aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/AST/CFG.cpp
blob: aa5bbe437dafb500ef29ae0667039c38fec59c3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the CFG and CFGBuilder classes for representing and
//  building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/PrettyPrinter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/Compiler.h"
#include <llvm/Support/Allocator.h>
#include <iomanip>
#include <algorithm>
#include <sstream>

using namespace clang;

namespace {

// SaveAndRestore - A utility class that uses RIIA to save and restore
//  the value of a variable.
template<typename T>
struct VISIBILITY_HIDDEN SaveAndRestore {
  SaveAndRestore(T& x) : X(x), old_value(x) {}
  ~SaveAndRestore() { X = old_value; }
  T get() { return old_value; }

  T& X;
  T old_value;
};
  
/// CFGBuilder - This class is implements CFG construction from an AST.
///   The builder is stateful: an instance of the builder should be used to only
///   construct a single CFG.
///
///   Example usage:
///
///     CFGBuilder builder;
///     CFG* cfg = builder.BuildAST(stmt1);
///
///  CFG construction is done via a recursive walk of an AST.
///  We actually parse the AST in reverse order so that the successor
///  of a basic block is constructed prior to its predecessor.  This
///  allows us to nicely capture implicit fall-throughs without extra
///  basic blocks.
///
class VISIBILITY_HIDDEN CFGBuilder : public StmtVisitor<CFGBuilder,CFGBlock*> {    
  CFG* cfg;
  CFGBlock* Block;
  CFGBlock* Succ;
  CFGBlock* ContinueTargetBlock;
  CFGBlock* BreakTargetBlock;
  CFGBlock* SwitchTerminatedBlock;
  CFGBlock* DefaultCaseBlock;
  
  // LabelMap records the mapping from Label expressions to their blocks.
  typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
  LabelMapTy LabelMap;
  
  // A list of blocks that end with a "goto" that must be backpatched to
  // their resolved targets upon completion of CFG construction.
  typedef std::vector<CFGBlock*> BackpatchBlocksTy;
  BackpatchBlocksTy BackpatchBlocks;
  
  // A list of labels whose address has been taken (for indirect gotos).
  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
  LabelSetTy AddressTakenLabels;
  
public:  
  explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL),
                          ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) {
    // Create an empty CFG.
    cfg = new CFG();                        
  }
  
  ~CFGBuilder() { delete cfg; }
  
  // buildCFG - Used by external clients to construct the CFG.
  CFG* buildCFG(Stmt* Statement);
  
  // Visitors to walk an AST and construct the CFG.  Called by
  // buildCFG.  Do not call directly!
  
  CFGBlock* VisitStmt(Stmt* Statement);
  CFGBlock* VisitNullStmt(NullStmt* Statement);
  CFGBlock* VisitCompoundStmt(CompoundStmt* C);
  CFGBlock* VisitIfStmt(IfStmt* I);
  CFGBlock* VisitReturnStmt(ReturnStmt* R);
  CFGBlock* VisitLabelStmt(LabelStmt* L);
  CFGBlock* VisitGotoStmt(GotoStmt* G);
  CFGBlock* VisitForStmt(ForStmt* F);
  CFGBlock* VisitWhileStmt(WhileStmt* W);
  CFGBlock* VisitDoStmt(DoStmt* D);
  CFGBlock* VisitContinueStmt(ContinueStmt* C);
  CFGBlock* VisitBreakStmt(BreakStmt* B);
  CFGBlock* VisitSwitchStmt(SwitchStmt* Terminator);
  CFGBlock* VisitCaseStmt(CaseStmt* Terminator);
  CFGBlock* VisitDefaultStmt(DefaultStmt* D);
  CFGBlock* VisitIndirectGotoStmt(IndirectGotoStmt* I);
  
  // FIXME: Add support for ObjC-specific control-flow structures.
  
  // NYS == Not Yet Supported
  CFGBlock* NYS() {
    badCFG = true;
    return Block;
  }
  
  CFGBlock* VisitObjCForCollectionStmt(ObjCForCollectionStmt* S){ return NYS();}
  CFGBlock* VisitObjCAtTryStmt(ObjCAtTryStmt* S) { return NYS(); }
  CFGBlock* VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) { return NYS(); }
  CFGBlock* VisitObjCAtFinallyStmt(ObjCAtFinallyStmt* S) { return NYS(); }
  CFGBlock* VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) { return NYS(); }

  CFGBlock* VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S){
    return NYS();
  }
  
private:
  CFGBlock* createBlock(bool add_successor = true);
  CFGBlock* addStmt(Stmt* Terminator);
  CFGBlock* WalkAST(Stmt* Terminator, bool AlwaysAddStmt);
  CFGBlock* WalkAST_VisitChildren(Stmt* Terminator);
  CFGBlock* WalkAST_VisitDeclSubExprs(StmtIterator& I);
  CFGBlock* WalkAST_VisitStmtExpr(StmtExpr* Terminator);
  void FinishBlock(CFGBlock* B);
  
  bool badCFG;
};
    
/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can
///  represent an arbitrary statement.  Examples include a single expression
///  or a function body (compound statement).  The ownership of the returned
///  CFG is transferred to the caller.  If CFG construction fails, this method
///  returns NULL.
CFG* CFGBuilder::buildCFG(Stmt* Statement) {
  assert (cfg);
  if (!Statement) return NULL;

  badCFG = false;
  
  // Create an empty block that will serve as the exit block for the CFG.
  // Since this is the first block added to the CFG, it will be implicitly
  // registered as the exit block.
  Succ = createBlock();
  assert (Succ == &cfg->getExit());
  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
  
  // Visit the statements and create the CFG.
  CFGBlock* B = Visit(Statement);
  if (!B) B = Succ;
  
  if (B) {
    // Finalize the last constructed block.  This usually involves
    // reversing the order of the statements in the block.
    if (Block) FinishBlock(B);
    
    // Backpatch the gotos whose label -> block mappings we didn't know
    // when we encountered them.
    for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), 
         E = BackpatchBlocks.end(); I != E; ++I ) {
     
