aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.cpp
blob: 595f70f819ddb518d01cf1a3ba2edbc3402cd21c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//===- TypeErasedDataflowAnalysis.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines type-erased base types and functions for building dataflow
//  analyses that run over Control-Flow Graphs (CFGs).
//
//===----------------------------------------------------------------------===//

#include <optional>
#include <system_error>
#include <utility>
#include <vector>

#include "clang/AST/ASTDumper.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Analysis/FlowSensitive/RecordOps.h"
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"

#define DEBUG_TYPE "clang-dataflow"

namespace clang {
namespace dataflow {

/// Returns the index of `Block` in the successors of `Pred`.
static int blockIndexInPredecessor(const CFGBlock &Pred,
                                   const CFGBlock &Block) {
  auto BlockPos = llvm::find_if(
      Pred.succs(), [&Block](const CFGBlock::AdjacentBlock &Succ) {
        return Succ && Succ->getBlockID() == Block.getBlockID();
      });
  return BlockPos - Pred.succ_begin();
}

// A "backedge" node is a block introduced in the CFG exclusively to indicate a
// loop backedge. They are exactly identified by the presence of a non-null
// pointer to the entry block of the loop condition. Note that this is not
// necessarily the block with the loop statement as terminator, because
// short-circuit operators will result in multiple blocks encoding the loop
// condition, only one of which will contain the loop statement as terminator.
static bool isBackedgeNode(const CFGBlock &B) {
  return B.getLoopTarget() != nullptr;
}

namespace {

/// Extracts the terminator's condition expression.
class TerminatorVisitor
    : public ConstStmtVisitor<TerminatorVisitor, const Expr *> {
public:
  TerminatorVisitor() = default;
  const Expr *VisitIfStmt(const IfStmt *S) { return S->getCond(); }
  const Expr *VisitWhileStmt(const WhileStmt *S) { return S->getCond(); }
  const Expr *VisitDoStmt(const DoStmt *S) { return S->getCond(); }
  const Expr *VisitForStmt(const ForStmt *S) { return S->getCond(); }
  const Expr *VisitCXXForRangeStmt(const CXXForRangeStmt *) {
    // Don't do anything special for CXXForRangeStmt, because the condition
    // (being implicitly generated) isn't visible from the loop body.
    return nullptr;
  }
  const Expr *VisitBinaryOperator(const BinaryOperator *S) {
    assert(S->getOpcode() == BO_LAnd || S->getOpcode() == BO_LOr);
    return S->getLHS();
  }
  const Expr *VisitConditionalOperator(const ConditionalOperator *S) {
    return S->getCond();
  }
};

/// Holds data structures required for running dataflow analysis.
struct AnalysisContext {
  AnalysisContext(const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
                  const Environment &InitEnv,
                  llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>>
                      BlockStates)
      : ACFG(ACFG), Analysis(Analysis), InitEnv(InitEnv),
        Log(*InitEnv.getDataflowAnalysisContext().getOptions().Log),
        BlockStates(BlockStates) {
    Log.beginAnalysis(ACFG, Analysis);
  }
  ~AnalysisContext() { Log.endAnalysis(); }

  /// Contains the CFG being analyzed.
  const AdornedCFG &ACFG;
  /// The analysis to be run.
  TypeErasedDataflowAnalysis &Analysis;
  /// Initial state to start the analysis.
  const Environment &InitEnv;
  Logger &Log;
  /// Stores the state of a CFG block if it has been evaluated by the analysis.
  /// The indices correspond to the block IDs.
  llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>> BlockStates;
};

class PrettyStackTraceAnalysis : public llvm::PrettyStackTraceEntry {
public:
  PrettyStackTraceAnalysis(const AdornedCFG &ACFG, const char *Message)
      : ACFG(ACFG), Message(Message) {}

  void print(raw_ostream &OS) const override {
    OS << Message << "\n";
    OS << "Decl:\n";
    ACFG.getDecl().dump(OS);
    OS << "CFG:\n";
    ACFG.getCFG().print(OS, LangOptions(), false);
  }

private:
  const AdornedCFG &ACFG;
  const char *Message;
};

class PrettyStackTraceCFGElement : public llvm::PrettyStackTraceEntry {
public:
  PrettyStackTraceCFGElement(const CFGElement &Element, int BlockIdx,
                             int ElementIdx, const char *Message)
      : Element(Element), BlockIdx(BlockIdx), ElementIdx(ElementIdx),
        Message(Message) {}

  void print(raw_ostream &OS) const override {
    OS << Message << ": Element [B" << BlockIdx << "." << ElementIdx << "]\n";
    if (auto Stmt = Element.getAs<CFGStmt>()) {
      OS << "Stmt:\n";
      ASTDumper Dumper(OS, false);
      Dumper.Visit(Stmt->getStmt());
    }
  }

private:
  const CFGElement &Element;
  int BlockIdx;
  int ElementIdx;
  const char *Message;
};

