aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/GRSimpleVals.cpp
blob: b57cb57c3244a8e2021ea1ce2e3e93a764d55dbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines GRSimpleVals, a sub-class of GRTransferFuncs that
//  provides transfer functions for performing simple value tracking with
//  limited support for symbolics.
//
//===----------------------------------------------------------------------===//

#include "GRSimpleVals.h"
#include "BasicObjCFoundationChecks.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "llvm/Support/Compiler.h"
#include <sstream>

using namespace clang;

//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//

template <typename ITERATOR> inline
ExplodedNode<ValueState>* GetNode(ITERATOR I) {
  return *I;
}

template <> inline
ExplodedNode<ValueState>* GetNode(GRExprEngine::undef_arg_iterator I) {
  return I->first;
}

template <typename ITER>
void GenericEmitWarnings(BugReporter& BR, BugType& D, ITER I, ITER E) {
  
  for (; I != E; ++I) {
    BugReport R(D, GetNode(I));    
    BR.EmitWarning(R);
  }
}

//===----------------------------------------------------------------------===//
// Bug Descriptions.
//===----------------------------------------------------------------------===//

namespace {
  
class VISIBILITY_HIDDEN NullDeref : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "null dereference";
  }
  
  virtual const char* getDescription() const {
    return "Dereference of null pointer.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.null_derefs_begin(),
                        Eng.null_derefs_end());
  }
};

class VISIBILITY_HIDDEN UndefDeref : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "bad dereference";
  }
  
  virtual const char* getDescription() const {
    return "Dereference of undefined value.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.undef_derefs_begin(),
                        Eng.undef_derefs_end());
  }
};
  
class VISIBILITY_HIDDEN UndefBranch : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "uninitialized value";
  }
  
  virtual const char* getDescription() const {
    return "Branch condition evaluates to an uninitialized value.";
  }
  
  virtual void EmitWarnings(BugReporter& BR);
};
  
class VISIBILITY_HIDDEN DivZero : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "divide-by-zero";
  }
  
  virtual const char* getDescription() const {
    return "Division by zero/undefined value.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.explicit_bad_divides_begin(),
                        Eng.explicit_bad_divides_end());
  }
};

class VISIBILITY_HIDDEN UndefResult : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "undefined result";
  }
  
  virtual const char* getDescription() const {
    return "Result of operation is undefined.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.undef_results_begin(),
                        Eng.undef_results_end());
  }
};
  
class VISIBILITY_HIDDEN BadCall : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "invalid function call";
  }
  
  virtual const char* getDescription() const {
    return "Called function is a NULL or undefined function pointer value.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.bad_calls_begin(),
                        Eng.bad_calls_end());
  }
};
  
  
class VISIBILITY_HIDDEN BadArg : public BugTypeCacheLocation {
public:
  
  virtual ~BadArg() {}
  
  virtual const char* getName() const {
    return "bad argument";
  }
  
  virtual const char* getDescription() const {
    return "Pass-by-value argument in function is undefined.";
  }  

  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();

    for (GRExprEngine::UndefArgsTy::iterator I = Eng.undef_arg_begin(),
         E = Eng.undef_arg_end(); I!=E; ++I) {
      
      // Generate a report for this bug.
      RangedBugReport report(*this, I->first);
      report.addRange(I->second->getSourceRange());

      // Emit the warning.
      BR.EmitWarning(report);
    }

  }
};
  
class VISIBILITY_HIDDEN BadMsgExprArg : public BadArg {
public:
  virtual const char* getName() const {
    return "bad argument";
  }
  
  virtual const char* getDescription() const {
    return "Pass-by-value argument in message expression is undefined.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    
    for (GRExprEngine::UndefArgsTy::iterator I=Eng.msg_expr_undef_arg_begin(),
         E = Eng.msg_expr_undef_arg_end(); I!=E; ++I) {
      
      // Generate a report for this bug.
      RangedBugReport report(*this, I->first);
      report.addRange(I->second->getSourceRange());
      
      // Emit the warning.
      BR.EmitWarning(report);
    }    
  }
};

class VISIBILITY_HIDDEN BadReceiver : public BugTypeCacheLocation {
public:  
  virtual const char* getName() const {
    return "bad receiver";
  }
  
  virtual const char* getDescription() const {
    return "Receiver in message expression is an uninitialized value.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    
    for (GRExprEngine::UndefReceiversTy::iterator I=Eng.undef_receivers_begin(),
         End = Eng.undef_receivers_end(); I!=End; ++I) {
          
      // Generate a report for this bug.
      RangedBugReport report(*this, *I);
      