      CFGBlock* B = *I;
      GotoStmt* G = cast<GotoStmt>(B->getTerminator());
      LabelMapTy::iterator LI = LabelMap.find(G->getLabel());

      // If there is no target for the goto, then we are looking at an
      // incomplete AST.  Handle this by not registering a successor.
      if (LI == LabelMap.end()) continue;
      
      B->addSuccessor(LI->second);                   
    }
    
    // Add successors to the Indirect Goto Dispatch block (if we have one).
    if (CFGBlock* B = cfg->getIndirectGotoBlock())
      for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
           E = AddressTakenLabels.end(); I != E; ++I ) {

        // Lookup the target block.
        LabelMapTy::iterator LI = LabelMap.find(*I);

        // If there is no target block that contains label, then we are looking
        // at an incomplete AST.  Handle this by not registering a successor.
        if (LI == LabelMap.end()) continue;
        
        B->addSuccessor(LI->second);           
      }
                                                          
    Succ = B;
  }
  
  // Create an empty entry block that has no predecessors.    
  cfg->setEntry(createBlock());
    
  if (badCFG) {
    delete cfg;
    cfg = NULL;
    return NULL;
  }
    
  // NULL out cfg so that repeated calls to the builder will fail and that
  // the ownership of the constructed CFG is passed to the caller.
  CFG* t = cfg;
  cfg = NULL;
  return t;
}
  
/// createBlock - Used to lazily create blocks that are connected
///  to the current (global) succcessor.
CFGBlock* CFGBuilder::createBlock(bool add_successor) { 
  CFGBlock* B = cfg->createBlock();
  if (add_successor && Succ) B->addSuccessor(Succ);
  return B;
}
  
/// FinishBlock - When the last statement has been added to the block,
///  we must reverse the statements because they have been inserted
///  in reverse order.
void CFGBuilder::FinishBlock(CFGBlock* B) {
  assert (B);
  B->reverseStmts();
}

/// addStmt - Used to add statements/expressions to the current CFGBlock 
///  "Block".  This method calls WalkAST on the passed statement to see if it
///  contains any short-circuit expressions.  If so, it recursively creates
///  the necessary blocks for such expressions.  It returns the "topmost" block
///  of the created blocks, or the original value of "Block" when this method
///  was called if no additional blocks are created.
CFGBlock* CFGBuilder::addStmt(Stmt* Terminator) {
  if (!Block) Block = createBlock();
  return WalkAST(Terminator,true);
}

/// WalkAST - Used by addStmt to walk the subtree of a statement and
///   add extra blocks for ternary operators, &&, and ||.  We also
///   process "," and DeclStmts (which may contain nested control-flow).
CFGBlock* CFGBuilder::WalkAST(Stmt* Terminator, bool AlwaysAddStmt = false) {    
  switch (Terminator->getStmtClass()) {
    case Stmt::ConditionalOperatorClass: {
      ConditionalOperator* C = cast<ConditionalOperator>(Terminator);

      // Create the confluence block that will "merge" the results
      // of the ternary expression.
      CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock();  
      ConfluenceBlock->appendStmt(C);
      FinishBlock(ConfluenceBlock);      

      // Create a block for the LHS expression if there is an LHS expression.
      // A GCC extension allows LHS to be NULL, causing the condition to
      // be the value that is returned instead.
      //  e.g: x ?: y is shorthand for: x ? x : y;
      Succ = ConfluenceBlock;
      Block = NULL;
      CFGBlock* LHSBlock = NULL;
      if (C->getLHS()) {
        LHSBlock = Visit(C->getLHS());
        FinishBlock(LHSBlock);
        Block = NULL;
      }
      
      // Create the block for the RHS expression.
      Succ = ConfluenceBlock;
      CFGBlock* RHSBlock = Visit(C->getRHS());
      FinishBlock(RHSBlock);
      
      // Create the block that will contain the condition.
      Block = createBlock(false);
      
      if (LHSBlock)
        Block->addSuccessor(LHSBlock);
      else {
        // If we have no LHS expression, add the ConfluenceBlock as a direct
        // successor for the block containing the condition.  Moreover,
        // we need to reverse the order of the predecessors in the
        // ConfluenceBlock because the RHSBlock will have been added to
        // the succcessors already, and we want the first predecessor to the
        // the block containing the expression for the case when the ternary
        // expression evaluates to true.
        Block->addSuccessor(ConfluenceBlock);
        assert (ConfluenceBlock->pred_size() == 2);
        std::reverse(ConfluenceBlock->pred_begin(), 
                     ConfluenceBlock->pred_end());
      }
      
      Block->addSuccessor(RHSBlock);
      
      Block->setTerminator(C);
      return addStmt(C->getCond());
    }
    
    case Stmt::ChooseExprClass: {
      ChooseExpr* C = cast<ChooseExpr>(Terminator);      
      
      CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock();  
      ConfluenceBlock->appendStmt(C);
      FinishBlock(ConfluenceBlock);
      
      Succ = ConfluenceBlock;
      Block = NULL;
      CFGBlock* LHSBlock = Visit(C->getLHS());
      FinishBlock(LHSBlock);

      Succ = ConfluenceBlock;
      Block = NULL;
      CFGBlock* RHSBlock = Visit(C->getRHS());
      FinishBlock(RHSBlock);
      
      Block = createBlock(false);
      Block->addSuccessor(LHSBlock);
      Block->addSuccessor(RHSBlock);
      Block->setTerminator(C);
      return addStmt(C->getCond());
    }

    case Stmt::DeclStmtClass: {
      ScopedDecl* D = cast<DeclStmt>(Terminator)->getDecl();
      Block->appendStmt(Terminator);
      
      StmtIterator I(D);
      return WalkAST_VisitDeclSubExprs(I);
    }
      
    case Stmt::AddrLabelExprClass: {
      AddrLabelExpr* A = cast<AddrLabelExpr>(Terminator);
      AddressTakenLabels.insert(A->getLabel());
      
      if (AlwaysAddStmt) Block->appendStmt(Terminator);
      return Block;
    }
    
    case Stmt::StmtExprClass:
      return WalkAST_VisitStmtExpr(cast<StmtExpr>(Terminator));

    case Stmt::UnaryOperatorClass: {
      UnaryOperator* U = cast<UnaryOperator>(Terminator);
      
