// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "benchmark/benchmark.h" #include "benchmark_api_internal.h" #include "benchmark_runner.h" #include "internal_macros.h" #ifndef BENCHMARK_OS_WINDOWS #if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT) #include #endif #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "check.h" #include "colorprint.h" #include "commandlineflags.h" #include "complexity.h" #include "counter.h" #include "internal_macros.h" #include "log.h" #include "mutex.h" #include "perf_counters.h" #include "re.h" #include "statistics.h" #include "string_util.h" #include "thread_manager.h" #include "thread_timer.h" namespace benchmark { // Print a list of benchmarks. This option overrides all other options. BM_DEFINE_bool(benchmark_list_tests, false); // A regular expression that specifies the set of benchmarks to execute. If // this flag is empty, or if this flag is the string \"all\", all benchmarks // linked into the binary are run. BM_DEFINE_string(benchmark_filter, ""); // Specification of how long to run the benchmark. // // It can be either an exact number of iterations (specified as `x`), // or a minimum number of seconds (specified as `s`). If the latter // format (ie., min seconds) is used, the system may run the benchmark longer // until the results are considered significant. // // For backward compatibility, the `s` suffix may be omitted, in which case, // the specified number is interpreted as the number of seconds. // // For cpu-time based tests, this is the lower bound // on the total cpu time used by all threads that make up the test. For // real-time based tests, this is the lower bound on the elapsed time of the // benchmark execution, regardless of number of threads. BM_DEFINE_string(benchmark_min_time, kDefaultMinTimeStr); // Minimum number of seconds a benchmark should be run before results should be // taken into account. This e.g can be necessary for benchmarks of code which // needs to fill some form of cache before performance is of interest. // Note: results gathered within this period are discarded and not used for // reported result. BM_DEFINE_double(benchmark_min_warmup_time, 0.0); // The number of runs of each benchmark. If greater than 1, the mean and // standard deviation of the runs will be reported. BM_DEFINE_int32(benchmark_repetitions, 1); // If set, enable random interleaving of repetitions of all benchmarks. // See http://github.com/google/benchmark/issues/1051 for details. BM_DEFINE_bool(benchmark_enable_random_interleaving, false); // Report the result of each benchmark repetitions. When 'true' is specified // only the mean, standard deviation, and other statistics are reported for // repeated benchmarks. Affects all reporters. BM_DEFINE_bool(benchmark_report_aggregates_only, false); // Display the result of each benchmark repetitions. When 'true' is specified // only the mean, standard deviation, and other statistics are displayed for // repeated benchmarks. Unlike benchmark_report_aggregates_only, only affects // the display reporter, but *NOT* file reporter, which will still contain // all the output. BM_DEFINE_bool(benchmark_display_aggregates_only, false); // The format to use for console output. // Valid values are 'console', 'json', or 'csv'. BM_DEFINE_string(benchmark_format, "console"); // The format to use for file output. // Valid values are 'console', 'json', or 'csv'. BM_DEFINE_string(benchmark_out_format, "json"); // The file to write additional output to. BM_DEFINE_string(benchmark_out, ""); // Whether to use colors in the output. Valid values: // 'true'/'yes'/1, 'false'/'no'/0, and 'auto'. 