      ExplodedNode<ValueState>* N = *I;
      Stmt *S = cast<PostStmt>(N->getLocation()).getStmt();
      Expr* E = cast<ObjCMessageExpr>(S)->getReceiver();
      assert (E && "Receiver cannot be NULL");
      report.addRange(E->getSourceRange());
      
      // Emit the warning.
      BR.EmitWarning(report);
    }    
  }
};
  
class VISIBILITY_HIDDEN RetStack : public BugTypeCacheLocation {
public:
  virtual const char* getName() const {
    return "return of stack address";
  }
  
  virtual const char* getDescription() const {
    return "Address of stack-allocated variable returned.";
  }
  
  virtual void EmitWarnings(BugReporter& BR) {
    GRExprEngine& Eng = BR.getEngine();
    GenericEmitWarnings(BR, *this, Eng.ret_stackaddr_begin(),
                        Eng.ret_stackaddr_end());
  }
};
  
} // end anonymous namespace


namespace {

struct VISIBILITY_HIDDEN FindUndefExpr {
  ValueStateManager& VM;
  ValueState* St;
  
  FindUndefExpr(ValueStateManager& V, ValueState* S) : VM(V), St(S) {}
  
  Expr* FindExpr(Expr* Ex) {
    
    if (!MatchesCriteria(Ex))
      return 0;    
        
    for (Stmt::child_iterator I=Ex->child_begin(), E=Ex->child_end(); I!=E; ++I)
      if (Expr* ExI = dyn_cast_or_null<Expr>(*I)) {
        Expr* E2 = FindExpr(ExI);
        if (E2) return E2;
      }
    
    return Ex;
  }
  
  bool MatchesCriteria(Expr* Ex) { return VM.GetRVal(St, Ex).isUndef(); }  
};
  
} // end anonymous namespace
  
  
void UndefBranch::EmitWarnings(BugReporter& BR) {

  GRExprEngine& Eng = BR.getEngine();
  
  for (GRExprEngine::undef_branch_iterator I=Eng.undef_branches_begin(),
       E=Eng.undef_branches_end(); I!=E; ++I) {

    // What's going on here: we want to highlight the subexpression of the
    // condition that is the most likely source of the "uninitialized
    // branch condition."  We do a recursive walk of the condition's
    // subexpressions and roughly look for the most nested subexpression
    // that binds to Undefined.  We then highlight that expression's range.
    
    BlockEdge B = cast<BlockEdge>((*I)->getLocation());
    Expr* Ex = cast<Expr>(B.getSrc()->getTerminatorCondition());
    assert (Ex && "Block must have a terminator.");
    
    // Get the predecessor node and check if is a PostStmt with the Stmt
    // being the terminator condition.  We want to inspect the state
    // of that node instead because it will contain main information about
    // the subexpressions.
    
    assert (!(*I)->pred_empty());
    
    // Note: any predecessor will do.  They should have identical state,
    // since all the BlockEdge did was act as an error sink since the value
    // had to already be undefined.
    ExplodedNode<ValueState> *N = *(*I)->pred_begin();
    ProgramPoint P = N->getLocation();

    ValueState* St = (*I)->getState();
    
    if (PostStmt* PS = dyn_cast<PostStmt>(&P))
      if (PS->getStmt() == Ex)
        St = N->getState();
        
    FindUndefExpr FindIt(Eng.getStateManager(), St);
    Ex = FindIt.FindExpr(Ex);
    
    RangedBugReport R(*this, *I);
    R.addRange(Ex->getSourceRange());
    
    BR.EmitWarning(R);
  }
}


void GRSimpleVals::RegisterChecks(GRExprEngine& Eng) {
  
  // Path-sensitive checks.
  Eng.Register(new NullDeref());
  Eng.Register(new UndefDeref());
  Eng.Register(new UndefBranch());
  Eng.Register(new DivZero());
  Eng.Register(new UndefResult());
  Eng.Register(new BadCall());
  Eng.Register(new RetStack());
  Eng.Register(new BadArg());
  Eng.Register(new BadMsgExprArg());
  Eng.Register(new BadReceiver());
  
  // Flow-sensitive checks.
  Eng.Register(MakeDeadStoresChecker());  
  
  // Add extra checkers.