// Builds a joined TypeErasedDataflowAnalysisState from 0 or more sources,
// each of which may be owned (built as part of the join) or external (a
// reference to an Environment that will outlive the builder).
// Avoids unneccesary copies of the environment.
class JoinedStateBuilder {
  AnalysisContext &AC;
  Environment::ExprJoinBehavior JoinBehavior;
  std::vector<const TypeErasedDataflowAnalysisState *> All;
  std::deque<TypeErasedDataflowAnalysisState> Owned;

  TypeErasedDataflowAnalysisState
  join(const TypeErasedDataflowAnalysisState &L,
       const TypeErasedDataflowAnalysisState &R) {
    return {AC.Analysis.joinTypeErased(L.Lattice, R.Lattice),
            Environment::join(L.Env, R.Env, AC.Analysis, JoinBehavior)};
  }

public:
  JoinedStateBuilder(AnalysisContext &AC,
                     Environment::ExprJoinBehavior JoinBehavior)
      : AC(AC), JoinBehavior(JoinBehavior) {}

  void addOwned(TypeErasedDataflowAnalysisState State) {
    Owned.push_back(std::move(State));
    All.push_back(&Owned.back());
  }
  void addUnowned(const TypeErasedDataflowAnalysisState &State) {
    All.push_back(&State);
  }
  TypeErasedDataflowAnalysisState take() && {
    if (All.empty())
      // FIXME: Consider passing `Block` to Analysis.typeErasedInitialElement
      // to enable building analyses like computation of dominators that
      // initialize the state of each basic block differently.
      return {AC.Analysis.typeErasedInitialElement(), AC.InitEnv.fork()};
    if (All.size() == 1)
      // Join the environment with itself so that we discard expression state if
      // desired.
      // FIXME: We could consider writing special-case code for this that only
      // does the discarding, but it's not clear if this is worth it.
      return {All[0]->Lattice, Environment::join(All[0]->Env, All[0]->Env,
                                                 AC.Analysis, JoinBehavior)};

    auto Result = join(*All[0], *All[1]);
    for (unsigned I = 2; I < All.size(); ++I)
      Result = join(Result, *All[I]);
    return Result;
  }
};
} // namespace

static const Expr *getTerminatorCondition(const Stmt *TerminatorStmt) {
  return TerminatorStmt == nullptr ? nullptr
                                   : TerminatorVisitor().Visit(TerminatorStmt);
}

/// Computes the input state for a given basic block by joining the output
/// states of its predecessors.
///
/// Requirements:
///
///   All predecessors of `Block` except those with loop back edges must have
///   already been transferred. States in `AC.BlockStates` that are set to
///   `std::nullopt` represent basic blocks that are not evaluated yet.
static TypeErasedDataflowAnalysisState
computeBlockInputState(const CFGBlock &Block, AnalysisContext &AC) {
  std::vector<const CFGBlock *> Preds(Block.pred_begin(), Block.pred_end());
  if (Block.getTerminator().isTemporaryDtorsBranch()) {
    // This handles a special case where the code that produced the CFG includes
    // a conditional operator with a branch that constructs a temporary and
    // calls a destructor annotated as noreturn. The CFG models this as follows:
    //
    // B1 (contains the condition of the conditional operator) - succs: B2, B3
    // B2 (contains code that does not call a noreturn destructor) - succs: B4
    // B3 (contains code that calls a noreturn destructor) - succs: B4
    // B4 (has temporary destructor terminator) - succs: B5, B6
    // B5 (noreturn block that is associated with the noreturn destructor call)
    // B6 (contains code that follows the conditional operator statement)
    //
    // The first successor (B5 above) of a basic block with a temporary
    // destructor terminator (B4 above) is the block that evaluates the
    // destructor. If that block has a noreturn element then the predecessor
    // block that constructed the temporary object (B3 above) is effectively a
    // noreturn block and its state should not be used as input for the state
    // of the block that has a temporary destructor terminator (B4 above). This
    // holds regardless of which branch of the ternary operator calls the
    // noreturn destructor. However, it doesn't cases where a nested ternary
    // operator includes a branch that contains a noreturn destructor call.
    //
    // See `NoreturnDestructorTest` for concrete examples.
    if (Block.succ_begin()->getReachableBlock() != nullptr &&
        Block.succ_begin()->getReachableBlock()->hasNoReturnElement()) {
      auto &StmtToBlock = AC.ACFG.getStmtToBlock();
      auto StmtBlock = StmtToBlock.find(Block.getTerminatorStmt());
      assert(StmtBlock != StmtToBlock.end());
      llvm::erase(Preds, StmtBlock->getSecond());
    }
  }