      // sizeof(expressions).  For such expressions,
      // the subexpression is not really evaluated, so
      // we don't care about control-flow within the sizeof.
      if (U->getOpcode() == UnaryOperator::SizeOf) {
        Block->appendStmt(Terminator);
        return Block;
      }
      
      break;
    }
      
    case Stmt::BinaryOperatorClass: {
      BinaryOperator* B = cast<BinaryOperator>(Terminator);

      if (B->isLogicalOp()) { // && or ||
        CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock();  
        ConfluenceBlock->appendStmt(B);
        FinishBlock(ConfluenceBlock);

        // create the block evaluating the LHS
        CFGBlock* LHSBlock = createBlock(false);
        LHSBlock->setTerminator(B);
        
        // create the block evaluating the RHS
        Succ = ConfluenceBlock;
        Block = NULL;
        CFGBlock* RHSBlock = Visit(B->getRHS());

        // Now link the LHSBlock with RHSBlock.
        if (B->getOpcode() == BinaryOperator::LOr) {
          LHSBlock->addSuccessor(ConfluenceBlock);
          LHSBlock->addSuccessor(RHSBlock);
        }
        else {
          assert (B->getOpcode() == BinaryOperator::LAnd);
          LHSBlock->addSuccessor(RHSBlock);
          LHSBlock->addSuccessor(ConfluenceBlock);
        }
        
        // Generate the blocks for evaluating the LHS.
        Block = LHSBlock;
        return addStmt(B->getLHS());                                    
      }
      else if (B->getOpcode() == BinaryOperator::Comma) { // ,
        Block->appendStmt(B);
        addStmt(B->getRHS());
        return addStmt(B->getLHS());
      }
      
      break;
    }
      
    case Stmt::ParenExprClass:
      return WalkAST(cast<ParenExpr>(Terminator)->getSubExpr(), AlwaysAddStmt);
    
    default:
      break;
  };
      
  if (AlwaysAddStmt) Block->appendStmt(Terminator);
  return WalkAST_VisitChildren(Terminator);
}

/// WalkAST_VisitDeclSubExprs - Utility method to handle Decls contained in
///  DeclStmts.  Because the initialization code (and sometimes the
///  the type declarations) for DeclStmts can contain arbitrary expressions, 
///  we must linearize declarations to handle arbitrary control-flow induced by
/// those expressions.  
CFGBlock* CFGBuilder::WalkAST_VisitDeclSubExprs(StmtIterator& I) {
  if (I == StmtIterator())
    return Block;
  
  Stmt* Terminator = *I;
  ++I;
  WalkAST_VisitDeclSubExprs(I);
    
  // Optimization: Don't create separate block-level statements for literals.
  
  switch (Terminator->getStmtClass()) {
    case Stmt::IntegerLiteralClass:
    case Stmt::CharacterLiteralClass:
    case Stmt::StringLiteralClass:
      break;
      
      // All other cases.
      
    default:
      Block = addStmt(Terminator);
  }
  
  return Block;
}

/// WalkAST_VisitChildren - Utility method to call WalkAST on the
///  children of a Stmt.
CFGBlock* CFGBuilder::WalkAST_VisitChildren(Stmt* Terminator) {
  CFGBlock* B = Block;
  for (Stmt::child_iterator I = Terminator->child_begin(), E = Terminator->child_end() ;
       I != E; ++I)
    if (*I) B = WalkAST(*I);
  
  return B;
}

/// WalkAST_VisitStmtExpr - Utility method to handle (nested) statement
///  expressions (a GCC extension).
CFGBlock* CFGBuilder::WalkAST_VisitStmtExpr(StmtExpr* Terminator) {
  Block->appendStmt(Terminator);
  return VisitCompoundStmt(Terminator->getSubStmt());  
}

/// VisitStmt - Handle statements with no branching control flow.
CFGBlock* CFGBuilder::VisitStmt(Stmt* Statement) {
  // We cannot assume that we are in the middle of a basic block, since
  // the CFG might only be constructed for this single statement.  If
  // we have no current basic block, just create one lazily.
  if (!Block) Block = createBlock();
  
  // Simply add the statement to the current block.  We actually
  // insert statements in reverse order; this order is reversed later
  // when processing the containing element in the AST.
  addStmt(Statement);

  return Block;
}

CFGBlock* CFGBuilder::VisitNullStmt(NullStmt* Statement) {
  return Block;
}

CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
  
  CFGBlock* LastBlock = NULL;

  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
                                                               I != E; ++I ) {
    LastBlock = Visit(*I);
  }

  return LastBlock;
}

CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
  // We may see an if statement in the middle of a basic block, or
  // it may be the first statement we are processing.  In either case,
  // we create a new basic block.  First, we create the blocks for
  // the then...else statements, and then we create the block containing
  // the if statement.  If we were in the middle of a block, we
  // stop processing that block and reverse its statements.  That block
  // is then the implicit successor for the "then" and "else" clauses.
  
  // The block we were proccessing is now finished.  Make it the
  // successor block.
  if (Block) { 
    Succ = Block;
    FinishBlock(Block);
  }
  
  // Process the false branch.  NULL out Block so that the recursive
  // call to Visit will create a new basic block.
  // Null out Block so that all successor
  CFGBlock* ElseBlock = Succ;
  
  if (Stmt* Else = I->getElse()) {
    SaveAndRestore<CFGBlock*> sv(Succ);
    
    // NULL out Block so that the recursive call to Visit will
    // create a new basic block.          
    Block = NULL;
    ElseBlock = Visit(Else);
              
    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
      ElseBlock = sv.get();
    else if (Block) 
      FinishBlock(ElseBlock);
  }
  
  // Process the true branch.  NULL out Block so that the recursive
  // call to Visit will create a new basic block.
  // Null out Block so that all successor
  CFGBlock* ThenBlock;
  {
    Stmt* Then = I->getThen();
    assert (Then);
    SaveAndRestore<CFGBlock*> sv(Succ);
    Block = NULL;        
    ThenBlock = Visit(Then);
    
    if (!ThenBlock) // Can occur when the Then body has all NullStmts.
      ThenBlock = sv.get();
    else if (Block)
      FinishBlock(ThenBlock);
  }

