aboutsummaryrefslogtreecommitdiff
path: root/bolt/lib/Passes/IdenticalCodeFolding.cpp
blob: 87eba10354a37b1d26a70dc481b67e8b4db947f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
//===- bolt/Passes/IdenticalCodeFolding.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the IdenticalCodeFolding class.
//
//===----------------------------------------------------------------------===//

#include "bolt/Passes/IdenticalCodeFolding.h"
#include "bolt/Core/HashUtilities.h"
#include "bolt/Core/ParallelUtilities.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/Timer.h"
#include <atomic>
#include <iterator>
#include <map>
#include <set>
#include <unordered_map>

#define DEBUG_TYPE "bolt-icf"

using namespace llvm;
using namespace bolt;

namespace opts {

extern cl::OptionCategory BoltOptCategory;

static cl::opt<bool>
    ICFUseDFS("icf-dfs", cl::desc("use DFS ordering when using -icf option"),
              cl::ReallyHidden, cl::cat(BoltOptCategory));

static cl::opt<bool>
TimeICF("time-icf",
  cl::desc("time icf steps"),
  cl::ReallyHidden,
  cl::ZeroOrMore,
  cl::cat(BoltOptCategory));
} // namespace opts

/// Compare two jump tables in 2 functions. The function relies on consistent
/// ordering of basic blocks in both binary functions (e.g. DFS).
static bool equalJumpTables(const JumpTable &JumpTableA,
                            const JumpTable &JumpTableB,
                            const BinaryFunction &FunctionA,
                            const BinaryFunction &FunctionB) {
  if (JumpTableA.EntrySize != JumpTableB.EntrySize)
    return false;

  if (JumpTableA.Type != JumpTableB.Type)
    return false;

  if (JumpTableA.getSize() != JumpTableB.getSize())
    return false;

  for (uint64_t Index = 0; Index < JumpTableA.Entries.size(); ++Index) {
    const MCSymbol *LabelA = JumpTableA.Entries[Index];
    const MCSymbol *LabelB = JumpTableB.Entries[Index];

    const BinaryBasicBlock *TargetA = FunctionA.getBasicBlockForLabel(LabelA);
    const BinaryBasicBlock *TargetB = FunctionB.getBasicBlockForLabel(LabelB);

    if (!TargetA || !TargetB) {
      assert((TargetA || LabelA == FunctionA.getFunctionEndLabel()) &&
             "no target basic block found");
      assert((TargetB || LabelB == FunctionB.getFunctionEndLabel()) &&
             "no target basic block found");

      if (TargetA != TargetB)
        return false;

      continue;
    }

    assert(TargetA && TargetB && "cannot locate target block(s)");

    if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex())
      return false;
  }

  return true;
}

/// Helper function that compares an instruction of this function to the
/// given instruction of the given function. The functions should have
/// identical CFG.
template <class Compare>
static bool isInstrEquivalentWith(const MCInst &InstA,
                                  const BinaryBasicBlock &BBA,
                                  const MCInst &InstB,
                                  const BinaryBasicBlock &BBB, Compare Comp) {
  if (InstA.getOpcode() != InstB.getOpcode())
    return false;

  const BinaryContext &BC = BBA.getFunction()->getBinaryContext();

  // In this function we check for special conditions:
  //
  //    * instructions with landing pads
  //
  // Most of the common cases should be handled by MCPlus::equals()
  // that compares regular instruction operands.
  //
  // NB: there's no need to compare jump table indirect jump instructions
  //     separately as jump tables are handled by comparing corresponding
  //     symbols.
  const std::optional<MCPlus::MCLandingPad> EHInfoA = BC.MIB->getEHInfo(InstA);
  const std::optional<MCPlus::MCLandingPad> EHInfoB = BC.MIB->getEHInfo(InstB);

  if (EHInfoA || EHInfoB) {
    if (!EHInfoA && (EHInfoB->first || EHInfoB->second))
      return false;

    if (!EHInfoB && (EHInfoA->first || EHInfoA->second))
      return false;

    if (EHInfoA && EHInfoB) {
      // Action indices should match.
      if (EHInfoA->second != EHInfoB->second)
        return false;

      if (!EHInfoA->first != !EHInfoB->first)
        return false;

      if (EHInfoA->first && EHInfoB->first) {
        const BinaryBasicBlock *LPA = BBA.getLandingPad(EHInfoA->first);
        const BinaryBasicBlock *LPB = BBB.getLandingPad(EHInfoB->first);
        assert(LPA && LPB && "cannot locate landing pad(s)");

        if (LPA->getLayoutIndex() != LPB->getLayoutIndex())
          return false;
      }
    }
  }

  return BC.MIB->equals(InstA, InstB, Comp);
}

/// Returns true if this function has identical code and CFG with
/// the given function \p BF.
///
/// If \p CongruentSymbols is set to true, then symbolic operands that reference
/// potentially identical but different functions are ignored during the
/// comparison.
static bool isIdenticalWith(const BinaryFunction &A, const BinaryFunction &B,
                            bool CongruentSymbols) {
  assert(A.hasCFG() && B.hasCFG() && "both functions should have CFG");

