aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/Targets/AArch64.cpp
blob: ee7f95084d2e0b6628778a0189649729ba800a5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
//===- AArch64.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABIInfoImpl.h"
#include "TargetInfo.h"

using namespace clang;
using namespace clang::CodeGen;

//===----------------------------------------------------------------------===//
// AArch64 ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class AArch64ABIInfo : public ABIInfo {
  AArch64ABIKind Kind;

public:
  AArch64ABIInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
      : ABIInfo(CGT), Kind(Kind) {}

private:
  AArch64ABIKind getABIKind() const { return Kind; }
  bool isDarwinPCS() const { return Kind == AArch64ABIKind::DarwinPCS; }

  ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
                                  unsigned CallingConvention) const;
  ABIArgInfo coerceIllegalVector(QualType Ty) const;
  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t Members) const override;
  bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;

  bool isIllegalVectorType(QualType Ty) const;

  void computeInfo(CGFunctionInfo &FI) const override {
    if (!::classifyReturnType(getCXXABI(), FI, *this))
      FI.getReturnInfo() =
          classifyReturnType(FI.getReturnType(), FI.isVariadic());

    for (auto &it : FI.arguments())
      it.info = classifyArgumentType(it.type, FI.isVariadic(),
                                     FI.getCallingConvention());
  }

  Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
                          CodeGenFunction &CGF) const;

  Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
                         CodeGenFunction &CGF) const;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override {
    llvm::Type *BaseTy = CGF.ConvertType(Ty);
    if (isa<llvm::ScalableVectorType>(BaseTy))
      llvm::report_fatal_error("Passing SVE types to variadic functions is "
                               "currently not supported");

    return Kind == AArch64ABIKind::Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
           : isDarwinPCS()               ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
                                         : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
  }

  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                      QualType Ty) const override;

  bool allowBFloatArgsAndRet() const override {
    return getTarget().hasBFloat16Type();
  }
};

class AArch64SwiftABIInfo : public SwiftABIInfo {
public:
  explicit AArch64SwiftABIInfo(CodeGenTypes &CGT)
      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}

  bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
                         unsigned NumElts) const override;
};

class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
      : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {
    SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT);
  }

  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
    return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
  }

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    return 31;
  }

  bool doesReturnSlotInterfereWithArgs() const override { return false; }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD)
      return;

    const auto *TA = FD->getAttr<TargetAttr>();
    if (TA == nullptr)
      return;

    ParsedTargetAttr Attr =
        CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
    if (Attr.BranchProtection.empty())
      return;

    TargetInfo::BranchProtectionInfo BPI;
    StringRef Error;
    (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
                                                   Attr.CPU, BPI, Error);
    assert(Error.empty());

    auto *Fn = cast<llvm::Function>(GV);
    static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
    Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);

    if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
      Fn->addFnAttr("sign-return-address-key",
                    BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
                        ? "a_key"
                        : "b_key");
    }

    Fn->addFnAttr("branch-target-enforcement",
                  BPI.BranchTargetEnforcement ? "true" : "false");
    Fn->addFnAttr("branch-protection-pauth-lr",
                  BPI.BranchProtectionPAuthLR ? "true" : "false");
    Fn->addFnAttr("guarded-control-stack",
                  BPI.GuardedControlStack ? "true" : "false");
  }

  bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
                                llvm::Type *Ty) const override {
    if (CGF.getTarget().hasFeature("ls64")) {
      auto *ST = dyn_cast<llvm::StructType>(Ty);
      if (ST && ST->getNumElements() == 1) {
        auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
        if (AT && AT->getNumElements() == 8 &&
            AT->getElementType()->isIntegerTy(64))
          return true;
      }
    }
    return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
  }
};

class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
public:
  WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind K)
      : AArch64TargetCodeGenInfo(CGT, K) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};

void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  addStackProbeTargetAttributes(D, GV, CGM);
}
}

ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
  assert(Ty->isVectorType() && "expected vector type!");

  const auto *VT = Ty->castAs<VectorType>();
  if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
    assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
               BuiltinType::UChar &&
           "unexpected builtin type for SVE predicate!");
    return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
        llvm::Type::getInt1Ty(getVMContext()), 16));
  }

  if (VT->getVectorKind() == VectorKind::SveFixedLengthData) {
    assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");

    const auto *BT = VT->getElementType()->castAs<BuiltinType>();
    llvm::ScalableVectorType *ResType = nullptr;
    switch (BT->getKind()) {
    default:
      llvm_unreachable("unexpected builtin type for SVE vector!");
    case BuiltinType::SChar:
    case BuiltinType::UChar:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getInt8Ty(getVMContext()), 16);
      break;
    case BuiltinType::Short:
    case BuiltinType::UShort:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getInt16Ty(getVMContext()), 8);
      break;
    case BuiltinType::Int:
    case BuiltinType::UInt:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getInt32Ty(getVMContext()), 4);
      break;
    case BuiltinType::Long:
    case BuiltinType::ULong:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getInt64Ty(getVMContext()), 2);
      break;
    case BuiltinType::Half:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getHalfTy(getVMContext()), 8);
      break;
    case BuiltinType::Float:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getFloatTy(getVMContext()), 4);
      break;
    case BuiltinType::Double:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getDoubleTy(getVMContext()), 2);
      break;
    case BuiltinType::BFloat16:
      ResType = llvm::ScalableVectorType::get(
          llvm::Type::getBFloatTy(getVMContext()), 8);
      break;
    }
    return ABIArgInfo::getDirect(ResType);
  }

  uint64_t Size = getContext().getTypeSize(Ty);
  // Android promotes <2 x i8> to i16, not i32
  if ((isAndroid() || isOHOSFamily()) && (Size <= 16)) {
    llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
    return ABIArgInfo::getDirect(ResType);
  }
  if (Size <= 32) {
    llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
    return ABIArgInfo::getDirect(ResType);
  }
  if (Size == 64) {
    auto *ResType =
        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
    return ABIArgInfo::getDirect(ResType);
  }
  if (Size == 128) {
    auto *ResType =
        llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
    return ABIArgInfo::getDirect(ResType);
  }
  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
}

ABIArgInfo
AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
                                     unsigned CallingConvention) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  // Handle illegal vector types here.
  if (isIllegalVectorType(Ty))
    return coerceIllegalVector(Ty);

  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    if (const auto *EIT = Ty->getAs<BitIntType>())
      if (EIT->getNumBits() > 128)
        return getNaturalAlignIndirect(Ty);

    return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
                ? ABIArgInfo::getExtend(Ty)
                : ABIArgInfo::getDirect());
  }

  // Structures with either a non-trivial destructor or a non-trivial
  // copy constructor are always indirect.
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
                                     CGCXXABI::RAA_DirectInMemory);
  }

  // Empty records are always ignored on Darwin, but actually passed in C++ mode
  // elsewhere for GNU compatibility.
  uint64_t Size = getContext().getTypeSize(Ty);
  bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
  if (IsEmpty || Size == 0) {
    if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
      return ABIArgInfo::getIgnore();

    // GNU C mode. The only argument that gets ignored is an empty one with size
    // 0.
    if (IsEmpty && Size == 0)
      return ABIArgInfo::getIgnore();
    return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
  }

  // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
  const Type *Base = nullptr;
  uint64_t Members = 0;
  bool IsWin64 = Kind == AArch64ABIKind::Win64 ||
                 CallingConvention == llvm::CallingConv::Win64;
  bool IsWinVariadic = IsWin64 && IsVariadic;
  // In variadic functions on Windows, all composite types are treated alike,
  // no special handling of HFAs/HVAs.
  if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
    if (Kind != AArch64ABIKind::AAPCS)
      return ABIArgInfo::getDirect(
          llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));

    // For HFAs/HVAs, cap the argument alignment to 16, otherwise
    // set it to 8 according to the AAPCS64 document.
    unsigned Align =
        getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
    Align = (Align >= 16) ? 16 : 8;
    return ABIArgInfo::getDirect(
        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
        nullptr, true, Align);
  }

  // Aggregates <= 16 bytes are passed directly in registers or on the stack.
  if (Size <= 128) {
    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
    // same size and alignment.
    if (getTarget().isRenderScriptTarget()) {
      return coerceToIntArray(Ty, getContext(), getVMContext());
    }
    unsigned Alignment;
    if (Kind == AArch64ABIKind::AAPCS) {
      Alignment = getContext().getTypeUnadjustedAlign(Ty);
      Alignment = Alignment < 128 ? 64 : 128;
    } else {
      Alignment =
          std::max(getContext().getTypeAlign(Ty),
                   (unsigned)getTarget().getPointerWidth(LangAS::Default));
    }
    Size = llvm::alignTo(Size, Alignment);