  // Now create a new block containing the if statement.        
  Block = createBlock(false);
  
  // Set the terminator of the new block to the If statement.
  Block->setTerminator(I);
  
  // Now add the successors.
  Block->addSuccessor(ThenBlock);
  Block->addSuccessor(ElseBlock);
  
  // Add the condition as the last statement in the new block.  This
  // may create new blocks as the condition may contain control-flow.  Any
  // newly created blocks will be pointed to be "Block".
  return addStmt(I->getCond()->IgnoreParens());
}
  
    
CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
  // If we were in the middle of a block we stop processing that block
  // and reverse its statements.
  //
  // NOTE: If a "return" appears in the middle of a block, this means
  //       that the code afterwards is DEAD (unreachable).  We still
  //       keep a basic block for that code; a simple "mark-and-sweep"
  //       from the entry block will be able to report such dead
  //       blocks.
  if (Block) FinishBlock(Block);

  // Create the new block.
  Block = createBlock(false);
  
  // The Exit block is the only successor.
  Block->addSuccessor(&cfg->getExit());
    
  // Add the return statement to the block.  This may create new blocks
  // if R contains control-flow (short-circuit operations).
  return addStmt(R);
}

CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
  // Get the block of the labeled statement.  Add it to our map.
  Visit(L->getSubStmt());
  CFGBlock* LabelBlock = Block;
  
  if (!LabelBlock)            // This can happen when the body is empty, i.e.
    LabelBlock=createBlock(); // scopes that only contains NullStmts.
  
  assert (LabelMap.find(L) == LabelMap.end() && "label already in map");
  LabelMap[ L ] = LabelBlock;
  
  // Labels partition blocks, so this is the end of the basic block
  // we were processing (L is the block's label).  Because this is
  // label (and we have already processed the substatement) there is no
  // extra control-flow to worry about.
  LabelBlock->setLabel(L);
  FinishBlock(LabelBlock);
  
  // We set Block to NULL to allow lazy creation of a new block
  // (if necessary);
  Block = NULL;
  
  // This block is now the implicit successor of other blocks.
  Succ = LabelBlock;
  
  return LabelBlock;
}

CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
  // Goto is a control-flow statement.  Thus we stop processing the
  // current block and create a new one.
  if (Block) FinishBlock(Block);
  Block = createBlock(false);
  Block->setTerminator(G);
  
  // If we already know the mapping to the label block add the
  // successor now.
  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
  
  if (I == LabelMap.end())
    // We will need to backpatch this block later.
    BackpatchBlocks.push_back(Block);
  else
    Block->addSuccessor(I->second);

  return Block;            
}

CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
  // "for" is a control-flow statement.  Thus we stop processing the
  // current block.
  
  CFGBlock* LoopSuccessor = NULL;
  
  if (Block) {
    FinishBlock(Block);
    LoopSuccessor = Block;
  }
  else LoopSuccessor = Succ;
  
  // Because of short-circuit evaluation, the condition of the loop
  // can span multiple basic blocks.  Thus we need the "Entry" and "Exit"
  // blocks that evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;
  
  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(F);  
  
  // Now add the actual condition to the condition block.  Because the
  // condition itself may contain control-flow, new blocks may be created.
  if (Stmt* C = F->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    if (Block) FinishBlock(EntryConditionBlock);
  }

  // The condition block is the implicit successor for the loop body as
  // well as any code above the loop.
  Succ = EntryConditionBlock;
  
  // Now create the loop body.
  {
    assert (F->getBody());
    
    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
    save_continue(ContinueTargetBlock),
    save_break(BreakTargetBlock);      

    // All continues within this loop should go to the condition block
    ContinueTargetBlock = EntryConditionBlock;
    
    // All breaks should go to the code following the loop.
    BreakTargetBlock = LoopSuccessor;
    
    // Create a new block to contain the (bottom) of the loop body.
    Block = NULL;
    
    // If we have increment code, insert it at the end of the body block.
    if (Stmt* I = F->getInc()) Block = addStmt(I);
    
    // Now populate the body block, and in the process create new blocks
    // as we walk the body of the loop.
    CFGBlock* BodyBlock = Visit(F->getBody());      

    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "for (...;...; ) ;"
    else if (Block)
      FinishBlock(BodyBlock);
    
    // This new body block is a successor to our "exit" condition block.
    ExitConditionBlock->addSuccessor(BodyBlock);
  }
  
  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  ExitConditionBlock->addSuccessor(LoopSuccessor);
  
  // If the loop contains initialization, create a new block for those
  // statements.  This block can also contain statements that precede
  // the loop.
  if (Stmt* I = F->getInit()) {
    Block = createBlock();
    return addStmt(I);
  }
  else {
    // There is no loop initialization.   We are thus basically a while 
    // loop.  NULL out Block to force lazy block construction.
    Block = NULL;
    Succ = EntryConditionBlock;
    return EntryConditionBlock;
  }
}

CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
  // "while" is a control-flow statement.  Thus we stop processing the
  // current block.
  