  // Compare the two functions, one basic block at a time.
  // Currently we require two identical basic blocks to have identical
  // instruction sequences and the same index in their corresponding
  // functions. The latter is important for CFG equality.

  if (A.getLayout().block_size() != B.getLayout().block_size())
    return false;

  // Comparing multi-entry functions could be non-trivial.
  if (A.isMultiEntry() || B.isMultiEntry())
    return false;

  if (A.hasIslandsInfo() || B.hasIslandsInfo())
    return false;

  // Process both functions in either DFS or existing order.
  SmallVector<const BinaryBasicBlock *, 0> OrderA;
  SmallVector<const BinaryBasicBlock *, 0> OrderB;
  if (opts::ICFUseDFS) {
    copy(A.dfs(), std::back_inserter(OrderA));
    copy(B.dfs(), std::back_inserter(OrderB));
  } else {
    copy(A.getLayout().blocks(), std::back_inserter(OrderA));
    copy(B.getLayout().blocks(), std::back_inserter(OrderB));
  }

  const BinaryContext &BC = A.getBinaryContext();

  auto BBI = OrderB.begin();
  for (const BinaryBasicBlock *BB : OrderA) {
    const BinaryBasicBlock *OtherBB = *BBI;

    if (BB->getLayoutIndex() != OtherBB->getLayoutIndex())
      return false;

    // Compare successor basic blocks.
    // NOTE: the comparison for jump tables is only partially verified here.
    if (BB->succ_size() != OtherBB->succ_size())
      return false;

    auto SuccBBI = OtherBB->succ_begin();
    for (const BinaryBasicBlock *SuccBB : BB->successors()) {
      const BinaryBasicBlock *SuccOtherBB = *SuccBBI;
      if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex())
        return false;
      ++SuccBBI;
    }

    // Compare all instructions including pseudos.
    auto I = BB->begin(), E = BB->end();
    auto OtherI = OtherBB->begin(), OtherE = OtherBB->end();
    while (I != E && OtherI != OtherE) {
      // Compare symbols.
      auto AreSymbolsIdentical = [&](const MCSymbol *SymbolA,
                                     const MCSymbol *SymbolB) {
        if (SymbolA == SymbolB)
          return true;

        // All local symbols are considered identical since they affect a
        // control flow and we check the control flow separately.
        // If a local symbol is escaped, then the function (potentially) has
        // multiple entry points and we exclude such functions from
        // comparison.
        if (SymbolA->isTemporary() && SymbolB->isTemporary())
          return true;

        // Compare symbols as functions.
        uint64_t EntryIDA = 0;
        uint64_t EntryIDB = 0;
        const BinaryFunction *FunctionA =
            BC.getFunctionForSymbol(SymbolA, &EntryIDA);
        const BinaryFunction *FunctionB =
            BC.getFunctionForSymbol(SymbolB, &EntryIDB);
        if (FunctionA && EntryIDA)
          FunctionA = nullptr;
        if (FunctionB && EntryIDB)
          FunctionB = nullptr;
        if (FunctionA && FunctionB) {
          // Self-referencing functions and recursive calls.
          if (FunctionA == &A && FunctionB == &B)
            return true;

          // Functions with different hash values can never become identical,
          // hence A and B are different.
          if (CongruentSymbols)
            return FunctionA->getHash() == FunctionB->getHash();

          return FunctionA == FunctionB;
        }

        // One of the symbols represents a function, the other one does not.
        if (FunctionA != FunctionB)
          return false;

        // Check if symbols are jump tables.
        const BinaryData *SIA = BC.getBinaryDataByName(SymbolA->getName());
        if (!SIA)
          return false;
        const BinaryData *SIB = BC.getBinaryDataByName(SymbolB->getName());
        if (!SIB)
          return false;

        assert((SIA->getAddress() != SIB->getAddress()) &&
               "different symbols should not have the same value");

        const JumpTable *JumpTableA =
            A.getJumpTableContainingAddress(SIA->getAddress());
        if (!JumpTableA)
          return false;

        const JumpTable *JumpTableB =
            B.getJumpTableContainingAddress(SIB->getAddress());
        if (!JumpTableB)
          return false;

        if ((SIA->getAddress() - JumpTableA->getAddress()) !=
            (SIB->getAddress() - JumpTableB->getAddress()))
          return false;

        return equalJumpTables(*JumpTableA, *JumpTableB, A, B);
      };

      if (!isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB,
                                 AreSymbolsIdentical))
        return false;

