aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/AST/Interp/Interp.cpp
blob: 4f3cd6cd21a15184f56de3df592da5fc70941944 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
//===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Interp.h"
#include "Function.h"
#include "InterpFrame.h"
#include "InterpShared.h"
#include "InterpStack.h"
#include "Opcode.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "llvm/ADT/APSInt.h"
#include <limits>
#include <vector>

using namespace clang;

using namespace clang;
using namespace clang::interp;

static bool RetValue(InterpState &S, CodePtr &Pt, APValue &Result) {
  llvm::report_fatal_error("Interpreter cannot return values");
}

//===----------------------------------------------------------------------===//
// Jmp, Jt, Jf
//===----------------------------------------------------------------------===//

static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) {
  PC += Offset;
  return true;
}

static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) {
  if (S.Stk.pop<bool>()) {
    PC += Offset;
  }
  return true;
}

static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) {
  if (!S.Stk.pop<bool>()) {
    PC += Offset;
  }
  return true;
}

static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
                                     const ValueDecl *VD) {
  if (!S.getLangOpts().CPlusPlus)
    return;

  const SourceInfo &Loc = S.Current->getSource(OpPC);

  if (VD->getType()->isIntegralOrEnumerationType())
    S.FFDiag(Loc, diag::note_constexpr_ltor_non_const_int, 1) << VD;
  else
    S.FFDiag(Loc,
             S.getLangOpts().CPlusPlus11
                 ? diag::note_constexpr_ltor_non_constexpr
                 : diag::note_constexpr_ltor_non_integral,
             1)
        << VD << VD->getType();
  S.Note(VD->getLocation(), diag::note_declared_at);
}

static bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                        AccessKinds AK) {
  if (Ptr.isActive())
    return true;

  // Get the inactive field descriptor.
  const FieldDecl *InactiveField = Ptr.getField();

  // Walk up the pointer chain to find the union which is not active.
  Pointer U = Ptr.getBase();
  while (!U.isActive()) {
    U = U.getBase();
  }

  // Find the active field of the union.
  const Record *R = U.getRecord();
  assert(R && R->isUnion() && "Not a union");
  const FieldDecl *ActiveField = nullptr;
  for (unsigned I = 0, N = R->getNumFields(); I < N; ++I) {
    const Pointer &Field = U.atField(R->getField(I)->Offset);
    if (Field.isActive()) {
      ActiveField = Field.getField();
      break;
    }
  }

  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_access_inactive_union_member)
      << AK << InactiveField << !ActiveField << ActiveField;
  return false;
}

static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                           AccessKinds AK) {
  if (auto ID = Ptr.getDeclID()) {
    if (!Ptr.isStaticTemporary())
      return true;

    if (Ptr.getDeclDesc()->getType().isConstQualified())
      return true;

    if (S.P.getCurrentDecl() == ID)
      return true;

    const SourceInfo &E = S.Current->getSource(OpPC);
    S.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
    S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
    return false;
  }
  return true;
}

static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (auto ID = Ptr.getDeclID()) {
    if (!Ptr.isStatic())
      return true;

    if (S.P.getCurrentDecl() == ID)
      return true;

    S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_modify_global);
    return false;
  }
  return true;
}

namespace clang {
namespace interp {
static void popArg(InterpState &S, const Expr *Arg) {
  PrimType Ty = S.getContext().classify(Arg).value_or(PT_Ptr);
  TYPE_SWITCH(Ty, S.Stk.discard<T>());
}

void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC) {
  assert(S.Current);
  const Function *CurFunc = S.Current->getFunction();
  assert(CurFunc);

  if (CurFunc->isUnevaluatedBuiltin())
    return;