  CFGBlock* LoopSuccessor = NULL;
  
  if (Block) {
    FinishBlock(Block);
    LoopSuccessor = Block;
  }
  else LoopSuccessor = Succ;
            
  // Because of short-circuit evaluation, the condition of the loop
  // can span multiple basic blocks.  Thus we need the "Entry" and "Exit"
  // blocks that evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;
  
  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(W);
  
  // Now add the actual condition to the condition block.  Because the
  // condition itself may contain control-flow, new blocks may be created.
  // Thus we update "Succ" after adding the condition.
  if (Stmt* C = W->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    assert (Block == EntryConditionBlock);
    if (Block) FinishBlock(EntryConditionBlock);
  }
  
  // The condition block is the implicit successor for the loop body as
  // well as any code above the loop.
  Succ = EntryConditionBlock;
  
  // Process the loop body.
  {
    assert (W->getBody());

    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
                              save_continue(ContinueTargetBlock),
                              save_break(BreakTargetBlock);
          
    // All continues within this loop should go to the condition block
    ContinueTargetBlock = EntryConditionBlock;
    
    // All breaks should go to the code following the loop.
    BreakTargetBlock = LoopSuccessor;
    
    // NULL out Block to force lazy instantiation of blocks for the body.
    Block = NULL;
    
    // Create the body.  The returned block is the entry to the loop body.
    CFGBlock* BodyBlock = Visit(W->getBody());
    
    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "while(...) ;"
    else if (Block)
      FinishBlock(BodyBlock);
    
    // Add the loop body entry as a successor to the condition.
    ExitConditionBlock->addSuccessor(BodyBlock);
  }
  
  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  ExitConditionBlock->addSuccessor(LoopSuccessor);
  
  // There can be no more statements in the condition block
  // since we loop back to this block.  NULL out Block to force
  // lazy creation of another block.
  Block = NULL;
  
  // Return the condition block, which is the dominating block for the loop.
  Succ = EntryConditionBlock;
  return EntryConditionBlock;
}

CFGBlock* CFGBuilder::VisitDoStmt(DoStmt* D) {
  // "do...while" is a control-flow statement.  Thus we stop processing the
  // current block.
  
  CFGBlock* LoopSuccessor = NULL;
  
  if (Block) {
    FinishBlock(Block);
    LoopSuccessor = Block;
  }
  else LoopSuccessor = Succ;
  
  // Because of short-circuit evaluation, the condition of the loop
  // can span multiple basic blocks.  Thus we need the "Entry" and "Exit"
  // blocks that evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;
        
  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(D);  
  
  // Now add the actual condition to the condition block.  Because the
  // condition itself may contain control-flow, new blocks may be created.
  if (Stmt* C = D->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    if (Block) FinishBlock(EntryConditionBlock);
  }
  
  // The condition block is the implicit successor for the loop body.
  Succ = EntryConditionBlock;

  // Process the loop body.
  CFGBlock* BodyBlock = NULL;
  {
    assert (D->getBody());
    
    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
    save_continue(ContinueTargetBlock),
    save_break(BreakTargetBlock);
    
    // All continues within this loop should go to the condition block
    ContinueTargetBlock = EntryConditionBlock;
    
    // All breaks should go to the code following the loop.
    BreakTargetBlock = LoopSuccessor;
    
    // NULL out Block to force lazy instantiation of blocks for the body.
    Block = NULL;
    
    // Create the body.  The returned block is the entry to the loop body.
    BodyBlock = Visit(D->getBody());
    
    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
    else if (Block)
      FinishBlock(BodyBlock);
        
    // Add the loop body entry as a successor to the condition.
    ExitConditionBlock->addSuccessor(BodyBlock);
  }
  
  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  ExitConditionBlock->addSuccessor(LoopSuccessor);
  
  // There can be no more statements in the body block(s)
  // since we loop back to the body.  NULL out Block to force
  // lazy creation of another block.
  Block = NULL;
  
  // Return the loop body, which is the dominating block for the loop.
  Succ = BodyBlock;
  return BodyBlock;
}

CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
  // "continue" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (Block) FinishBlock(Block);
  
  // Now create a new block that ends with the continue statement.
  Block = createBlock(false);
  Block->setTerminator(C);
  
  // If there is no target for the continue, then we are looking at an
  // incomplete AST.  Handle this by not registering a successor.
  if (ContinueTargetBlock) Block->addSuccessor(ContinueTargetBlock);
  
  return Block;
}

CFGBlock* CFGBuilder::VisitBreakStmt(BreakStmt* B) {
  // "break" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (Block) FinishBlock(Block);
  
  // Now create a new block that ends with the continue statement.
  Block = createBlock(false);
  Block->setTerminator(B);
  
  // If there is no target for the break, then we are looking at an
  // incomplete AST.  Handle this by not registering a successor.
  if (BreakTargetBlock) Block->addSuccessor(BreakTargetBlock);

  return Block;  
}

CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
  // "switch" is a control-flow statement.  Thus we stop processing the
  // current block.    
  CFGBlock* SwitchSuccessor = NULL;
  
  if (Block) {
    FinishBlock(Block);
    SwitchSuccessor = Block;
  }
  else SwitchSuccessor = Succ;

  // Save the current "switch" context.
  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
                            save_break(BreakTargetBlock),
                            save_default(DefaultCaseBlock);

  // Set the "default" case to be the block after the switch statement.
  // If the switch statement contains a "default:", this value will
  // be overwritten with the block for that code.
  DefaultCaseBlock = SwitchSuccessor;
  
  // Create a new block that will contain the switch statement.
  SwitchTerminatedBlock = createBlock(false);
  
  // Now process the switch body.  The code after the switch is the implicit
  // successor.
  Succ = SwitchSuccessor;
  BreakTargetBlock = SwitchSuccessor;
  
  // When visiting the body, the case statements should automatically get
  // linked up to the switch.  We also don't keep a pointer to the body,
  // since all control-flow from the switch goes to case/default statements.
  assert (Terminator->getBody() && "switch must contain a non-NULL body");
  Block = NULL;
  CFGBlock *BodyBlock = Visit(Terminator->getBody());
  if (Block) FinishBlock(BodyBlock);

  // If we have no "default:" case, the default transition is to the
  // code following the switch body.
  SwitchTerminatedBlock->addSuccessor(DefaultCaseBlock);
  
  // Add the terminator and condition in the switch block.
  SwitchTerminatedBlock->setTerminator(Terminator);
  assert (Terminator->getCond() && "switch condition must be non-NULL");
  Block = SwitchTerminatedBlock;
  
  return addStmt(Terminator->getCond());
}

CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* Terminator) {
  // CaseStmts are essentially labels, so they are the
  // first statement in a block.      

  if (Terminator->getSubStmt()) Visit(Terminator->getSubStmt());
  CFGBlock* CaseBlock = Block;
  if (!CaseBlock) CaseBlock = createBlock();  
    
