ModuleScopes.back().Module;
    // If we are importing into a partition, find the owning named module,
    // otherwise, the name of the importing named module.
    ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
    ModuleName += ":";
    ModuleName += stringFromPath(Path);
    ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
    Path = ModuleIdPath(ModuleNameLoc);
  } else if (getLangOpts().CPlusPlusModules) {
    ModuleName = stringFromPath(Path);
    ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
    Path = ModuleIdPath(ModuleNameLoc);
  }

  // Diagnose self-import before attempting a load.
  // [module.import]/9
  // A module implementation unit of a module M that is not a module partition
  // shall not contain a module-import-declaration nominating M.
  // (for an implementation, the module interface is imported implicitly,
  //  but that's handled in the module decl code).

  if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
      getCurrentModule()->Name == ModuleName) {
    Diag(ImportLoc, diag::err_module_self_import_cxx20)
        << ModuleName << currentModuleIsImplementation();
    return true;
  }

  Module *Mod = getModuleLoader().loadModule(
      ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
  if (!Mod)
    return true;

  if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() &&
      !getLangOpts().ObjC) {
    Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition)
        << ModuleName;
    return true;
  }

  return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
}

/// Determine whether \p D is lexically within an export-declaration.
static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
  for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
    if (auto *ED = dyn_cast<ExportDecl>(DC))
      return ED;
  return nullptr;
}

DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
                                   SourceLocation ExportLoc,
                                   SourceLocation ImportLoc, Module *Mod,
                                   ModuleIdPath Path) {
  if (Mod->isHeaderUnit())
    Diag(ImportLoc, diag::warn_experimental_header_unit);

  if (Mod->isNamedModule())
    makeTransitiveImportsVisible(VisibleModules, Mod, getCurrentModule(),
                                 ImportLoc);
  else
    VisibleModules.setVisible(Mod, ImportLoc);

  checkModuleImportContext(*this, Mod, ImportLoc, CurContext);

  // FIXME: we should support importing a submodule within a different submodule
  // of the same top-level module. Until we do, make it an error rather than
  // silently ignoring the import.
  // FIXME: Should we warn on a redundant import of the current module?
  if (Mod->isForBuilding(getLangOpts())) {
    Diag(ImportLoc, getLangOpts().isCompilingModule()
                        ? diag::err_module_self_import
                        : diag::err_module_import_in_implementation)
        << Mod->getFullModuleName() << getLangOpts().CurrentModule;
  }

  SmallVector<SourceLocation, 2> IdentifierLocs;

  if (Path.empty()) {
    // If this was a header import, pad out with dummy locations.
    // FIXME: Pass in and use the location of the header-name token in this
    // case.
    for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
      IdentifierLocs.push_back(SourceLocation());
  } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
    // A single identifier for the whole name.
    IdentifierLocs.push_back(Path[0].second);
  } else {
    Module *ModCheck = Mod;
    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
      // If we've run out of module parents, just drop the remaining
      // identifiers.  We need the length to be consistent.
      if (!ModCheck)
        break;
      ModCheck = ModCheck->Parent;

      IdentifierLocs.push_back(Path[I].second);
    }
  }

  ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
                                          Mod, IdentifierLocs);
  CurContext->addDecl(Import);

  // Sequence initialization of the imported module before that of the current
  // module, if any.
  if (!ModuleScopes.empty())
    Context.addModuleInitializer(ModuleScopes.back().Module, Import);

  // A module (partition) implementation unit shall not be exported.
  if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
      Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
    Diag(ExportLoc, diag::err_export_partition_impl)
        << SourceRange(ExportLoc, Path.back().second);
  } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) {
    // Re-export the module if the imported module is exported.
    // Note that we don't need to add re-exported module to Imports field
    // since `Exports` implies the module is imported already.
    if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
      getCurrentModule()->Exports.emplace_back(Mod, false);
    else
      getCurrentModule()->Imports.insert(Mod);
  } else if (ExportLoc.isValid()) {
    // [module.interface]p1:
    // An export-declaration shall inhabit a namespace scope and appear in the
    // purview of a module interface unit.
    Diag(ExportLoc, diag::err_export_not_in_module_interface);
  }

  return Import;
}

void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
  BuildModuleInclude(DirectiveLoc, Mod);
}

void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
  // Determine whether we're in the #include buffer for a module. The #includes
  // in that buffer do not qualify as module imports; they're just an
  // implementation detail of us building the module.
  //
  // FIXME: Should we even get ActOnAnnotModuleInclude calls for those?
  bool IsInModuleIncludes =
      TUKind == TU_ClangModule &&
      getSourceManager().isWrittenInMainFile(DirectiveLoc);

  // If we are really importing a module (not just checking layering) due to an
  // #include in the main file, synthesize an ImportDecl.
  if (getLangOpts().Modules && !IsInModuleIncludes) {
    TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
    ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
                                                     DirectiveLoc, Mod,
                                                     DirectiveLoc);
    if (!ModuleScopes.empty())
      Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
    TU->addDecl(ImportD);
    Consumer.HandleImplicitImportDecl(ImportD);
  }