  GRSimpleAPICheck* FoundationCheck =
    CreateBasicObjCFoundationChecks(Eng.getContext(), &Eng.getStateManager());
  
  Eng.AddObjCMessageExprCheck(FoundationCheck);
}

//===----------------------------------------------------------------------===//
// Transfer Function creation for External clients.
//===----------------------------------------------------------------------===//

GRTransferFuncs* clang::MakeGRSimpleValsTF() { return new GRSimpleVals(); }  

//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//

RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) {
  
  if (!isa<nonlval::ConcreteInt>(X))
    return UnknownVal();

  BasicValueFactory& BasicVals = Eng.getBasicVals();
  
  llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
  V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
  V.extOrTrunc(Eng.getContext().getTypeSize(T));
  
  if (LVal::IsLValType(T))
    return lval::ConcreteInt(BasicVals.getValue(V));
  else
    return nonlval::ConcreteInt(BasicVals.getValue(V));
}

// Casts.

RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) {
  
  // Casts from pointers -> pointers, just return the lval.
  //
  // Casts from pointers -> references, just return the lval.  These
  //   can be introduced by the frontend for corner cases, e.g
  //   casting from va_list* to __builtin_va_list&.
  //
  if (LVal::IsLValType(T) || T->isReferenceType())
    return X;
  
  assert (T->isIntegerType());
  
  if (!isa<lval::ConcreteInt>(X))
    return UnknownVal();
  
  BasicValueFactory& BasicVals = Eng.getBasicVals();
  
  llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
  V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
  V.extOrTrunc(Eng.getContext().getTypeSize(T));

  return nonlval::ConcreteInt(BasicVals.getValue(V));
}

// Unary operators.

RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){
  
  switch (X.getSubKind()) {
      
    case nonlval::ConcreteIntKind:
      return cast<nonlval::ConcreteInt>(X).EvalMinus(Eng.getBasicVals(), U);
      
    default:
      return UnknownVal();
  }
}

RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) {

  switch (X.getSubKind()) {
      
    case nonlval::ConcreteIntKind:
      return cast<nonlval::ConcreteInt>(X).EvalComplement(Eng.getBasicVals());
      
    default:
      return UnknownVal();
  }
}

// Binary operators.

RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
                             NonLVal L, NonLVal R)  {
  
  BasicValueFactory& BasicVals = Eng.getBasicVals();
  
  while (1) {
    
    switch (L.getSubKind()) {
      default:
        return UnknownVal();
        
      case nonlval::ConcreteIntKind:
        
        if (isa<nonlval::ConcreteInt>(R)) {          
          const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
          const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);          
          return L_CI.EvalBinOp(BasicVals, Op, R_CI);          
        }
        else {
          NonLVal tmp = R;
          R = L;
          L = tmp;
          continue;
        }
        
      case nonlval::SymbolValKind: {
        
        if (isa<nonlval::ConcreteInt>(R)) {
          const SymIntConstraint& C =
            BasicVals.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
                                    cast<nonlval::ConcreteInt>(R).getValue());
          
          return nonlval::SymIntConstraintVal(C);
        }
        else
          return UnknownVal();
      }
    }
  }
}


// Binary Operators (except assignments and comma).

RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
                             LVal L, LVal R) {
  
  switch (Op) {

    default:
      return UnknownVal();
      
    case BinaryOperator::EQ:
      return EvalEQ(Eng, L, R);
      
    case BinaryOperator::NE:
      return EvalNE(Eng, L, R);      
  }
}

// Pointer arithmetic.

RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
                             LVal L, NonLVal R) {  
  return UnknownVal();
}

// Equality operators for LVals.

RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) {
  
  BasicValueFactory& BasicVals = Eng.getBasicVals();
  
  switch (L.getSubKind()) {

    default:
      assert(false && "EQ not implemented for this LVal.");
      return UnknownVal();
      
    case lval::ConcreteIntKind:

      if (isa<lval::ConcreteInt>(R)) {
        bool b = cast<lval::ConcreteInt>(L).getValue() ==
                 cast<lval::ConcreteInt>(R).getValue();
        
        return NonLVal::MakeIntTruthVal(BasicVals, b);
      }
      else if (isa<lval::SymbolVal>(R)) {
        
        const SymIntConstraint& C =
          BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
                               BinaryOperator::EQ,
                               cast<lval::ConcreteInt>(L).getValue());
        
        return nonlval::SymIntConstraintVal(C);
      }
      
      break;
      
    case lval::SymbolValKind: {

      if (isa<lval::ConcreteInt>(R)) {          
        const SymIntConstraint& C =
          BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
                               BinaryOperator::EQ,
                               cast<lval::ConcreteInt>(R).getValue());
        
        return nonlval::SymIntConstraintVal(C);
      }
      
      // FIXME: Implement == for lval Symbols.  This is mainly useful
      //  in iterator loops when traversing a buffer, e.g. while(z != zTerm).
      //  Since this is not useful for many checkers we'll punt on this for 
      //  now.
       