  // If any of the predecessor blocks contains an expression consumed in a
  // different block, we need to keep expression state.
  // Note that in this case, we keep expression state for all predecessors,
  // rather than only those predecessors that actually contain an expression
  // consumed in a different block. While this is potentially suboptimal, it's
  // actually likely, if we have control flow within a full expression, that
  // all predecessors have expression state consumed in a different block.
  Environment::ExprJoinBehavior JoinBehavior = Environment::DiscardExprState;
  for (const CFGBlock *Pred : Preds) {
    if (Pred && AC.ACFG.containsExprConsumedInDifferentBlock(*Pred)) {
      JoinBehavior = Environment::KeepExprState;
      break;
    }
  }

  JoinedStateBuilder Builder(AC, JoinBehavior);
  for (const CFGBlock *Pred : Preds) {
    // Skip if the `Block` is unreachable or control flow cannot get past it.
    if (!Pred || Pred->hasNoReturnElement())
      continue;

    // Skip if `Pred` was not evaluated yet. This could happen if `Pred` has a
    // loop back edge to `Block`.
    const std::optional<TypeErasedDataflowAnalysisState> &MaybePredState =
        AC.BlockStates[Pred->getBlockID()];
    if (!MaybePredState)
      continue;

    const TypeErasedDataflowAnalysisState &PredState = *MaybePredState;
    const Expr *Cond = getTerminatorCondition(Pred->getTerminatorStmt());
    if (Cond == nullptr) {
      Builder.addUnowned(PredState);
      continue;
    }

    bool BranchVal = blockIndexInPredecessor(*Pred, Block) == 0;

    // `transferBranch` may need to mutate the environment to describe the
    // dynamic effect of the terminator for a given branch.  Copy now.
    TypeErasedDataflowAnalysisState Copy = MaybePredState->fork();
    if (AC.Analysis.builtinOptions()) {
      auto *CondVal = Copy.Env.get<BoolValue>(*Cond);
      // In transferCFGBlock(), we ensure that we always have a `Value`
      // for the terminator condition, so assert this. We consciously
      // assert ourselves instead of asserting via `cast()` so that we get
      // a more meaningful line number if the assertion fails.
      assert(CondVal != nullptr);
      BoolValue *AssertedVal =
          BranchVal ? CondVal : &Copy.Env.makeNot(*CondVal);
      Copy.Env.assume(AssertedVal->formula());
    }
    AC.Analysis.transferBranchTypeErased(BranchVal, Cond, Copy.Lattice,
                                         Copy.Env);
    Builder.addOwned(std::move(Copy));
  }
  return std::move(Builder).take();
}

/// Built-in transfer function for `CFGStmt`.
static void
builtinTransferStatement(unsigned CurBlockID, const CFGStmt &Elt,
                         TypeErasedDataflowAnalysisState &InputState,
                         AnalysisContext &AC) {
  const Stmt *S = Elt.getStmt();
  assert(S != nullptr);
  transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, CurBlockID, InputState), *S,
           InputState.Env);
}

/// Built-in transfer function for `CFGInitializer`.
static void
builtinTransferInitializer(const CFGInitializer &Elt,
                           TypeErasedDataflowAnalysisState &InputState) {
  const CXXCtorInitializer *Init = Elt.getInitializer();
  assert(Init != nullptr);

  auto &Env = InputState.Env;
  auto &ThisLoc = *Env.getThisPointeeStorageLocation();

  if (!Init->isAnyMemberInitializer())
    // FIXME: Handle base initialization
    return;

  auto *InitExpr = Init->getInit();
  assert(InitExpr != nullptr);

  const FieldDecl *Member = nullptr;
  RecordStorageLocation *ParentLoc = &ThisLoc;
  StorageLocation *MemberLoc = nullptr;
  if (Init->isMemberInitializer()) {
    Member = Init->getMember();
    MemberLoc = ThisLoc.getChild(*Member);
  } else {
    IndirectFieldDecl *IndirectField = Init->getIndirectMember();
    assert(IndirectField != nullptr);
    MemberLoc = &ThisLoc;
    for (const auto *I : IndirectField->chain()) {
      Member = cast<FieldDecl>(I);
      ParentLoc = cast<RecordStorageLocation>(MemberLoc);
      MemberLoc = ParentLoc->getChild(*Member);
    }
  }
  assert(Member != nullptr);