  // Cases statements partition blocks, so this is the top of
  // the basic block we were processing (the "case XXX:" is the label).
  CaseBlock->setLabel(Terminator);
  FinishBlock(CaseBlock);
  
  // Add this block to the list of successors for the block with the
  // switch statement.
  assert (SwitchTerminatedBlock);
  SwitchTerminatedBlock->addSuccessor(CaseBlock);
  
  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = NULL;
  
  // This block is now the implicit successor of other blocks.
  Succ = CaseBlock;
  
  return CaseBlock;
}
  
CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
  if (Terminator->getSubStmt()) Visit(Terminator->getSubStmt());
  DefaultCaseBlock = Block;
  if (!DefaultCaseBlock) DefaultCaseBlock = createBlock();  
  
  // Default statements partition blocks, so this is the top of
  // the basic block we were processing (the "default:" is the label).
  DefaultCaseBlock->setLabel(Terminator);
  FinishBlock(DefaultCaseBlock);

  // Unlike case statements, we don't add the default block to the
  // successors for the switch statement immediately.  This is done
  // when we finish processing the switch statement.  This allows for
  // the default case (including a fall-through to the code after the
  // switch statement) to always be the last successor of a switch-terminated
  // block.
  
  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = NULL;
  
  // This block is now the implicit successor of other blocks.
  Succ = DefaultCaseBlock;
  
  return DefaultCaseBlock;  
}

CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
  // Lazily create the indirect-goto dispatch block if there isn't one
  // already.
  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
  
  if (!IBlock) {
    IBlock = createBlock(false);
    cfg->setIndirectGotoBlock(IBlock);
  }
  
  // IndirectGoto is a control-flow statement.  Thus we stop processing the
  // current block and create a new one.
  if (Block) FinishBlock(Block);
  Block = createBlock(false);
  Block->setTerminator(I);
  Block->addSuccessor(IBlock);
  return addStmt(I->getTarget());
}


} // end anonymous namespace

/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The
///  block has no successors or predecessors.  If this is the first block
///  created in the CFG, it is automatically set to be the Entry and Exit
///  of the CFG.
CFGBlock* CFG::createBlock() {
  bool first_block = begin() == end();

  // Create the block.
  Blocks.push_front(CFGBlock(NumBlockIDs++));

  // If this is the first block, set it as the Entry and Exit.
  if (first_block) Entry = Exit = &front();

  // Return the block.
  return &front();
}

/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
///  CFG is returned to the caller.
CFG* CFG::buildCFG(Stmt* Statement) {
  CFGBuilder Builder;
  return Builder.buildCFG(Statement);
}

/// reverseStmts - Reverses the orders of statements within a CFGBlock.
void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); }

//===----------------------------------------------------------------------===//
// CFG: Queries for BlkExprs.
//===----------------------------------------------------------------------===//

namespace {
  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
}

static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) {
  if (!Terminator)
    return;
  
  for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) {
    if (!*I) continue;
    
    if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I))
      if (B->isAssignmentOp()) Set.insert(B);
    
    FindSubExprAssignments(*I, Set);
  }
}

static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
  BlkExprMapTy* M = new BlkExprMapTy();
  
  // Look for assignments that are used as subexpressions.  These are the
  // only assignments that we want to *possibly* register as a block-level
  // expression.  Basically, if an assignment occurs both in a subexpression
  // and at the block-level, it is a block-level expression.
  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
  
  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
      FindSubExprAssignments(*BI, SubExprAssignments);

  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
    
    // Iterate over the statements again on identify the Expr* and Stmt* at
    // the block-level that are block-level expressions.

    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
      if (Expr* Exp = dyn_cast<Expr>(*BI)) {
        
        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
          // Assignment expressions that are not nested within another
          // expression are really "statements" whose value is never
          // used by another expression.
          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
            continue;
        }
        else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
          // Special handling for statement expressions.  The last statement
          // in the statement expression is also a block-level expr.
          const CompoundStmt* C = Terminator->getSubStmt();
          if (!C->body_empty()) {
            unsigned x = M->size();
            (*M)[C->body_back()] = x;
          }
        }

        unsigned x = M->size();
        (*M)[Exp] = x;
      }
    
    // Look at terminators.  The condition is a block-level expression.
    
    Expr* Exp = I->getTerminatorCondition();
    
    if (Exp && M->find(Exp) == M->end()) {
        unsigned x = M->size();
        (*M)[Exp] = x;
    }
  }
    
  return M;
}

CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
  assert(S != NULL);
  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
  
  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
  BlkExprMapTy::iterator I = M->find(S);
  
  if (I == M->end()) return CFG::BlkExprNumTy();
  else return CFG::BlkExprNumTy(I->second);
}

unsigned CFG::getNumBlkExprs() {
  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
    return M->size();
  else {
    // We assume callers interested in the number of BlkExprs will want
    // the map constructed if it doesn't already exist.
    BlkExprMap = (void*) PopulateBlkExprMap(*this);
    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
  }
}

//===----------------------------------------------------------------------===//
// Internal Block-Edge Set; used for modeling persistent <CFGBlock*,CFGBlock*>
// pairs for use with ProgramPoint.
//===----------------------------------------------------------------------===//

typedef std::pair<CFGBlock*,CFGBlock*> BPairTy;

namespace llvm {
  template<> struct FoldingSetTrait<BPairTy*> {
    static void Profile(const BPairTy* X, FoldingSetNodeID& profile) {
      profile.AddPointer(X->first);
      profile.AddPointer(X->second);
    }
  };
}

typedef llvm::FoldingSetNodeWrapper<BPairTy*> PersistPairTy;
typedef llvm::FoldingSet<PersistPairTy> BlkEdgeSetTy;

const std::pair<CFGBlock*,CFGBlock*>*
CFG::getBlockEdgeImpl(const CFGBlock* B1, const CFGBlock* B2) {
  
  llvm::BumpPtrAllocator*& Alloc =
    reinterpret_cast<llvm::BumpPtrAllocator*&>(Allocator);
  
  if (!Alloc)
    Alloc = new llvm::BumpPtrAllocator();

  BlkEdgeSetTy*& p = reinterpret_cast<BlkEdgeSetTy*&>(BlkEdgeSet);

  if (!p)
    p = new BlkEdgeSetTy();
  