  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
  VisibleModules.setVisible(Mod, DirectiveLoc);

  if (getLangOpts().isCompilingModule()) {
    Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
        getLangOpts().CurrentModule, DirectiveLoc, false, false);
    (void)ThisModule;
    assert(ThisModule && "was expecting a module if building one");
  }
}

void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);

  ModuleScopes.push_back({});
  ModuleScopes.back().Module = Mod;
  if (getLangOpts().ModulesLocalVisibility)
    ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);

  VisibleModules.setVisible(Mod, DirectiveLoc);

  // The enclosing context is now part of this module.
  // FIXME: Consider creating a child DeclContext to hold the entities
  // lexically within the module.
  if (getLangOpts().trackLocalOwningModule()) {
    for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
      cast<Decl>(DC)->setModuleOwnershipKind(
          getLangOpts().ModulesLocalVisibility
              ? Decl::ModuleOwnershipKind::VisibleWhenImported
              : Decl::ModuleOwnershipKind::Visible);
      cast<Decl>(DC)->setLocalOwningModule(Mod);
    }
  }
}

void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) {
  if (getLangOpts().ModulesLocalVisibility) {
    VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
    // Leaving a module hides namespace names, so our visible namespace cache
    // is now out of date.
    VisibleNamespaceCache.clear();
  }

  assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
         "left the wrong module scope");
  ModuleScopes.pop_back();

  // We got to the end of processing a local module. Create an
  // ImportDecl as we would for an imported module.
  FileID File = getSourceManager().getFileID(EomLoc);
  SourceLocation DirectiveLoc;
  if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
    // We reached the end of a #included module header. Use the #include loc.
    assert(File != getSourceManager().getMainFileID() &&
           "end of submodule in main source file");
    DirectiveLoc = getSourceManager().getIncludeLoc(File);
  } else {
    // We reached an EOM pragma. Use the pragma location.
    DirectiveLoc = EomLoc;
  }
  BuildModuleInclude(DirectiveLoc, Mod);

  // Any further declarations are in whatever module we returned to.
  if (getLangOpts().trackLocalOwningModule()) {
    // The parser guarantees that this is the same context that we entered
    // the module within.
    for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
      cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
      if (!getCurrentModule())
        cast<Decl>(DC)->setModuleOwnershipKind(
            Decl::ModuleOwnershipKind::Unowned);
    }
  }
}

void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
                                                      Module *Mod) {
  // Bail if we're not allowed to implicitly import a module here.
  if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
      VisibleModules.isVisible(Mod))
    return;

  // Create the implicit import declaration.
  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
                                                   Loc, Mod, Loc);
  TU->addDecl(ImportD);
  Consumer.HandleImplicitImportDecl(ImportD);

  // Make the module visible.
  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
  VisibleModules.setVisible(Mod, Loc);
}

/// We have parsed the start of an export declaration, including the '{'
/// (if present).
Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
                                 SourceLocation LBraceLoc) {
  ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);

  // Set this temporarily so we know the export-declaration was braced.
  D->setRBraceLoc(LBraceLoc);

  CurContext->addDecl(D);
  PushDeclContext(S, D);

  // C++2a [module.interface]p1:
  //   An export-declaration shall appear only [...] in the purview of a module
  //   interface unit. An export-declaration shall not appear directly or
  //   indirectly within [...] a private-module-fragment.
  if (!isCurrentModulePurview()) {
    Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
    D->setInvalidDecl();
    return D;
  } else if (currentModuleIsImplementation()) {
    Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
    Diag(ModuleScopes.back().BeginLoc,
         diag::note_not_module_interface_add_export)
        << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
    D->setInvalidDecl();
    return D;
  } else if (ModuleScopes.back().Module->Kind ==
             Module::PrivateModuleFragment) {
    Diag(ExportLoc, diag::err_export_in_private_module_fragment);
    Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
    D->setInvalidDecl();
    return D;
  }

  for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
    if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
      //   An export-declaration shall not appear directly or indirectly within
      //   an unnamed namespace [...]
      if (ND->isAnonymousNamespace()) {
        Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
        Diag(ND->getLocation(), diag::note_anonymous_namespace);
        // Don't diagnose internal-linkage declarations in this region.
        D->setInvalidDecl();
        return D;
      }

      //   A declaration is exported if it is [...] a namespace-definition
      //   that contains an exported declaration.
      //
      // Defer exporting the namespace until after we leave it, in order to
      // avoid marking all subsequent declarations in the namespace as exported.
      if (!DeferredExportedNamespaces.insert(ND).second)
        break;
    }
  }

  //   [...] its declaration or declaration-seq shall not contain an
  //   export-declaration.
  if (auto *ED = getEnclosingExportDecl(D)) {
    Diag(ExportLoc, diag::err_export_within_export);
    if (ED->hasBraces())
      Diag(ED->getLocation(), diag::note_export);
    D->setInvalidDecl();
    return D;
  }

  D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
  return D;
}

static bool checkExportedDecl(Sema &, Decl *, SourceLocation);