  // Some builtin functions require us to only look at the call site, since
  // the classified parameter types do not match.
  if (CurFunc->isBuiltin()) {
    const auto *CE =
        cast<CallExpr>(S.Current->Caller->getExpr(S.Current->getRetPC()));
    for (int32_t I = CE->getNumArgs() - 1; I >= 0; --I) {
      const Expr *A = CE->getArg(I);
      popArg(S, A);
    }
    return;
  }

  if (S.Current->Caller && CurFunc->isVariadic()) {
    // CallExpr we're look for is at the return PC of the current function, i.e.
    // in the caller.
    // This code path should be executed very rarely.
    unsigned NumVarArgs;
    const Expr *const *Args = nullptr;
    unsigned NumArgs = 0;
    const Expr *CallSite = S.Current->Caller->getExpr(S.Current->getRetPC());
    if (const auto *CE = dyn_cast<CallExpr>(CallSite)) {
      Args = CE->getArgs();
      NumArgs = CE->getNumArgs();
    } else if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) {
      Args = CE->getArgs();
      NumArgs = CE->getNumArgs();
    } else
      assert(false && "Can't get arguments from that expression type");

    assert(NumArgs >= CurFunc->getNumWrittenParams());
    NumVarArgs = NumArgs - CurFunc->getNumWrittenParams();
    for (unsigned I = 0; I != NumVarArgs; ++I) {
      const Expr *A = Args[NumArgs - 1 - I];
      popArg(S, A);
    }
  }

  // And in any case, remove the fixed parameters (the non-variadic ones)
  // at the end.
  S.Current->popArgs();
}

bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!Ptr.isExtern())
    return true;

  if (!S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus) {
    const auto *VD = Ptr.getDeclDesc()->asValueDecl();
    diagnoseNonConstVariable(S, OpPC, VD);
  }
  return false;
}

bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!Ptr.isUnknownSizeArray())
    return true;
  const SourceInfo &E = S.Current->getSource(OpPC);
  S.FFDiag(E, diag::note_constexpr_unsized_array_indexed);
  return false;
}

bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
               AccessKinds AK) {
  if (Ptr.isZero()) {
    const auto &Src = S.Current->getSource(OpPC);

    if (Ptr.isField())
      S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field;
    else
      S.FFDiag(Src, diag::note_constexpr_access_null) << AK;

    return false;
  }

  if (!Ptr.isLive()) {
    const auto &Src = S.Current->getSource(OpPC);
    bool IsTemp = Ptr.isTemporary();

    S.FFDiag(Src, diag::note_constexpr_lifetime_ended, 1) << AK << !IsTemp;

    if (IsTemp)
      S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
    else
      S.Note(Ptr.getDeclLoc(), diag::note_declared_at);

    return false;
  }

  return true;
}

bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) {
  assert(Desc);

  auto IsConstType = [&S](const VarDecl *VD) -> bool {
    if (VD->isConstexpr())
      return true;

    if (S.getLangOpts().CPlusPlus && !S.getLangOpts().CPlusPlus11)
      return false;

    QualType T = VD->getType();
    if (T.isConstQualified())
      return true;

    if (const auto *RT = T->getAs<ReferenceType>())
      return RT->getPointeeType().isConstQualified();

    if (const auto *PT = T->getAs<PointerType>())
      return PT->getPointeeType().isConstQualified();

    return false;
  };

  if (const auto *D = Desc->asValueDecl()) {
    if (const auto *VD = dyn_cast<VarDecl>(D);
        VD && VD->hasGlobalStorage() && !IsConstType(VD)) {
      diagnoseNonConstVariable(S, OpPC, VD);
      return S.inConstantContext();
    }
  }

  return true;
}

static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  return CheckConstant(S, OpPC, Ptr.getDeclDesc());
}

bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
               CheckSubobjectKind CSK) {
  if (!Ptr.isZero())
    return true;
  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_null_subobject) << CSK;
  return false;
}

bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                AccessKinds AK) {
  if (!Ptr.isOnePastEnd())
    return true;
  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_access_past_end) << AK;
  return false;
}

bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                CheckSubobjectKind CSK) {
  if (!Ptr.isElementPastEnd())
    return true;
  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_past_end_subobject) << CSK;
  return false;
}

bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                    CheckSubobjectKind CSK) {
  if (!Ptr.isOnePastEnd())
    return true;