  // FIXME: Instead of these case distinctions, we would ideally want to be able
  // to simply use `Environment::createObject()` here, the same way that we do
  // this in `TransferVisitor::VisitInitListExpr()`. However, this would require
  // us to be able to build a list of fields that we then use to initialize an
  // `RecordStorageLocation` -- and the problem is that, when we get here,
  // the `RecordStorageLocation` already exists. We should explore if there's
  // anything that we can do to change this.
  if (Member->getType()->isReferenceType()) {
    auto *InitExprLoc = Env.getStorageLocation(*InitExpr);
    if (InitExprLoc == nullptr)
      return;

    ParentLoc->setChild(*Member, InitExprLoc);
  } else if (auto *InitExprVal = Env.getValue(*InitExpr)) {
    assert(MemberLoc != nullptr);
    if (Member->getType()->isRecordType()) {
      auto *InitValStruct = cast<RecordValue>(InitExprVal);
      // FIXME: Rather than performing a copy here, we should really be
      // initializing the field in place. This would require us to propagate the
      // storage location of the field to the AST node that creates the
      // `RecordValue`.
      copyRecord(InitValStruct->getLoc(),
                 *cast<RecordStorageLocation>(MemberLoc), Env);
    } else {
      Env.setValue(*MemberLoc, *InitExprVal);
    }
  }
}

static void builtinTransfer(unsigned CurBlockID, const CFGElement &Elt,
                            TypeErasedDataflowAnalysisState &State,
                            AnalysisContext &AC) {
  switch (Elt.getKind()) {
  case CFGElement::Statement:
    builtinTransferStatement(CurBlockID, Elt.castAs<CFGStmt>(), State, AC);
    break;
  case CFGElement::Initializer:
    builtinTransferInitializer(Elt.castAs<CFGInitializer>(), State);
    break;
  case CFGElement::LifetimeEnds:
    // Removing declarations when their lifetime ends serves two purposes:
    // - Eliminate unnecessary clutter from `Environment::DeclToLoc`
    // - Allow us to assert that, when joining two `Environment`s, the two
    //   `DeclToLoc` maps never contain entries that map the same declaration to
    //   different storage locations.
    if (const ValueDecl *VD = Elt.castAs<CFGLifetimeEnds>().getVarDecl())
      State.Env.removeDecl(*VD);
    break;
  default:
    // FIXME: Evaluate other kinds of `CFGElement`
    break;
  }
}

/// Transfers `State` by evaluating each element in the `Block` based on the
/// `AC.Analysis` specified.
///
/// Built-in transfer functions (if the option for `ApplyBuiltinTransfer` is set
/// by the analysis) will be applied to the element before evaluation by the
/// user-specified analysis.
/// `PostVisitCFG` (if provided) will be applied to the element after evaluation
/// by the user-specified analysis.
static TypeErasedDataflowAnalysisState
transferCFGBlock(const CFGBlock &Block, AnalysisContext &AC,
                 std::function<void(const CFGElement &,
                                    const TypeErasedDataflowAnalysisState &)>
                     PostVisitCFG = nullptr) {
  AC.Log.enterBlock(Block, PostVisitCFG != nullptr);
  auto State = computeBlockInputState(Block, AC);
  AC.Log.recordState(State);
  int ElementIdx = 1;
  for (const auto &Element : Block) {
    PrettyStackTraceCFGElement CrashInfo(Element, Block.getBlockID(),
                                         ElementIdx++, "transferCFGBlock");

    AC.Log.enterElement(Element);
    // Built-in analysis
    if (AC.Analysis.builtinOptions()) {
      builtinTransfer(Block.getBlockID(), Element, State, AC);
    }

    // User-provided analysis
    AC.Analysis.transferTypeErased(Element, State.Lattice, State.Env);

    // Post processing
    if (PostVisitCFG) {
      PostVisitCFG(Element, State);
    }
    AC.Log.recordState(State);
  }

  // If we have a terminator, evaluate its condition.
  // This `Expr` may not appear as a `CFGElement` anywhere else, and it's
  // important that we evaluate it here (rather than while processing the
  // terminator) so that we put the corresponding value in the right
  // environment.
  if (const Expr *TerminatorCond =
          dyn_cast_or_null<Expr>(Block.getTerminatorCondition())) {
    if (State.Env.getValue(*TerminatorCond) == nullptr)
      // FIXME: This only runs the builtin transfer, not the analysis-specific
      // transfer. Fixing this isn't trivial, as the analysis-specific transfer
      // takes a `CFGElement` as input, but some expressions only show up as a
      // terminator condition, but not as a `CFGElement`. The condition of an if
      // statement is one such example.
      transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, Block.getBlockID(), State),
               *TerminatorCond, State.Env);