      ++I;
      ++OtherI;
    }

    // One of the identical blocks may have a trailing unconditional jump that
    // is ignored for CFG purposes.
    const MCInst *TrailingInstr =
        (I != E ? &(*I) : (OtherI != OtherE ? &(*OtherI) : nullptr));
    if (TrailingInstr && !BC.MIB->isUnconditionalBranch(*TrailingInstr))
      return false;

    ++BBI;
  }

  // Compare exceptions action tables.
  if (A.getLSDAActionTable() != B.getLSDAActionTable() ||
      A.getLSDATypeTable() != B.getLSDATypeTable() ||
      A.getLSDATypeIndexTable() != B.getLSDATypeIndexTable())
    return false;

  return true;
}

// This hash table is used to identify identical functions. It maps
// a function to a bucket of functions identical to it.
struct KeyHash {
  size_t operator()(const BinaryFunction *F) const { return F->getHash(); }
};

/// Identify two congruent functions. Two functions are considered congruent,
/// if they are identical/equal except for some of their instruction operands
/// that reference potentially identical functions, i.e. functions that could
/// be folded later. Congruent functions are candidates for folding in our
/// iterative ICF algorithm.
///
/// Congruent functions are required to have identical hash.
struct KeyCongruent {
  bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
    if (A == B)
      return true;
    return isIdenticalWith(*A, *B, /*CongruentSymbols=*/true);
  }
};

struct KeyEqual {
  bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
    if (A == B)
      return true;
    return isIdenticalWith(*A, *B, /*CongruentSymbols=*/false);
  }
};

typedef std::unordered_map<BinaryFunction *, std::set<BinaryFunction *>,
                           KeyHash, KeyCongruent>
    CongruentBucketsMap;

typedef std::unordered_map<BinaryFunction *, std::vector<BinaryFunction *>,
                           KeyHash, KeyEqual>
    IdenticalBucketsMap;

namespace llvm {
namespace bolt {

Error IdenticalCodeFolding::runOnFunctions(BinaryContext &BC) {
  const size_t OriginalFunctionCount = BC.getBinaryFunctions().size();
  uint64_t NumFunctionsFolded = 0;
  std::atomic<uint64_t> NumJTFunctionsFolded{0};
  std::atomic<uint64_t> BytesSavedEstimate{0};
  std::atomic<uint64_t> NumCalled{0};
  std::atomic<uint64_t> NumFoldedLastIteration{0};
  CongruentBucketsMap CongruentBuckets;

  // Hash all the functions
  auto hashFunctions = [&]() {
    NamedRegionTimer HashFunctionsTimer("hashing", "hashing", "ICF breakdown",
                                        "ICF breakdown", opts::TimeICF);
    ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) {
      // Make sure indices are in-order.
      BF.getLayout().updateLayoutIndices();

      // Pre-compute hash before pushing into hashtable.
      // Hash instruction operands to minimize hash collisions.
      BF.computeHash(
          opts::ICFUseDFS, HashFunction::Default,
          [&BC](const MCOperand &Op) { return hashInstOperand(BC, Op); });
    };

    ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
      return !shouldOptimize(BF);
    };

    ParallelUtilities::runOnEachFunction(
        BC, ParallelUtilities::SchedulingPolicy::SP_TRIVIAL, WorkFun, SkipFunc,
        "hashFunctions", /*ForceSequential*/ false, 2);
  };

  // Creates buckets with congruent functions - functions that potentially
  // could  be folded.
  auto createCongruentBuckets = [&]() {
    NamedRegionTimer CongruentBucketsTimer("congruent buckets",
                                           "congruent buckets", "ICF breakdown",
                                           "ICF breakdown", opts::TimeICF);
    for (auto &BFI : BC.getBinaryFunctions()) {
      BinaryFunction &BF = BFI.second;
      if (!this->shouldOptimize(BF))
        continue;
      CongruentBuckets[&BF].emplace(&BF);
    }
  };

  // Partition each set of congruent functions into sets of identical functions
  // and fold them
  auto performFoldingPass = [&]() {
    NamedRegionTimer FoldingPassesTimer("folding passes", "folding passes",
                                        "ICF breakdown", "ICF breakdown",
                                        opts::TimeICF);
    Timer SinglePass("single fold pass", "single fold pass");
    LLVM_DEBUG(SinglePass.startTimer());