    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
    // For aggregates with 16-byte alignment, we use i128.
    llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
    return ABIArgInfo::getDirect(
        Size == Alignment ? BaseTy
                          : llvm::ArrayType::get(BaseTy, Size / Alignment));
  }

  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
}

ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
                                              bool IsVariadic) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  if (const auto *VT = RetTy->getAs<VectorType>()) {
    if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
        VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
      return coerceIllegalVector(RetTy);
  }

  // Large vector types should be returned via memory.
  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
    return getNaturalAlignIndirect(RetTy);

  if (!isAggregateTypeForABI(RetTy)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
      RetTy = EnumTy->getDecl()->getIntegerType();

    if (const auto *EIT = RetTy->getAs<BitIntType>())
      if (EIT->getNumBits() > 128)
        return getNaturalAlignIndirect(RetTy);

    return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
                ? ABIArgInfo::getExtend(RetTy)
                : ABIArgInfo::getDirect());
  }

  uint64_t Size = getContext().getTypeSize(RetTy);
  if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
    return ABIArgInfo::getIgnore();

  const Type *Base = nullptr;
  uint64_t Members = 0;
  if (isHomogeneousAggregate(RetTy, Base, Members) &&
      !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
        IsVariadic))
    // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
    return ABIArgInfo::getDirect();

  // Aggregates <= 16 bytes are returned directly in registers or on the stack.
  if (Size <= 128) {
    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
    // same size and alignment.
    if (getTarget().isRenderScriptTarget()) {
      return coerceToIntArray(RetTy, getContext(), getVMContext());
    }

    if (Size <= 64 && getDataLayout().isLittleEndian()) {
      // Composite types are returned in lower bits of a 64-bit register for LE,
      // and in higher bits for BE. However, integer types are always returned
      // in lower bits for both LE and BE, and they are not rounded up to
      // 64-bits. We can skip rounding up of composite types for LE, but not for
      // BE, otherwise composite types will be indistinguishable from integer
      // types.
      return ABIArgInfo::getDirect(
          llvm::IntegerType::get(getVMContext(), Size));
    }

    unsigned Alignment = getContext().getTypeAlign(RetTy);
    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes

    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
    // For aggregates with 16-byte alignment, we use i128.
    if (Alignment < 128 && Size == 128) {
      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
    }
    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
  }

  return getNaturalAlignIndirect(RetTy);
}

/// isIllegalVectorType - check whether the vector type is legal for AArch64.
bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // Check whether VT is a fixed-length SVE vector. These types are
    // represented as scalable vectors in function args/return and must be
    // coerced from fixed vectors.
    if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
        VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
      return true;

    // Check whether VT is legal.
    unsigned NumElements = VT->getNumElements();
    uint64_t Size = getContext().getTypeSize(VT);
    // NumElements should be power of 2.
    if (!llvm::isPowerOf2_32(NumElements))
      return true;

    // arm64_32 has to be compatible with the ARM logic here, which allows huge
    // vectors for some reason.
    llvm::Triple Triple = getTarget().getTriple();
    if (Triple.getArch() == llvm::Triple::aarch64_32 &&
        Triple.isOSBinFormatMachO())
      return Size <= 32;

    return Size != 64 && (Size != 128 || NumElements == 1);
  }
  return false;
}

bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize,
                                            llvm::Type *EltTy,
                                            unsigned NumElts) const {
  if (!llvm::isPowerOf2_32(NumElts))
    return false;
  if (VectorSize.getQuantity() != 8 &&
      (VectorSize.getQuantity() != 16 || NumElts == 1))
    return false;
  return true;
}

bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  // Homogeneous aggregates for AAPCS64 must have base types of a floating
  // point type or a short-vector type. This is the same as the 32-bit ABI,
  // but with the difference that any floating-point type is allowed,
  // including __fp16.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->isFloatingPoint())
      return true;
  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    unsigned VecSize = getContext().getTypeSize(VT);
    if (VecSize == 64 || VecSize == 128)
      return true;
  }
  return false;
}

bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
                                                       uint64_t Members) const {
  return Members <= 4;
}

bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
    const {
  // AAPCS64 says that the rule for whether something is a homogeneous
  // aggregate is applied to the output of the data layout decision. So
  // anything that doesn't affect the data layout also does not affect
  // homogeneity. In particular, zero-length bitfields don't stop a struct
  // being homogeneous.
  return true;
}

Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
                                       CodeGenFunction &CGF) const {
  ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
                                       CGF.CurFnInfo->getCallingConvention());
  // Empty records are ignored for parameter passing purposes.
  if (AI.isIgnore()) {
    uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
    CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
    VAListAddr = VAListAddr.withElementType(CGF.Int8PtrTy);
    auto *Load = CGF.Builder.CreateLoad(VAListAddr);
    return Address(Load, CGF.ConvertTypeForMem(Ty), SlotSize);
  }

  bool IsIndirect = AI.isIndirect();

  llvm::Type *BaseTy = CGF.ConvertType(Ty);
  if (IsIndirect)
    BaseTy = llvm::PointerType::getUnqual(BaseTy);
  else if (AI.getCoerceToType())
    BaseTy = AI.getCoerceToType();

  unsigned NumRegs = 1;
  if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
    BaseTy = ArrTy->getElementType();
    NumRegs = ArrTy->getNumElements();
  }
  bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();

  // The AArch64 va_list type and handling is specified in the Procedure Call
  // Standard, section B.4:
  //
  // struct {
  //   void *__stack;
  //   void *__gr_top;
  //   void *__vr_top;
  //   int __gr_offs;
  //   int __vr_offs;
  // };

  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");

  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
  CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);

  Address reg_offs_p = Address::invalid();
  llvm::Value *reg_offs = nullptr;
  int reg_top_index;
  int RegSize = IsIndirect ? 8 : TySize.getQuantity();
  if (!IsFPR) {
    // 3 is the field number of __gr_offs
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
    reg_top_index = 1; // field number for __gr_top
    RegSize = llvm::alignTo(RegSize, 8);
  } else {
    // 4 is the field number of __vr_offs.
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
    reg_top_index = 2; // field number for __vr_top
    RegSize = 16 * NumRegs;
  }

  //=======================================
  // Find out where argument was passed
  //=======================================

  // If reg_offs >= 0 we're already using the stack for this type of
  // argument. We don't want to keep updating reg_offs (in case it overflows,
  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
  // whatever they get).
  llvm::Value *UsingStack = nullptr;
  UsingStack = CGF.Builder.CreateICmpSGE(
      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));

  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);

  // Otherwise, at least some kind of argument could go in these registers, the
  // question is whether this particular type is too big.
  CGF.EmitBlock(MaybeRegBlock);

  // Integer arguments may need to correct register alignment (for example a
  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
  // align __gr_offs to calculate the potential address.
  if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
    int Align = TyAlign.getQuantity();

    reg_offs = CGF.Builder.CreateAdd(
        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
        "align_regoffs");
    reg_offs = CGF.Builder.CreateAnd(
        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
        "aligned_regoffs");
  }

  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
  // The fact that this is done unconditionally reflects the fact that
  // allocating an argument to the stack also uses up all the remaining
  // registers of the appropriate kind.
  llvm::Value *NewOffset = nullptr;
  NewOffset = CGF.Builder.CreateAdd(
      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
  CGF.Builder.CreateStore(NewOffset, reg_offs_p);

  // Now we're in a position to decide whether this argument really was in
  // registers or not.
  llvm::Value *InRegs = nullptr;
  InRegs = CGF.Builder.CreateICmpSLE(
      NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");

  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);

  //=======================================
  // Argument was in registers
  //=======================================

  // Now we emit the code for if the argument was originally passed in
  // registers. First start the appropriate block:
  CGF.EmitBlock(InRegBlock);

  llvm::Value *reg_top = nullptr;
  Address reg_top_p =
      CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
  Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
                   CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
  Address RegAddr = Address::invalid();
  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;

  if (IsIndirect) {
    // If it's been passed indirectly (actually a struct), whatever we find from
    // stored registers or on the stack will actually be a struct **.
    MemTy = llvm::PointerType::getUnqual(MemTy);
  }

  const Type *Base = nullptr;
  uint64_t NumMembers = 0;
  bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
  if (IsHFA && NumMembers > 1) {
    // Homogeneous aggregates passed in registers will have their elements split
    // and stored 16-bytes apart regardless of size (they're notionally in qN,
    // qN+1, ...). We reload and store into a temporary local variable
    // contiguously.
    assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
    auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
    Address Tmp = CGF.CreateTempAlloca(HFATy,
                                       std::max(TyAlign, BaseTyInfo.Align));