  // Profile the edges.
  llvm::FoldingSetNodeID profile;
  void* InsertPos;
  
  profile.AddPointer(B1);
  profile.AddPointer(B2);
  
  PersistPairTy* V = p->FindNodeOrInsertPos(profile, InsertPos);  
  
  if (!V) {
    assert (llvm::AlignOf<BPairTy>::Alignment_LessEqual_8Bytes);
    
    // Allocate the pair, forcing an 8-byte alignment.
    BPairTy* pair = (BPairTy*) Alloc->Allocate(sizeof(*pair), 8);

    new (pair) BPairTy(const_cast<CFGBlock*>(B1),
                       const_cast<CFGBlock*>(B2));
    
    // Allocate the meta data to store the pair in the FoldingSet.
    PersistPairTy* ppair = (PersistPairTy*) Alloc->Allocate<PersistPairTy>();
    new (ppair) PersistPairTy(pair);
    
    p->InsertNode(ppair, InsertPos);
    
    return pair;
  }
  
  return V->getValue();
}

//===----------------------------------------------------------------------===//
// Cleanup: CFG dstor.
//===----------------------------------------------------------------------===//

CFG::~CFG() {
  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
  delete reinterpret_cast<BlkEdgeSetTy*>(BlkEdgeSet);
  delete reinterpret_cast<llvm::BumpPtrAllocator*> (Allocator);
}
  
//===----------------------------------------------------------------------===//
// CFG pretty printing
//===----------------------------------------------------------------------===//

namespace {

class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper  {
                          
  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
  StmtMapTy StmtMap;
  signed CurrentBlock;
  unsigned CurrentStmt;

public:

  StmtPrinterHelper(const CFG* cfg) : CurrentBlock(0), CurrentStmt(0) {
    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
      unsigned j = 1;
      for (CFGBlock::const_iterator BI = I->begin(), BEnd = I->end() ;
           BI != BEnd; ++BI, ++j )
        StmtMap[*BI] = std::make_pair(I->getBlockID(),j);
      }
  }
            
  virtual ~StmtPrinterHelper() {}
  
  void setBlockID(signed i) { CurrentBlock = i; }
  void setStmtID(unsigned i) { CurrentStmt = i; }
  
  virtual bool handledStmt(Stmt* Terminator, std::ostream& OS) {
    
    StmtMapTy::iterator I = StmtMap.find(Terminator);

    if (I == StmtMap.end())
      return false;
    
    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock 
                          && I->second.second == CurrentStmt)
      return false;
      
      OS << "[B" << I->second.first << "." << I->second.second << "]";
    return true;
  }
};

class VISIBILITY_HIDDEN CFGBlockTerminatorPrint
  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
  
  std::ostream& OS;
  StmtPrinterHelper* Helper;
public:
  CFGBlockTerminatorPrint(std::ostream& os, StmtPrinterHelper* helper)
    : OS(os), Helper(helper) {}
  
  void VisitIfStmt(IfStmt* I) {
    OS << "if ";
    I->getCond()->printPretty(OS,Helper);
  }
  
  // Default case.
  void VisitStmt(Stmt* Terminator) { Terminator->printPretty(OS); }
  
  void VisitForStmt(ForStmt* F) {
    OS << "for (" ;
    if (F->getInit()) OS << "...";
    OS << "; ";
    if (Stmt* C = F->getCond()) C->printPretty(OS,Helper);
    OS << "; ";
    if (F->getInc()) OS << "...";
    OS << ")";
  }
  
  void VisitWhileStmt(WhileStmt* W) {
    OS << "while " ;
    if (Stmt* C = W->getCond()) C->printPretty(OS,Helper);
  }
  
  void VisitDoStmt(DoStmt* D) {
    OS << "do ... while ";
    if (Stmt* C = D->getCond()) C->printPretty(OS,Helper);
  }
  
  void VisitSwitchStmt(SwitchStmt* Terminator) {
    OS << "switch ";
    Terminator->getCond()->printPretty(OS,Helper);
  }
  
  void VisitConditionalOperator(ConditionalOperator* C) {
    C->getCond()->printPretty(OS,Helper);
    OS << " ? ... : ...";  
  }
  
  void VisitChooseExpr(ChooseExpr* C) {
    OS << "__builtin_choose_expr( ";
    C->getCond()->printPretty(OS,Helper);
    OS << " )";
  }
  
  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
    OS << "goto *";
    I->getTarget()->printPretty(OS,Helper);
  }
  
  void VisitBinaryOperator(BinaryOperator* B) {
    if (!B->isLogicalOp()) {
      VisitExpr(B);
      return;
    }
    
    B->getLHS()->printPretty(OS,Helper);
    
    switch (B->getOpcode()) {
      case BinaryOperator::LOr:
        OS << " || ...";
        return;
      case BinaryOperator::LAnd:
        OS << " && ...";
        return;
      default:
        assert(false && "Invalid logical operator.");
    }  
  }
  
  void VisitExpr(Expr* E) {
    E->printPretty(OS,Helper);
  }                                                       
};
  
  
void print_stmt(std::ostream&OS, StmtPrinterHelper* Helper, Stmt* Terminator) {    
  if (Helper) {
    // special printing for statement-expressions.
    if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) {
      CompoundStmt* Sub = SE->getSubStmt();
      
      if (Sub->child_begin() != Sub->child_end()) {
        OS << "({ ... ; ";
        Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
        OS << " })\n";
        return;
      }
    }
    
    // special printing for comma expressions.
    if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) {
      if (B->getOpcode() == BinaryOperator::Comma) {
        OS << "... , ";
        Helper->handledStmt(B->getRHS(),OS);
        OS << '\n';
        return;
      }          
    }  
  }
  
  Terminator->printPretty(OS, Helper);
  
  // Expressions need a newline.
  if (isa<Expr>(Terminator)) OS << '\n';
}
  
void print_block(std::ostream& OS, const CFG* cfg, const CFGBlock& B,
                 StmtPrinterHelper* Helper, bool print_edges) {
 
  if (Helper) Helper->setBlockID(B.getBlockID());
  