'auto' means to use colors if // the output is being sent to a terminal and the TERM environment variable is // set to a terminal type that supports colors. BM_DEFINE_string(benchmark_color, "auto"); // Whether to use tabular format when printing user counters to the console. // Valid values: 'true'/'yes'/1, 'false'/'no'/0. Defaults to false. BM_DEFINE_bool(benchmark_counters_tabular, false); // List of additional perf counters to collect, in libpfm format. For more // information about libpfm: https://man7.org/linux/man-pages/man3/libpfm.3.html BM_DEFINE_string(benchmark_perf_counters, ""); // Extra context to include in the output formatted as comma-separated key-value // pairs. Kept internal as it's only used for parsing from env/command line. BM_DEFINE_kvpairs(benchmark_context, {}); // Set the default time unit to use for reports // Valid values are 'ns', 'us', 'ms' or 's' BM_DEFINE_string(benchmark_time_unit, ""); // The level of verbose logging to output BM_DEFINE_int32(v, 0); namespace internal { std::map* global_context = nullptr; BENCHMARK_EXPORT std::map*& GetGlobalContext() { return global_context; } // FIXME: wouldn't LTO mess this up? void UseCharPointer(char const volatile*) {} } // namespace internal State::State(std::string name, IterationCount max_iters, const std::vector& ranges, int thread_i, int n_threads, internal::ThreadTimer* timer, internal::ThreadManager* manager, internal::PerfCountersMeasurement* perf_counters_measurement) : total_iterations_(0), batch_leftover_(0), max_iterations(max_iters), started_(false), finished_(false), skipped_(internal::NotSkipped), range_(ranges), complexity_n_(0), name_(std::move(name)), thread_index_(thread_i), threads_(n_threads), timer_(timer), manager_(manager), perf_counters_measurement_(perf_counters_measurement) { BM_CHECK(max_iterations != 0) << "At least one iteration must be run"; BM_CHECK_LT(thread_index_, threads_) << "thread_index must be less than threads"; // Add counters with correct flag now. If added with `counters[name]` in // `PauseTiming`, a new `Counter` will be inserted the first time, which // won't have the flag. Inserting them now also reduces the allocations // during the benchmark. if (perf_counters_measurement_) { for (const std::string& counter_name : perf_counters_measurement_->names()) { counters[counter_name] = Counter(0.0, Counter::kAvgIterations); } } // Note: The use of offsetof below is technically undefined until C++17 // because State is not a standard layout type. However, all compilers // currently provide well-defined behavior as an extension (which is // demonstrated since constexpr evaluation must diagnose all undefined // behavior). However, GCC and Clang also warn about this use of offsetof, // which must be suppressed. #if defined(__INTEL_COMPILER) #pragma warning push #pragma warning(disable : 1875) #elif defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Winvalid-offsetof" #elif defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Winvalid-offsetof" #endif #if defined(__NVCC__) #pragma nv_diagnostic push #pragma nv_diag_suppress 1427 #endif #if defined(__NVCOMPILER) #pragma diagnostic push #pragma diag_suppress offset_in_non_POD_nonstandard #endif // Offset tests to ensure commonly accessed data is on the first cache line. const int cache_line_size = 64; static_assert( offsetof(State, skipped_) <= (cache_line_size - sizeof(skipped_)), ""); #if defined(__INTEL_COMPILER) #pragma warning pop #elif defined(__GNUC__) #pragma GCC diagnostic pop #elif defined(__clang__) #pragma clang diagnostic pop #endif #if defined(__NVCC__) #pragma nv_diagnostic pop #endif #if defined(__NVCOMPILER) #pragma diagnostic pop #endif } void State::PauseTiming() { // Add in time accumulated so far BM_CHECK(started_ && !finished_ && !skipped()); timer_->StopTimer(); if (perf_counters_measurement_) { std::vector> measurements; if (!perf_counters_measurement_->Stop(measurements)) { BM_CHECK(false) << "Perf counters read the value failed."; } for (const auto& name_and_measurement : measurements) { const std::string& name = name_and_measurement.first; const double measurement = name_and_measurement.second; // Counter was inserted with `kAvgIterations` flag by the constructor. assert(counters.find(name) != counters.end()); counters[name].value += measurement; } } } void State::ResumeTiming() { BM_CHECK(started_ && !finished_ && !skipped()); timer_->StartTimer(); if (perf_counters_measurement_) { perf_counters_measurement_->Start(); } } void State::SkipWithMessage(const std::string& msg) { skipped_ = internal::SkippedWithMessage; { MutexLock l(manager_->GetBenchmarkMutex()); if (internal::NotSkipped == manager_->results.skipped_) { manager_->results.skip_message_ = msg; manager_->results.skipped_ = skipped_; } } total_iterations_ = 0; if (timer_->running()) timer_->StopTimer(); } void State::SkipWithError(const std::string& msg) { skipped_ = internal::SkippedWithError; { MutexLock l(manager_->GetBenchmarkMutex()); if (internal::NotSkipped == manager_->results.skipped_) { manager_->results.skip_message_ = msg; manager_->results.skipped_ = skipped_; } } total_iterations_ = 0; if (timer_->running()) timer_->StopTimer(); } void State::SetIterationTime(double seconds) { timer_->SetIterationTime(seconds); } void State::SetLabel(const std::string& label) { MutexLock l(manager_->GetBenchmarkMutex()); manager_->results.report_label_ = label; } void State::StartKeepRunning() { BM_CHECK(!started_ && !finished_); started_ = true; total_iterations_ = skipped() ? 0 : max_iterations; manager_->StartStopBarrier(); if (!skipped()) ResumeTiming(); } void State::FinishKeepRunning() { BM_CHECK(started_ && (!finished_ || skipped())); if (!skipped()) { PauseTiming(); } // Total iterations has now wrapped around past 0. Fix this. total_iterations_ = 0; finished_ = true; manager_->StartStopBarrier(); } namespace internal { namespace { // Flushes streams after invoking reporter methods that write to them. This // ensures users get timely updates even when streams are not line-buffered. void FlushStreams(BenchmarkReporter* reporter) { if (!reporter) return; std::flush(reporter->GetOutputStream()); std::flush(reporter->GetErrorStream()); } // Reports in both display and file reporters. void Report(BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter, const RunResults& run_results) { auto report_one = [](BenchmarkReporter* reporter, bool aggregates_only, const RunResults& results) { assert(reporter); // If there are no aggregates, do output non-aggregates. aggregates_only &= !results.aggregates_only.empty(); if (!aggregates_only) reporter->ReportRuns(results.non_aggregates); if (!results.aggregates_only.empty()) reporter->ReportRuns(results.aggregates_only); }; report_one(display_reporter, run_results.display_report_aggregates_only, run_results); if (file_reporter) report_one(file_reporter, run_results.file_report_aggregates_only, run_results); FlushStreams(display_reporter); FlushStreams(file_reporter); } void RunBenchmarks(const std::vector& benchmarks, BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter) { // Note the file_reporter can be null. BM_CHECK(display_reporter != nullptr); // Determine the width of the name field using a minimum width of 10. bool might_have_aggregates = FLAGS_benchmark_repetitions > 1; size_t name_field_width = 10; size_t stat_field_width = 0; for (const BenchmarkInstance& benchmark : benchmarks) { name_field_width = std::max(name_field_width, benchmark.name().str().size()); might_have_aggregates |= benchmark.repetitions() > 1; for (const auto& Stat : benchmark.statistics()) stat_field_width = std::max(stat_field_width, Stat.name_.size()); } if (might_have_aggregates) name_field_width += 1 + stat_field_width; // Print header here BenchmarkReporter::Context context; context.name_field_width = name_field_width; // Keep track of running times of all instances of each benchmark family. std::map per_family_reports; if (display_reporter->ReportContext(context) && (!file_reporter || file_reporter->ReportContext(context))) { FlushStreams(display_reporter); FlushStreams(file_reporter); size_t num_repetitions_total = 0; // This perfcounters object needs to be created before the runners vector // below so it outlasts their lifetime. PerfCountersMeasurement perfcounters( StrSplit(FLAGS_benchmark_perf_counters, ',')); // Vector of benchmarks to run std::vector