    // On big-endian platforms, the value will be right-aligned in its slot.
    int Offset = 0;
    if (CGF.CGM.getDataLayout().isBigEndian() &&
        BaseTyInfo.Width.getQuantity() < 16)
      Offset = 16 - BaseTyInfo.Width.getQuantity();

    for (unsigned i = 0; i < NumMembers; ++i) {
      CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
      Address LoadAddr =
        CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
      LoadAddr = LoadAddr.withElementType(BaseTy);

      Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);

      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
      CGF.Builder.CreateStore(Elem, StoreAddr);
    }

    RegAddr = Tmp.withElementType(MemTy);
  } else {
    // Otherwise the object is contiguous in memory.

    // It might be right-aligned in its slot.
    CharUnits SlotSize = BaseAddr.getAlignment();
    if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
        (IsHFA || !isAggregateTypeForABI(Ty)) &&
        TySize < SlotSize) {
      CharUnits Offset = SlotSize - TySize;
      BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
    }

    RegAddr = BaseAddr.withElementType(MemTy);
  }

  CGF.EmitBranch(ContBlock);

  //=======================================
  // Argument was on the stack
  //=======================================
  CGF.EmitBlock(OnStackBlock);

  Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
  llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");

  // Again, stack arguments may need realignment. In this case both integer and
  // floating-point ones might be affected.
  if (!IsIndirect && TyAlign.getQuantity() > 8) {
    int Align = TyAlign.getQuantity();

    OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);

    OnStackPtr = CGF.Builder.CreateAdd(
        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
        "align_stack");
    OnStackPtr = CGF.Builder.CreateAnd(
        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
        "align_stack");

    OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
  }
  Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
                                std::max(CharUnits::fromQuantity(8), TyAlign));

  // All stack slots are multiples of 8 bytes.
  CharUnits StackSlotSize = CharUnits::fromQuantity(8);
  CharUnits StackSize;
  if (IsIndirect)
    StackSize = StackSlotSize;
  else
    StackSize = TySize.alignTo(StackSlotSize);

  llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
  llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
      CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");

  // Write the new value of __stack for the next call to va_arg
  CGF.Builder.CreateStore(NewStack, stack_p);

  if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
      TySize < StackSlotSize) {
    CharUnits Offset = StackSlotSize - TySize;
    OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
  }

  OnStackAddr = OnStackAddr.withElementType(MemTy);

  CGF.EmitBranch(ContBlock);

  //=======================================
  // Tidy up
  //=======================================
  CGF.EmitBlock(ContBlock);

  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
                                 OnStackBlock, "vaargs.addr");

  if (IsIndirect)
    return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
                   TyAlign);

  return ResAddr;
}

Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
                                        CodeGenFunction &CGF) const {
  // The backend's lowering doesn't support va_arg for aggregates or
  // illegal vector types.  Lower VAArg here for these cases and use
  // the LLVM va_arg instruction for everything else.
  if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
    return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());

  uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
  CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);

  // Empty records are ignored for parameter passing purposes.
  if (isEmptyRecord(getContext(), Ty, true))
    return Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"),
                   CGF.ConvertTypeForMem(Ty), SlotSize);

  // The size of the actual thing passed, which might end up just
  // being a pointer for indirect types.
  auto TyInfo = getContext().getTypeInfoInChars(Ty);

  // Arguments bigger than 16 bytes which aren't homogeneous
  // aggregates should be passed indirectly.
  bool IsIndirect = false;
  if (TyInfo.Width.getQuantity() > 16) {
    const Type *Base = nullptr;
    uint64_t Members = 0;
    IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
  }

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          TyInfo, SlotSize, /*AllowHigherAlign*/ true);
}

Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                    QualType Ty) const {
  bool IsIndirect = false;

  // Composites larger than 16 bytes are passed by reference.
  if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
    IsIndirect = true;

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createAArch64TargetCodeGenInfo(CodeGenModule &CGM,
                                        AArch64ABIKind Kind) {
  return std::make_unique<AArch64TargetCodeGenInfo>(CGM.getTypes(), Kind);
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM,
                                               AArch64ABIKind K) {
  return std::make_unique<WindowsAArch64TargetCodeGenInfo>(CGM.getTypes(), K);
}