  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_past_end_subobject) << CSK;
  return false;
}

bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  assert(Ptr.isLive() && "Pointer is not live");
  if (!Ptr.isConst())
    return true;

  // The This pointer is writable in constructors and destructors,
  // even if isConst() returns true.
  if (const Function *Func = S.Current->getFunction();
      Func && (Func->isConstructor() || Func->isDestructor()) &&
      Ptr.block() == S.Current->getThis().block()) {
    return true;
  }

  const QualType Ty = Ptr.getType();
  const SourceInfo &Loc = S.Current->getSource(OpPC);
  S.FFDiag(Loc, diag::note_constexpr_modify_const_type) << Ty;
  return false;
}

bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  assert(Ptr.isLive() && "Pointer is not live");
  if (!Ptr.isMutable()) {
    return true;
  }

  const SourceInfo &Loc = S.Current->getSource(OpPC);
  const FieldDecl *Field = Ptr.getField();
  S.FFDiag(Loc, diag::note_constexpr_access_mutable, 1) << AK_Read << Field;
  S.Note(Field->getLocation(), diag::note_declared_at);
  return false;
}

bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
                      AccessKinds AK) {
  assert(Ptr.isLive());

  if (Ptr.isInitialized())
    return true;

  if (const auto *VD = Ptr.getDeclDesc()->asVarDecl();
      VD && VD->hasGlobalStorage()) {
    const SourceInfo &Loc = S.Current->getSource(OpPC);
    S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
    S.Note(VD->getLocation(), diag::note_declared_at);
  }
  if (!S.checkingPotentialConstantExpression()) {
    S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit)
        << AK << /*uninitialized=*/true << S.Current->getRange(OpPC);
  }
  return false;
}

bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (Ptr.isInitialized())
    return true;

  assert(S.getLangOpts().CPlusPlus);
  const auto *VD = cast<VarDecl>(Ptr.getDeclDesc()->asValueDecl());
  if ((!VD->hasConstantInitialization() &&
       VD->mightBeUsableInConstantExpressions(S.getCtx())) ||
      (S.getLangOpts().OpenCL && !S.getLangOpts().CPlusPlus11 &&
       !VD->hasICEInitializer(S.getCtx()))) {
    const SourceInfo &Loc = S.Current->getSource(OpPC);
    S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
    S.Note(VD->getLocation(), diag::note_declared_at);
  }
  return false;
}

bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!CheckLive(S, OpPC, Ptr, AK_Read))
    return false;
  if (!CheckConstant(S, OpPC, Ptr))
    return false;

  if (!CheckDummy(S, OpPC, Ptr))
    return false;
  if (!CheckExtern(S, OpPC, Ptr))
    return false;
  if (!CheckRange(S, OpPC, Ptr, AK_Read))
    return false;
  if (!CheckInitialized(S, OpPC, Ptr, AK_Read))
    return false;
  if (!CheckActive(S, OpPC, Ptr, AK_Read))
    return false;
  if (!CheckTemporary(S, OpPC, Ptr, AK_Read))
    return false;
  if (!CheckMutable(S, OpPC, Ptr))
    return false;
  return true;
}

bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!CheckLive(S, OpPC, Ptr, AK_Assign))
    return false;
  if (!CheckDummy(S, OpPC, Ptr))
    return false;
  if (!CheckExtern(S, OpPC, Ptr))
    return false;
  if (!CheckRange(S, OpPC, Ptr, AK_Assign))
    return false;
  if (!CheckGlobal(S, OpPC, Ptr))
    return false;
  if (!CheckConst(S, OpPC, Ptr))
    return false;
  return true;
}

bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!CheckLive(S, OpPC, Ptr, AK_MemberCall))
    return false;
  if (!CheckExtern(S, OpPC, Ptr))
    return false;
  if (!CheckRange(S, OpPC, Ptr, AK_MemberCall))
    return false;
  return true;
}

bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!CheckLive(S, OpPC, Ptr, AK_Assign))
    return false;
  if (!CheckRange(S, OpPC, Ptr, AK_Assign))
    return false;
  return true;
}

bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) {

  if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) {
    const SourceLocation &Loc = S.Current->getLocation(OpPC);
    S.CCEDiag(Loc, diag::note_constexpr_virtual_call);
    return false;
  }

  if (!F->isConstexpr()) {
    const SourceLocation &Loc = S.Current->getLocation(OpPC);
    if (S.getLangOpts().CPlusPlus11) {
      const FunctionDecl *DiagDecl = F->getDecl();

      // Invalid decls have been diagnosed before.
      if (DiagDecl->isInvalidDecl())
        return false;

      // If this function is not constexpr because it is an inherited
      // non-constexpr constructor, diagnose that directly.
      const auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
      if (CD && CD->isInheritingConstructor()) {
        const auto *Inherited = CD->getInheritedConstructor().getConstructor();
        if (!Inherited->isConstexpr())
          DiagDecl = CD = Inherited;
      }

      // FIXME: If DiagDecl is an implicitly-declared special member function
      // or an inheriting constructor, we should be much more explicit about why
      // it's not constexpr.
      if (CD && CD->isInheritingConstructor()) {
        S.FFDiag(Loc, diag::note_constexpr_invalid_inhctor, 1)
          << CD->getInheritedConstructor().getConstructor()->getParent();
        S.Note(DiagDecl->getLocation(), diag::note_declared_at);
      } else {
        // Don't emit anything if the function isn't defined and we're checking
        // for a constant expression. It might be defined at the point we're
        // actually calling it.
        if (!DiagDecl->isDefined() && S.checkingPotentialConstantExpression())
          return false;

        // If the declaration is defined _and_ declared 'constexpr', the below
        // diagnostic doesn't add anything useful.
        if (DiagDecl->isDefined() && DiagDecl->isConstexpr())
          return false;

        S.FFDiag(Loc, diag::note_constexpr_invalid_function, 1)
          << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
        S.Note(DiagDecl->getLocation(), diag::note_declared_at);
      }
    } else {
      S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
    }
    return false;
  }

  return true;
}

bool CheckCallDepth(InterpState &S, CodePtr OpPC) {
  if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) {
    S.FFDiag(S.Current->getSource(OpPC),
             diag::note_constexpr_depth_limit_exceeded)
        << S.getLangOpts().ConstexprCallDepth;
    return false;
  }

  return true;
}

bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) {
  if (!This.isZero())
    return true;

  const SourceInfo &Loc = S.Current->getSource(OpPC);

  bool IsImplicit = false;
  if (const auto *E = dyn_cast_if_present<CXXThisExpr>(Loc.asExpr()))
    IsImplicit = E->isImplicit();

  if (S.getLangOpts().CPlusPlus11)
    S.FFDiag(Loc, diag::note_constexpr_this) << IsImplicit;
  else
    S.FFDiag(Loc);

  return false;
}

bool CheckPure(InterpState &S, CodePtr OpPC, const CXXMethodDecl *MD) {
  if (!MD->isPureVirtual())
    return true;
  const SourceInfo &E = S.Current->getSource(OpPC);
  S.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << MD;
  S.Note(MD->getLocation(), diag::note_declared_at);
  return false;
}

bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result,
                      APFloat::opStatus Status) {
  const SourceInfo &E = S.Current->getSource(OpPC);