    // If the transfer function didn't produce a value, create an atom so that
    // we have *some* value for the condition expression. This ensures that
    // when we extend the flow condition, it actually changes.
    if (State.Env.getValue(*TerminatorCond) == nullptr)
      State.Env.setValue(*TerminatorCond, State.Env.makeAtomicBoolValue());
    AC.Log.recordState(State);
  }

  return State;
}

llvm::Expected<std::vector<std::optional<TypeErasedDataflowAnalysisState>>>
runTypeErasedDataflowAnalysis(
    const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
    const Environment &InitEnv,
    std::function<void(const CFGElement &,
                       const TypeErasedDataflowAnalysisState &)>
        PostVisitCFG,
    std::int32_t MaxBlockVisits) {
  PrettyStackTraceAnalysis CrashInfo(ACFG, "runTypeErasedDataflowAnalysis");

  std::optional<Environment> MaybeStartingEnv;
  if (InitEnv.callStackSize() == 1) {
    MaybeStartingEnv = InitEnv.fork();
    MaybeStartingEnv->initialize();
  }
  const Environment &StartingEnv =
      MaybeStartingEnv ? *MaybeStartingEnv : InitEnv;

  const clang::CFG &CFG = ACFG.getCFG();
  PostOrderCFGView POV(&CFG);
  ForwardDataflowWorklist Worklist(CFG, &POV);

  std::vector<std::optional<TypeErasedDataflowAnalysisState>> BlockStates(
      CFG.size());

  // The entry basic block doesn't contain statements so it can be skipped.
  const CFGBlock &Entry = CFG.getEntry();
  BlockStates[Entry.getBlockID()] = {Analysis.typeErasedInitialElement(),
                                     StartingEnv.fork()};
  Worklist.enqueueSuccessors(&Entry);

  AnalysisContext AC(ACFG, Analysis, StartingEnv, BlockStates);
  std::int32_t BlockVisits = 0;
  while (const CFGBlock *Block = Worklist.dequeue()) {
    LLVM_DEBUG(llvm::dbgs()
               << "Processing Block " << Block->getBlockID() << "\n");
    if (++BlockVisits > MaxBlockVisits) {
      return llvm::createStringError(std::errc::timed_out,
                                     "maximum number of blocks processed");
    }

    const std::optional<TypeErasedDataflowAnalysisState> &OldBlockState =
        BlockStates[Block->getBlockID()];
    TypeErasedDataflowAnalysisState NewBlockState =
        transferCFGBlock(*Block, AC);
    LLVM_DEBUG({
      llvm::errs() << "New Env:\n";
      NewBlockState.Env.dump();
    });

    if (OldBlockState) {
      LLVM_DEBUG({
        llvm::errs() << "Old Env:\n";
        OldBlockState->Env.dump();
      });
      if (isBackedgeNode(*Block)) {
        LatticeJoinEffect Effect1 = Analysis.widenTypeErased(
            NewBlockState.Lattice, OldBlockState->Lattice);
        LatticeJoinEffect Effect2 =
            NewBlockState.Env.widen(OldBlockState->Env, Analysis);
        if (Effect1 == LatticeJoinEffect::Unchanged &&
            Effect2 == LatticeJoinEffect::Unchanged) {
          // The state of `Block` didn't change from widening so there's no need
          // to revisit its successors.
          AC.Log.blockConverged();
          continue;
        }
      } else if (Analysis.isEqualTypeErased(OldBlockState->Lattice,
                                            NewBlockState.Lattice) &&
                 OldBlockState->Env.equivalentTo(NewBlockState.Env, Analysis)) {
        // The state of `Block` didn't change after transfer so there's no need
        // to revisit its successors.
        AC.Log.blockConverged();
        continue;
      }
    }

    BlockStates[Block->getBlockID()] = std::move(NewBlockState);

    // Do not add unreachable successor blocks to `Worklist`.
    if (Block->hasNoReturnElement())
      continue;

    Worklist.enqueueSuccessors(Block);
  }
  // FIXME: Consider evaluating unreachable basic blocks (those that have a
  // state set to `std::nullopt` at this point) to also analyze dead code.

  if (PostVisitCFG) {
    for (const CFGBlock *Block : ACFG.getCFG()) {
      // Skip blocks that were not evaluated.
      if (!BlockStates[Block->getBlockID()])
        continue;
      transferCFGBlock(*Block, AC, PostVisitCFG);
    }
  }

  return std::move(BlockStates);
}

} // namespace dataflow
} // namespace clang