      return UnknownVal();      
    }
      
      // FIXME: Different offsets can map to the same memory cell.
    case lval::ArrayOffsetKind:
    case lval::FieldOffsetKind:
      // Fall-through.
      
    case lval::DeclValKind:
    case lval::FuncValKind:
    case lval::GotoLabelKind:
      return NonLVal::MakeIntTruthVal(BasicVals, L == R);
  }
  
  return NonLVal::MakeIntTruthVal(BasicVals, false);
}

RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) {
  
  BasicValueFactory& BasicVals = Eng.getBasicVals();

  switch (L.getSubKind()) {

    default:
      assert(false && "NE not implemented for this LVal.");
      return UnknownVal();
      
    case lval::ConcreteIntKind:
      
      if (isa<lval::ConcreteInt>(R)) {
        bool b = cast<lval::ConcreteInt>(L).getValue() !=
                 cast<lval::ConcreteInt>(R).getValue();
        
        return NonLVal::MakeIntTruthVal(BasicVals, b);
      }
      else if (isa<lval::SymbolVal>(R)) {        
        const SymIntConstraint& C =
          BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
                                  BinaryOperator::NE,
                                  cast<lval::ConcreteInt>(L).getValue());
        
        return nonlval::SymIntConstraintVal(C);
      }
      
      break;
      
    case lval::SymbolValKind: {
      if (isa<lval::ConcreteInt>(R)) {          
        const SymIntConstraint& C =
          BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
                                  BinaryOperator::NE,
                                  cast<lval::ConcreteInt>(R).getValue());
        
        return nonlval::SymIntConstraintVal(C);
      }
      
      // FIXME: Implement != for lval Symbols.  This is mainly useful
      //  in iterator loops when traversing a buffer, e.g. while(z != zTerm).
      //  Since this is not useful for many checkers we'll punt on this for 
      //  now.
      
      return UnknownVal();
      
      break;
    }
      
      // FIXME: Different offsets can map to the same memory cell.
    case lval::ArrayOffsetKind:
    case lval::FieldOffsetKind:
      // Fall-through.
      
    case lval::DeclValKind:
    case lval::FuncValKind:
    case lval::GotoLabelKind:
      return NonLVal::MakeIntTruthVal(BasicVals, L != R);
  }
  
  return NonLVal::MakeIntTruthVal(BasicVals, true);
}

//===----------------------------------------------------------------------===//
// Transfer function for function calls.
//===----------------------------------------------------------------------===//

void GRSimpleVals::EvalCall(ExplodedNodeSet<ValueState>& Dst,
                            GRExprEngine& Eng,
                            GRStmtNodeBuilder<ValueState>& Builder,
                            CallExpr* CE, RVal L,
                            ExplodedNode<ValueState>* Pred) {
  
  ValueStateManager& StateMgr = Eng.getStateManager();
  ValueState* St = Builder.GetState(Pred);
  
  // Invalidate all arguments passed in by reference (LVals).

  for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
        I != E; ++I) {

    RVal V = StateMgr.GetRVal(St, *I);
    
    if (isa<LVal>(V))
      St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
    else if (isa<nonlval::LValAsInteger>(V))
      St = StateMgr.SetRVal(St, cast<nonlval::LValAsInteger>(V).getLVal(),
                            UnknownVal());
    
  }
  
  // Make up a symbol for the return value of this function.
  
  if (CE->getType() != Eng.getContext().VoidTy) {    
    unsigned Count = Builder.getCurrentBlockCount();
    SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count);
        
    RVal X = LVal::IsLValType(CE->getType())
             ? cast<RVal>(lval::SymbolVal(Sym)) 
             : cast<RVal>(nonlval::SymbolVal(Sym));
    
    St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false);
  }  
    
  Builder.MakeNode(Dst, CE, Pred, St);
}

//===----------------------------------------------------------------------===//
// Transfer function for Objective-C message expressions.
//===----------------------------------------------------------------------===//

void GRSimpleVals::EvalObjCMessageExpr(ExplodedNodeSet<ValueState>& Dst,
                                       GRExprEngine& Eng,
                                       GRStmtNodeBuilder<ValueState>& Builder,
                                       ObjCMessageExpr* ME,
                                       ExplodedNode<ValueState>* Pred) {
  
  
  // The basic transfer function logic for message expressions does nothing.
  // We just invalidate all arguments passed in by references.
  
  ValueStateManager& StateMgr = Eng.getStateManager();
  ValueState* St = Builder.GetState(Pred);
  
  for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
       I != E; ++I) {
    
    RVal V = StateMgr.GetRVal(St, *I);
    
    if (isa<LVal>(V))
      St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
  }
  
  Builder.MakeNode(Dst, ME, Pred, St);
}