/// Check that it's valid to export all the declarations in \p DC.
static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
                                     SourceLocation BlockStart) {
  bool AllUnnamed = true;
  for (auto *D : DC->decls())
    AllUnnamed &= checkExportedDecl(S, D, BlockStart);
  return AllUnnamed;
}

/// Check that it's valid to export \p D.
static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {

  //  C++20 [module.interface]p3:
  //   [...] it shall not declare a name with internal linkage.
  bool HasName = false;
  if (auto *ND = dyn_cast<NamedDecl>(D)) {
    // Don't diagnose anonymous union objects; we'll diagnose their members
    // instead.
    HasName = (bool)ND->getDeclName();
    if (HasName && ND->getFormalLinkage() == Linkage::Internal) {
      S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
      if (BlockStart.isValid())
        S.Diag(BlockStart, diag::note_export);
      return false;
    }
  }

  // C++2a [module.interface]p5:
  //   all entities to which all of the using-declarators ultimately refer
  //   shall have been introduced with a name having external linkage
  if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
    NamedDecl *Target = USD->getUnderlyingDecl();
    Linkage Lk = Target->getFormalLinkage();
    if (Lk == Linkage::Internal || Lk == Linkage::Module) {
      S.Diag(USD->getLocation(), diag::err_export_using_internal)
          << (Lk == Linkage::Internal ? 0 : 1) << Target;
      S.Diag(Target->getLocation(), diag::note_using_decl_target);
      if (BlockStart.isValid())
        S.Diag(BlockStart, diag::note_export);
      return false;
    }
  }

  // Recurse into namespace-scope DeclContexts. (Only namespace-scope
  // declarations are exported).
  if (auto *DC = dyn_cast<DeclContext>(D)) {
    if (!isa<NamespaceDecl>(D))
      return true;

    if (auto *ND = dyn_cast<NamedDecl>(D)) {
      if (!ND->getDeclName()) {
        S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal);
        if (BlockStart.isValid())
          S.Diag(BlockStart, diag::note_export);
        return false;
      } else if (!DC->decls().empty() &&
                 DC->getRedeclContext()->isFileContext()) {
        return checkExportedDeclContext(S, DC, BlockStart);
      }
    }
  }
  return true;
}

/// Complete the definition of an export declaration.
Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
  auto *ED = cast<ExportDecl>(D);
  if (RBraceLoc.isValid())
    ED->setRBraceLoc(RBraceLoc);

  PopDeclContext();

  if (!D->isInvalidDecl()) {
    SourceLocation BlockStart =
        ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
    for (auto *Child : ED->decls()) {
      checkExportedDecl(*this, Child, BlockStart);
      if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
        // [dcl.inline]/7
        // If an inline function or variable that is attached to a named module
        // is declared in a definition domain, it shall be defined in that
        // domain.
        // So, if the current declaration does not have a definition, we must
        // check at the end of the TU (or when the PMF starts) to see that we
        // have a definition at that point.
        if (FD->isInlineSpecified() && !FD->isDefined())
          PendingInlineFuncDecls.insert(FD);
      }
    }
  }

  return D;
}

Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) {
  // We shouldn't create new global module fragment if there is already
  // one.
  if (!TheGlobalModuleFragment) {
    ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
    TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
        BeginLoc, getCurrentModule());
  }

  assert(TheGlobalModuleFragment && "module creation should not fail");

  // Enter the scope of the global module.
  ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment,
                          /*OuterVisibleModules=*/{}});
  VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc);

  return TheGlobalModuleFragment;
}

void Sema::PopGlobalModuleFragment() {
  assert(!ModuleScopes.empty() &&
         getCurrentModule()->isExplicitGlobalModule() &&
         "left the wrong module scope, which is not global module fragment");
  ModuleScopes.pop_back();
}

Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) {
  if (!TheImplicitGlobalModuleFragment) {
    ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
    TheImplicitGlobalModuleFragment =
        Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc,
                                                            getCurrentModule());
  }
  assert(TheImplicitGlobalModuleFragment && "module creation should not fail");

  // Enter the scope of the global module.
  ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment,
                          /*OuterVisibleModules=*/{}});
  VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc);
  return TheImplicitGlobalModuleFragment;
}

void Sema::PopImplicitGlobalModuleFragment() {
  assert(!ModuleScopes.empty() &&
         getCurrentModule()->isImplicitGlobalModule() &&
         "left the wrong module scope, which is not global module fragment");
  ModuleScopes.pop_back();
}

bool Sema::isCurrentModulePurview() const {
  if (!getCurrentModule())
    return false;

  /// Does this Module scope describe part of the purview of a standard named
  /// C++ module?
  switch (getCurrentModule()->Kind) {
  case Module::ModuleInterfaceUnit:
  case Module::ModuleImplementationUnit:
  case Module::ModulePartitionInterface:
  case Module::ModulePartitionImplementation:
  case Module::PrivateModuleFragment:
  case Module::ImplicitGlobalModuleFragment:
    return true;
  default:
    return false;
  }
}