  // Print the header.
  OS << "\n [ B" << B.getBlockID();  
    
  if (&B == &cfg->getEntry())
    OS << " (ENTRY) ]\n";
  else if (&B == &cfg->getExit())
    OS << " (EXIT) ]\n";
  else if (&B == cfg->getIndirectGotoBlock())
    OS << " (INDIRECT GOTO DISPATCH) ]\n";
  else
    OS << " ]\n";
 
  // Print the label of this block.
  if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) {

    if (print_edges)
      OS << "    ";
  
    if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator))
      OS << L->getName();
    else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) {
      OS << "case ";
      C->getLHS()->printPretty(OS);
      if (C->getRHS()) {
        OS << " ... ";
        C->getRHS()->printPretty(OS);
      }
    }  
    else if (isa<DefaultStmt>(Terminator))
      OS << "default";
    else
      assert(false && "Invalid label statement in CFGBlock.");
 
    OS << ":\n";
  }
 
  // Iterate through the statements in the block and print them.
  unsigned j = 1;
  
  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
       I != E ; ++I, ++j ) {
       
    // Print the statement # in the basic block and the statement itself.
    if (print_edges)
      OS << "    ";
      
    OS << std::setw(3) << j << ": ";
    
    if (Helper)
      Helper->setStmtID(j);
     
    print_stmt(OS,Helper,*I);
  }
 
  // Print the terminator of this block.
  if (B.getTerminator()) {
    if (print_edges)
      OS << "    ";
      
    OS << "  T: ";
    
    if (Helper) Helper->setBlockID(-1);
    
    CFGBlockTerminatorPrint TPrinter(OS,Helper);
    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
    OS << '\n';
  }
 
  if (print_edges) {
    // Print the predecessors of this block.
    OS << "    Predecessors (" << B.pred_size() << "):";
    unsigned i = 0;

    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
         I != E; ++I, ++i) {
                  
      if (i == 8 || (i-8) == 0)
        OS << "\n     ";
      
      OS << " B" << (*I)->getBlockID();
    }
    
    OS << '\n';
 
    // Print the successors of this block.
    OS << "    Successors (" << B.succ_size() << "):";
    i = 0;

    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
         I != E; ++I, ++i) {
         
      if (i == 8 || (i-8) % 10 == 0)
        OS << "\n    ";

      OS << " B" << (*I)->getBlockID();
    }
    
    OS << '\n';
  }
}                   

} // end anonymous namespace

/// dump - A simple pretty printer of a CFG that outputs to stderr.
void CFG::dump() const { print(*llvm::cerr.stream()); }

/// print - A simple pretty printer of a CFG that outputs to an ostream.
void CFG::print(std::ostream& OS) const {
  
  StmtPrinterHelper Helper(this);
  
  // Print the entry block.
  print_block(OS, this, getEntry(), &Helper, true);
                    
  // Iterate through the CFGBlocks and print them one by one.
  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
    // Skip the entry block, because we already printed it.
    if (&(*I) == &getEntry() || &(*I) == &getExit())
      continue;
      
    print_block(OS, this, *I, &Helper, true);
  }
  
  // Print the exit block.
  print_block(OS, this, getExit(), &Helper, true);
}  

/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
void CFGBlock::dump(const CFG* cfg) const { print(*llvm::cerr.stream(), cfg); }

/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
///   Generally this will only be called from CFG::print.
void CFGBlock::print(std::ostream& OS, const CFG* cfg) const {
  StmtPrinterHelper Helper(cfg);
  print_block(OS, cfg, *this, &Helper, true);
}

/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
void CFGBlock::printTerminator(std::ostream& OS) const {  
  CFGBlockTerminatorPrint TPrinter(OS,NULL);
  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
}

Expr* CFGBlock::getTerminatorCondition() {
  
  if (!Terminator)
    return NULL;
  
  Expr* E = NULL;
  
  switch (Terminator->getStmtClass()) {
    default:
      break;
      
    case Stmt::ForStmtClass:
      E = cast<ForStmt>(Terminator)->getCond();
      break;
      
    case Stmt::WhileStmtClass:
      E = cast<WhileStmt>(Terminator)->getCond();
      break;
      
    case Stmt::DoStmtClass:
      E = cast<DoStmt>(Terminator)->getCond();
      break;
      
    case Stmt::IfStmtClass:
      E = cast<IfStmt>(Terminator)->getCond();
      break;
      
    case Stmt::ChooseExprClass:
      E = cast<ChooseExpr>(Terminator)->getCond();
      break;
      
    case Stmt::IndirectGotoStmtClass:
      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
      break;
      
    case Stmt::SwitchStmtClass:
      E = cast<SwitchStmt>(Terminator)->getCond();
      break;
      
    case Stmt::ConditionalOperatorClass:
      E = cast<ConditionalOperator>(Terminator)->getCond();
      break;
      
    case Stmt::BinaryOperatorClass: // '&&' and '||'
      E = cast<BinaryOperator>(Terminator)->getLHS();
      break;      
  }
  
  return E ? E->IgnoreParens() : NULL;
}


//===----------------------------------------------------------------------===//
// CFG Graphviz Visualization
//===----------------------------------------------------------------------===//


#ifndef NDEBUG
static StmtPrinterHelper* GraphHelper;  
#endif

void CFG::viewCFG() const {
#ifndef NDEBUG
  StmtPrinterHelper H(this);
  GraphHelper = &H;
  llvm::ViewGraph(this,"CFG");
  GraphHelper = NULL;
#endif
}

namespace llvm {
template<>
struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {

#ifndef NDEBUG
    std::ostringstream Out;
    print_block(Out,Graph, *Node, GraphHelper, false);
    std::string OutStr = Out.str();

    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

    // Process string output to make it nicer...
    for (unsigned i = 0; i != OutStr.length(); ++i)
      if (OutStr[i] == '\n') {                            // Left justify
        OutStr[i] = '\\';
        OutStr.insert(OutStr.begin()+i+1, 'l');
      }
      
    return OutStr;
#else
    return "";
#endif
  }
};
} // end namespace llvm