aboutsummaryrefslogtreecommitdiff
path: root/bolt/unittests/Core/BinaryContext.cpp
blob: 7ac1c14357596bd7b63744dda394ad47265480e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include "bolt/Core/BinaryContext.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace bolt;

namespace {
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
  void SetUp() override {
    initalizeLLVM();
    prepareElf();
    initializeBOLT();
  }

protected:
  void initalizeLLVM() {
    llvm::InitializeAllTargetInfos();
    llvm::InitializeAllTargetMCs();
    llvm::InitializeAllAsmParsers();
    llvm::InitializeAllDisassemblers();
    llvm::InitializeAllTargets();
    llvm::InitializeAllAsmPrinters();
  }

  void prepareElf() {
    memcpy(ElfBuf, "\177ELF", 4);
    ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
    EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
    EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
    EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
    MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
    ObjFile = cantFail(ObjectFile::createObjectFile(Source));
  }

  void initializeBOLT() {
    BC = cantFail(BinaryContext::createBinaryContext(
        ObjFile.get(), true, DWARFContext::create(*ObjFile.get())));
    ASSERT_FALSE(!BC);
  }

  char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
  std::unique_ptr<ObjectFile> ObjFile;
  std::unique_ptr<BinaryContext> BC;
};
} // namespace

#ifdef X86_AVAILABLE

INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
                         ::testing::Values(Triple::x86_64));

#endif

#ifdef AARCH64_AVAILABLE

INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
                         ::testing::Values(Triple::aarch64));

TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
  if (GetParam() != Triple::aarch64)
    GTEST_SKIP();

  // This test checks that encodeValueAArch64 used by flushPendingRelocations
  // returns correctly encoded values for CALL26 relocation for both backward
  // and forward branches.
  //
  // The offsets layout is:
  // 4:  func1
  // 8:  bl func1
  // 12: bl func2
  // 16: func2

  char Data[20] = {};
  BinarySection &BS = BC->registerOrUpdateSection(
      ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
      (uint8_t *)Data, sizeof(Data), 4);
  MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
  ASSERT_TRUE(RelSymbol1);
  BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
  MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
  ASSERT_TRUE(RelSymbol2);
  BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);

  std::error_code EC;
  SmallVector<char> Vect(sizeof(Data));
  raw_svector_ostream OS(Vect);

  BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
    return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
  });

  const uint8_t Func1Call[4] = {255, 255, 255, 151};
  const uint8_t Func2Call[4] = {1, 0, 0, 148};

  EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
  EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
}

#endif

TEST_P(BinaryContextTester, BaseAddress) {
  // Check that  base address calculation is correct for a binary with the
  // following segment layout:
  BC->SegmentMapInfo[0] = SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000};
  BC->SegmentMapInfo[0x10e8d2b4] =
      SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000};
  BC->SegmentMapInfo[0x4a3bddc0] =
      SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000};
  BC->SegmentMapInfo[0x4b84d5e8] =
      SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000};

  std::optional<uint64_t> BaseAddress =
      BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
  ASSERT_TRUE(BaseAddress.has_value());
  ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);

  BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
  ASSERT_FALSE(BaseAddress.has_value());
}

TEST_P(BinaryContextTester, BaseAddress2) {
  // Check that base address calculation is correct for a binary if the
  // alignment in ELF file are different from pagesize.
  // The segment layout is as follows:
  BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000};
  BC->SegmentMapInfo[0x31860] =
      SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000};
  BC->SegmentMapInfo[0x41c20] =
      SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000};
  BC->SegmentMapInfo[0x54e18] =
      SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000};

  std::optional<uint64_t> BaseAddress =
      BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
  ASSERT_TRUE(BaseAddress.has_value());
  ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);

  BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
  ASSERT_FALSE(BaseAddress.has_value());
}