    ThreadPoolInterface *ThPool;
    if (!opts::NoThreads)
      ThPool = &ParallelUtilities::getThreadPool();

    // Fold identical functions within a single congruent bucket
    auto processSingleBucket = [&](std::set<BinaryFunction *> &Candidates) {
      Timer T("folding single congruent list", "folding single congruent list");
      LLVM_DEBUG(T.startTimer());

      // Identical functions go into the same bucket.
      IdenticalBucketsMap IdenticalBuckets;
      for (BinaryFunction *BF : Candidates) {
        IdenticalBuckets[BF].emplace_back(BF);
      }

      for (auto &IBI : IdenticalBuckets) {
        // Functions identified as identical.
        std::vector<BinaryFunction *> &Twins = IBI.second;
        if (Twins.size() < 2)
          continue;

        // Fold functions. Keep the order consistent across invocations with
        // different options.
        llvm::stable_sort(
            Twins, [](const BinaryFunction *A, const BinaryFunction *B) {
              return A->getFunctionNumber() < B->getFunctionNumber();
            });

        BinaryFunction *ParentBF = Twins[0];
        if (!ParentBF->hasFunctionsFoldedInto())
          NumCalled += ParentBF->getKnownExecutionCount();
        for (unsigned I = 1; I < Twins.size(); ++I) {
          BinaryFunction *ChildBF = Twins[I];
          LLVM_DEBUG(dbgs() << "BOLT-DEBUG: folding " << *ChildBF << " into "
                            << *ParentBF << '\n');

          // Remove child function from the list of candidates.
          auto FI = Candidates.find(ChildBF);
          assert(FI != Candidates.end() &&
                 "function expected to be in the set");
          Candidates.erase(FI);

          // Fold the function and remove from the list of processed functions.
          BytesSavedEstimate += ChildBF->getSize();
          if (!ChildBF->hasFunctionsFoldedInto())
            NumCalled += ChildBF->getKnownExecutionCount();
          BC.foldFunction(*ChildBF, *ParentBF);

          ++NumFoldedLastIteration;

          if (ParentBF->hasJumpTables())
            ++NumJTFunctionsFolded;
        }
      }

      LLVM_DEBUG(T.stopTimer());
    };

    // Create a task for each congruent bucket
    for (auto &Entry : CongruentBuckets) {
      std::set<BinaryFunction *> &Bucket = Entry.second;
      if (Bucket.size() < 2)
        continue;

      if (opts::NoThreads)
        processSingleBucket(Bucket);
      else
        ThPool->async(processSingleBucket, std::ref(Bucket));
    }

    if (!opts::NoThreads)
      ThPool->wait();

    LLVM_DEBUG(SinglePass.stopTimer());
  };

  hashFunctions();
  createCongruentBuckets();

  unsigned Iteration = 1;
  // We repeat the pass until no new modifications happen.
  do {
    NumFoldedLastIteration = 0;
    LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ICF iteration " << Iteration << "...\n");

    performFoldingPass();

    NumFunctionsFolded += NumFoldedLastIteration;
    ++Iteration;

  } while (NumFoldedLastIteration > 0);

  LLVM_DEBUG({
    // Print functions that are congruent but not identical.
    for (auto &CBI : CongruentBuckets) {
      std::set<BinaryFunction *> &Candidates = CBI.second;
      if (Candidates.size() < 2)
        continue;
      dbgs() << "BOLT-DEBUG: the following " << Candidates.size()
             << " functions (each of size " << (*Candidates.begin())->getSize()
             << " bytes) are congruent but not identical:\n";
      for (BinaryFunction *BF : Candidates) {
        dbgs() << "  " << *BF;
        if (BF->getKnownExecutionCount())
          dbgs() << " (executed " << BF->getKnownExecutionCount() << " times)";
        dbgs() << '\n';
      }
    }
  });

  if (NumFunctionsFolded)
    BC.outs() << "BOLT-INFO: ICF folded " << NumFunctionsFolded << " out of "
              << OriginalFunctionCount << " functions in " << Iteration
              << " passes. " << NumJTFunctionsFolded
              << " functions had jump tables.\n"
              << "BOLT-INFO: Removing all identical functions will save "
              << format("%.2lf", (double)BytesSavedEstimate / 1024)
              << " KB of code space. Folded functions were called " << NumCalled
              << " times based on profile.\n";

  return Error::success();
}

} // namespace bolt
} // namespace llvm