  // [expr.pre]p4:
  //   If during the evaluation of an expression, the result is not
  //   mathematically defined [...], the behavior is undefined.
  // FIXME: C++ rules require us to not conform to IEEE 754 here.
  if (Result.isNan()) {
    S.CCEDiag(E, diag::note_constexpr_float_arithmetic)
        << /*NaN=*/true << S.Current->getRange(OpPC);
    return S.noteUndefinedBehavior();
  }

  // In a constant context, assume that any dynamic rounding mode or FP
  // exception state matches the default floating-point environment.
  if (S.inConstantContext())
    return true;

  FPOptions FPO = E.asExpr()->getFPFeaturesInEffect(S.Ctx.getLangOpts());

  if ((Status & APFloat::opInexact) &&
      FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
    // Inexact result means that it depends on rounding mode. If the requested
    // mode is dynamic, the evaluation cannot be made in compile time.
    S.FFDiag(E, diag::note_constexpr_dynamic_rounding);
    return false;
  }

  if ((Status != APFloat::opOK) &&
      (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
       FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
       FPO.getAllowFEnvAccess())) {
    S.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
    return false;
  }

  if ((Status & APFloat::opStatus::opInvalidOp) &&
      FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
    // There is no usefully definable result.
    S.FFDiag(E);
    return false;
  }

  return true;
}

static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC,
                                const ValueDecl *D) {
  const SourceInfo &E = S.Current->getSource(OpPC);

  if (isa<ParmVarDecl>(D)) {
    if (S.getLangOpts().CPlusPlus11) {
      S.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << D;
      S.Note(D->getLocation(), diag::note_declared_at) << D->getSourceRange();
    } else {
      S.FFDiag(E);
    }
  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
    if (!VD->getType().isConstQualified()) {
      diagnoseNonConstVariable(S, OpPC, VD);
      return false;
    }

    // const, but no initializer.
    if (!VD->getAnyInitializer()) {
      S.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) << VD;
      S.Note(VD->getLocation(), diag::note_declared_at) << VD->getSourceRange();
      return false;
    }
  }
  return false;
}

/// We aleady know the given DeclRefExpr is invalid for some reason,
/// now figure out why and print appropriate diagnostics.
bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) {
  const ValueDecl *D = DR->getDecl();
  return diagnoseUnknownDecl(S, OpPC, D);
}

bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
  if (!Ptr.isDummy())
    return true;

  const Descriptor *Desc = Ptr.getDeclDesc();
  const ValueDecl *D = Desc->asValueDecl();
  if (!D)
    return false;

  return diagnoseUnknownDecl(S, OpPC, D);
}

bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F,
                      const CallExpr *CE, unsigned ArgSize) {
  auto Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
  auto NonNullArgs = collectNonNullArgs(F->getDecl(), Args);
  unsigned Offset = 0;
  unsigned Index = 0;
  for (const Expr *Arg : Args) {
    if (NonNullArgs[Index] && Arg->getType()->isPointerType()) {
      const Pointer &ArgPtr = S.Stk.peek<Pointer>(ArgSize - Offset);
      if (ArgPtr.isZero()) {
        const SourceLocation &Loc = S.Current->getLocation(OpPC);
        S.CCEDiag(Loc, diag::note_non_null_attribute_failed);
        return false;
      }
    }

    Offset += align(primSize(S.Ctx.classify(Arg).value_or(PT_Ptr)));
    ++Index;
  }
  return true;
}

bool Interpret(InterpState &S, APValue &Result) {
  // The current stack frame when we started Interpret().
  // This is being used by the ops to determine wheter
  // to return from this function and thus terminate
  // interpretation.
  const InterpFrame *StartFrame = S.Current;
  assert(!S.Current->isRoot());
  CodePtr PC = S.Current->getPC();

  // Empty program.
  if (!PC)
    return true;

  for (;;) {
    auto Op = PC.read<Opcode>();
    CodePtr OpPC = PC;

    switch (Op) {
#define GET_INTERP
#include "Opcodes.inc"
#undef GET_INTERP
    }
  }
}

} // namespace interp
} // namespace clang