runners; runners.reserve(benchmarks.size()); // Count the number of benchmarks with threads to warn the user in case // performance counters are used. int benchmarks_with_threads = 0; // Loop through all benchmarks for (const BenchmarkInstance& benchmark : benchmarks) { BenchmarkReporter::PerFamilyRunReports* reports_for_family = nullptr; if (benchmark.complexity() != oNone) reports_for_family = &per_family_reports[benchmark.family_index()]; benchmarks_with_threads += (benchmark.threads() > 1); runners.emplace_back(benchmark, &perfcounters, reports_for_family); int num_repeats_of_this_instance = runners.back().GetNumRepeats(); num_repetitions_total += num_repeats_of_this_instance; if (reports_for_family) reports_for_family->num_runs_total += num_repeats_of_this_instance; } assert(runners.size() == benchmarks.size() && "Unexpected runner count."); // The use of performance counters with threads would be unintuitive for // the average user so we need to warn them about this case if ((benchmarks_with_threads > 0) && (perfcounters.num_counters() > 0)) { GetErrorLogInstance() << "***WARNING*** There are " << benchmarks_with_threads << " benchmarks with threads and " << perfcounters.num_counters() << " performance counters were requested. Beware counters will " "reflect the combined usage across all " "threads.\n"; } std::vector repetition_indices; repetition_indices.reserve(num_repetitions_total); for (size_t runner_index = 0, num_runners = runners.size(); runner_index != num_runners; ++runner_index) { const internal::BenchmarkRunner& runner = runners[runner_index]; std::fill_n(std::back_inserter(repetition_indices), runner.GetNumRepeats(), runner_index); } assert(repetition_indices.size() == num_repetitions_total && "Unexpected number of repetition indexes."); if (FLAGS_benchmark_enable_random_interleaving) { std::random_device rd; std::mt19937 g(rd()); std::shuffle(repetition_indices.begin(), repetition_indices.end(), g); } for (size_t repetition_index : repetition_indices) { internal::BenchmarkRunner& runner = runners[repetition_index]; runner.DoOneRepetition(); if (runner.HasRepeatsRemaining()) continue; // FIXME: report each repetition separately, not all of them in bulk. display_reporter->ReportRunsConfig( runner.GetMinTime(), runner.HasExplicitIters(), runner.GetIters()); if (file_reporter) file_reporter->ReportRunsConfig( runner.GetMinTime(), runner.HasExplicitIters(), runner.GetIters()); RunResults run_results = runner.GetResults(); // Maybe calculate complexity report if (const auto* reports_for_family = runner.GetReportsForFamily()) { if (reports_for_family->num_runs_done == reports_for_family->num_runs_total) { auto additional_run_stats = ComputeBigO(reports_for_family->Runs); run_results.aggregates_only.insert(run_results.aggregates_only.end(), additional_run_stats.begin(), additional_run_stats.end()); per_family_reports.erase( static_cast(reports_for_family->Runs.front().family_index)); } } Report(display_reporter, file_reporter, run_results); } } display_reporter->Finalize(); if (file_reporter) file_reporter->Finalize(); FlushStreams(display_reporter); FlushStreams(file_reporter); } // Disable deprecated warnings temporarily because we need to reference // CSVReporter but don't want to trigger -Werror=-Wdeprecated-declarations BENCHMARK_DISABLE_DEPRECATED_WARNING std::unique_ptr CreateReporter( std::string const& name, ConsoleReporter::OutputOptions output_opts) { typedef std::unique_ptr PtrType; if (name == "console") { return PtrType(new ConsoleReporter(output_opts)); } if (name == "json") { return PtrType(new JSONReporter()); } if (name == "csv") { return PtrType(new CSVReporter()); } std::cerr << "Unexpected format: '" << name << "'\n"; std::exit(1); } BENCHMARK_RESTORE_DEPRECATED_WARNING } // end namespace bool IsZero(double n) { return std::abs(n) < std::numeric_limits::epsilon(); } ConsoleReporter::OutputOptions GetOutputOptions(bool force_no_color) { int output_opts = ConsoleReporter::OO_Defaults; auto is_benchmark_color = [force_no_color]() -> bool { if (force_no_color) { return false; } if (FLAGS_benchmark_color == "auto") { return IsColorTerminal(); } return IsTruthyFlagValue(FLAGS_benchmark_color); }; if (is_benchmark_color()) { output_opts |= ConsoleReporter::OO_Color; } else { output_opts &= ~ConsoleReporter::OO_Color; } if (FLAGS_benchmark_counters_tabular) { output_opts |= ConsoleReporter::OO_Tabular; } else { output_opts &= ~ConsoleReporter::OO_Tabular; } return static_cast(output_opts); } } // end namespace internal BenchmarkReporter* CreateDefaultDisplayReporter() { static auto default_display_reporter = internal::CreateReporter(FLAGS_benchmark_format, internal::GetOutputOptions()) .release(); return default_display_reporter; } size_t RunSpecifiedBenchmarks() { return RunSpecifiedBenchmarks(nullptr, nullptr, FLAGS_benchmark_filter); } size_t RunSpecifiedBenchmarks(std::string spec) { return RunSpecifiedBenchmarks(nullptr, nullptr, std::move(spec)); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter) { return RunSpecifiedBenchmarks(display_reporter, nullptr, FLAGS_benchmark_filter); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter, std::string spec) { return RunSpecifiedBenchmarks(display_reporter, nullptr, std::move(spec)); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter) { return RunSpecifiedBenchmarks(display_reporter, file_reporter, FLAGS_benchmark_filter); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter, std::string spec) { if (spec.empty() || spec == "all") spec = "."; // Regexp that matches all benchmarks // Setup the reporters std::ofstream output_file; std::unique_ptr default_display_reporter; std::unique_ptr default_file_reporter; if (!display_reporter) { default_display_reporter.reset(CreateDefaultDisplayReporter()); display_reporter = default_display_reporter.get(); } auto& Out = display_reporter->GetOutputStream(); auto& Err = display_reporter->GetErrorStream(); std::string const& fname = FLAGS_benchmark_out; if (fname.empty() && file_reporter) { Err << "A custom file reporter was provided but " "--benchmark_out= was not specified." << std::endl; Out.flush(); Err.flush(); std::exit(1); } if (!fname.empty()) { output_file.open(fname); if (!output_file.is_open()) { Err << "invalid file name: '" << fname << "'" << std::endl; Out.flush(); Err.flush(); std::exit(1); } if (!file_reporter) { default_file_reporter = internal::CreateReporter( FLAGS_benchmark_out_format, FLAGS_benchmark_counters_tabular ? ConsoleReporter::OO_Tabular : ConsoleReporter::OO_None); file_reporter = default_file_reporter.get(); } file_reporter->SetOutputStream(&output_file); file_reporter->SetErrorStream(&output_file); } std::vector benchmarks; if (!FindBenchmarksInternal(spec, &benchmarks, &Err)) { Out.flush(); Err.flush(); return 0; } if (benchmarks.empty()) { Err << "Failed to match any benchmarks against regex: " << spec << "\n"; Out.flush(); Err.flush(); return 0; } if (FLAGS_benchmark_list_tests) { for (auto const& benchmark : benchmarks) Out << benchmark.name().str() << "\n"; } else { internal::RunBenchmarks(benchmarks, display_reporter, file_reporter); } Out.flush(); Err.flush(); return benchmarks.size(); } namespace { // stores the time unit benchmarks use by default TimeUnit default_time_unit = kNanosecond; } // namespace TimeUnit GetDefaultTimeUnit() { return default_time_unit; } void SetDefaultTimeUnit(TimeUnit unit) { default_time_unit = unit; } std::string GetBenchmarkFilter() { return FLAGS_benchmark_filter; } void SetBenchmarkFilter(std::string value) { FLAGS_benchmark_filter = std::move(value); } int32_t GetBenchmarkVerbosity() { return FLAGS_v; } void RegisterMemoryManager(MemoryManager* manager) { internal::memory_manager = manager; } void AddCustomContext(const std::string& key, const std::string& value) { if (internal::global_context == nullptr) { internal::global_context = new std::map(); } if (!internal::global_context->emplace(key, value).second) { std::cerr << "Failed to add custom context \"" << key << "\" as it already " << "exists with value \"" << value << "\"\n"; } } namespace internal { void (*HelperPrintf)(); void PrintUsageAndExit() { HelperPrintf(); exit(0); } void SetDefaultTimeUnitFromFlag(const std::string& time_unit_flag) { if (time_unit_flag == "s") { return SetDefaultTimeUnit(kSecond); } if (time_unit_flag == "ms") { return SetDefaultTimeUnit(kMillisecond); } if (time_unit_flag == "us") { return SetDefaultTimeUnit(kMicrosecond); } if (time_unit_flag == "ns") { return SetDefaultTimeUnit(kNanosecond); } if (!time_unit_flag.empty()) { PrintUsageAndExit(); } } void ParseCommandLineFlags(int* argc, char** argv) { using namespace benchmark; BenchmarkReporter::Context::executable_name = (argc && *argc > 0) ? argv[0] : "unknown"; for (int i = 1; argc && i < *argc; ++i) { if (ParseBoolFlag(argv[i], "benchmark_list_tests", &FLAGS_benchmark_list_tests) || ParseStringFlag(argv[i], "benchmark_filter", &FLAGS_benchmark_filter) || ParseStringFlag(argv[i], "benchmark_min_time", &FLAGS_benchmark_min_time) || ParseDoubleFlag(argv[i], "benchmark_min_warmup_time", &FLAGS_benchmark_min_warmup_time) || ParseInt32Flag(argv[i], "benchmark_repetitions", &FLAGS_benchmark_repetitions) || ParseBoolFlag(argv[i], "benchmark_enable_random_interleaving", &FLAGS_benchmark_enable_random_interleaving) || ParseBoolFlag(argv[i], "benchmark_report_aggregates_only", &FLAGS_benchmark_report_aggregates_only) || ParseBoolFlag(argv[i], "benchmark_display_aggregates_only", &FLAGS_benchmark_display_aggregates_only) || ParseStringFlag(argv[i], "benchmark_format", &FLAGS_benchmark_format) || ParseStringFlag(argv[i], "benchmark_out", &FLAGS_benchmark_out) || ParseStringFlag(argv[i], "benchmark_out_format", &FLAGS_benchmark_out_format) || ParseStringFlag(argv[i], "benchmark_color", &FLAGS_benchmark_color) || ParseBoolFlag(argv[i], "benchmark_counters_tabular", &FLAGS_benchmark_counters_tabular) || ParseStringFlag(argv[i], "benchmark_perf_counters", &FLAGS_benchmark_perf_counters) || ParseKeyValueFlag(argv[i], "benchmark_context", &FLAGS_benchmark_context) || ParseStringFlag(argv[i], "benchmark_time_unit", &FLAGS_benchmark_time_unit) || ParseInt32Flag(argv[i], "v", &FLAGS_v)) { for (int j = i; j != *argc - 1; ++j) argv[j] = argv[j + 1]; --(*argc); --i; } else if (IsFlag(argv[i], "help")) { PrintUsageAndExit(); } } for (auto const* flag : {&FLAGS_benchmark_format, &FLAGS_benchmark_out_format}) { if (*flag != "console" && *flag != "json" && *flag != "csv") { PrintUsageAndExit(); } } SetDefaultTimeUnitFromFlag(FLAGS_benchmark_time_unit); if (FLAGS_benchmark_color.empty()) { PrintUsageAndExit(); } for (const auto& kv : FLAGS_benchmark_context) { AddCustomContext(kv.first, kv.second); } } int InitializeStreams() { static std::ios_base::Init init; return 0; } } // end namespace internal std::string GetBenchmarkVersion() { return {BENCHMARK_VERSION}; } void PrintDefaultHelp() { fprintf(stdout, "benchmark" " [--benchmark_list_tests={true|false}]\n" " [--benchmark_filter=]\n" " [--benchmark_min_time=`x` OR `s` ]\n" " [--benchmark_min_warmup_time=]\n" " [--benchmark_repetitions=]\n" " [--benchmark_enable_random_interleaving={true|false}]\n" " [--benchmark_report_aggregates_only={true|false}]\n" " [--benchmark_display_aggregates_only={true|false}]\n" " [--benchmark_format=]\n" " [--benchmark_out=]\n" " [--benchmark_out_format=]\n" " [--benchmark_color={auto|true|false}]\n" " [--benchmark_counters_tabular={true|false}]\n" #if defined HAVE_LIBPFM " [--benchmark_perf_counters=,...]\n" #endif " [--benchmark_context==,...]\n" " [--benchmark_time_unit={ns|us|ms|s}]\n" " [--v=]\n"); } void Initialize(int* argc, char** argv, void (*HelperPrintf)()) { internal::HelperPrintf = HelperPrintf; internal::ParseCommandLineFlags(argc, argv); internal::LogLevel() = FLAGS_v; } void Shutdown() { delete internal::global_context; } bool ReportUnrecognizedArguments(int argc, char** argv) { for (int i = 1; i < argc; ++i) { fprintf(stderr, "%s: error: unrecognized command-line flag: %s\n", argv[0], argv[i]); } return argc > 1; } } // end namespace benchmark