// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(cse))' | FileCheck %s // CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 mod 2)> #map0 = affine_map<(d0) -> (d0 mod 2)> // CHECK-LABEL: @simple_constant func.func @simple_constant() -> (i32, i32) { // CHECK-NEXT: %[[VAR_c1_i32:.*]] = arith.constant 1 : i32 %0 = arith.constant 1 : i32 // CHECK-NEXT: return %[[VAR_c1_i32]], %[[VAR_c1_i32]] : i32, i32 %1 = arith.constant 1 : i32 return %0, %1 : i32, i32 } // CHECK-LABEL: @basic func.func @basic() -> (index, index) { // CHECK: %[[VAR_c0:[0-9a-zA-Z_]+]] = arith.constant 0 : index %c0 = arith.constant 0 : index %c1 = arith.constant 0 : index // CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = affine.apply #[[$MAP]](%[[VAR_c0]]) %0 = affine.apply #map0(%c0) %1 = affine.apply #map0(%c1) // CHECK-NEXT: return %[[VAR_0]], %[[VAR_0]] : index, index return %0, %1 : index, index } // CHECK-LABEL: @many func.func @many(f32, f32) -> (f32) { ^bb0(%a : f32, %b : f32): // CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.addf %{{.*}}, %{{.*}} : f32 %c = arith.addf %a, %b : f32 %d = arith.addf %a, %b : f32 %e = arith.addf %a, %b : f32 %f = arith.addf %a, %b : f32 // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_0]], %[[VAR_0]] : f32 %g = arith.addf %c, %d : f32 %h = arith.addf %e, %f : f32 %i = arith.addf %c, %e : f32 // CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_1]], %[[VAR_1]] : f32 %j = arith.addf %g, %h : f32 %k = arith.addf %h, %i : f32 // CHECK-NEXT: %[[VAR_3:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_2]], %[[VAR_2]] : f32 %l = arith.addf %j, %k : f32 // CHECK-NEXT: return %[[VAR_3]] : f32 return %l : f32 } /// Check that operations are not eliminated if they have different operands. // CHECK-LABEL: @different_ops func.func @different_ops() -> (i32, i32) { // CHECK: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 %0 = arith.constant 0 : i32 %1 = arith.constant 1 : i32 // CHECK-NEXT: return %[[VAR_c0_i32]], %[[VAR_c1_i32]] : i32, i32 return %0, %1 : i32, i32 } /// Check that operations are not eliminated if they have different result /// types. // CHECK-LABEL: @different_results func.func @different_results(%arg0: tensor<*xf32>) -> (tensor, tensor<4x?xf32>) { // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<4x?xf32> %0 = tensor.cast %arg0 : tensor<*xf32> to tensor %1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32> // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : tensor, tensor<4x?xf32> return %0, %1 : tensor, tensor<4x?xf32> } /// Check that operations are not eliminated if they have different attributes. // CHECK-LABEL: @different_attributes func.func @different_attributes(index, index) -> (i1, i1, i1) { ^bb0(%a : index, %b : index): // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.cmpi slt, %{{.*}}, %{{.*}} : index %0 = arith.cmpi slt, %a, %b : index // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.cmpi ne, %{{.*}}, %{{.*}} : index /// Predicate 1 means inequality comparison. %1 = arith.cmpi ne, %a, %b : index %2 = "arith.cmpi"(%a, %b) {predicate = 1} : (index, index) -> i1 // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]], %[[VAR_1]] : i1, i1, i1 return %0, %1, %2 : i1, i1, i1 } /// Check that operations with side effects are not eliminated. // CHECK-LABEL: @side_effect func.func @side_effect() -> (memref<2x1xf32>, memref<2x1xf32>) { // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32> %0 = memref.alloc() : memref<2x1xf32> // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32> %1 = memref.alloc() : memref<2x1xf32> // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : memref<2x1xf32>, memref<2x1xf32> return %0, %1 : memref<2x1xf32>, memref<2x1xf32> } /// Check that operation definitions are properly propagated down the dominance /// tree. // CHECK-LABEL: @down_propagate_for func.func @down_propagate_for() { // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 %0 = arith.constant 1 : i32 // CHECK-NEXT: affine.for {{.*}} = 0 to 4 { affine.for %i = 0 to 4 { // CHECK-NEXT: "foo"(%[[VAR_c1_i32]], %[[VAR_c1_i32]]) : (i32, i32) -> () %1 = arith.constant 1 : i32 "foo"(%0, %1) : (i32, i32) -> () } return } // CHECK-LABEL: @down_propagate func.func @down_propagate() -> i32 { // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 %0 = arith.constant 1 : i32 // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true %cond = arith.constant true // CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c1_i32]] : i32) cf.cond_br %cond, ^bb1, ^bb2(%0 : i32) ^bb1: // CHECK: ^bb1: // CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32) %1 = arith.constant 1 : i32 cf.br ^bb2(%1 : i32) ^bb2(%arg : i32): return %arg : i32 } /// Check that operation definitions are NOT propagated up the dominance tree. // CHECK-LABEL: @up_propagate_for func.func @up_propagate_for() -> i32 { // CHECK: affine.for {{.*}} = 0 to 4 { affine.for %i = 0 to 4 { // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 // CHECK-NEXT: "foo"(%[[VAR_c1_i32_0]]) : (i32) -> () %0 = arith.constant 1 : i32 "foo"(%0) : (i32) -> () } // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 // CHECK-NEXT: return %[[VAR_c1_i32]] : i32 %1 = arith.constant 1 : i32 return %1 : i32 } // CHECK-LABEL: func @up_propagate func.func @up_propagate() -> i32 { // CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 %0 = arith.constant 0 : i32 // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true %cond = arith.constant true // CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c0_i32]] : i32) cf.cond_br %cond, ^bb1, ^bb2(%0 : i32) ^bb1: // CHECK: ^bb1: // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 %1 = arith.constant 1 : i32 // CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32) cf.br ^bb2(%1 : i32) ^bb2(%arg : i32): // CHECK: ^bb2 // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 %2 = arith.constant 1 : i32 // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addi %{{.*}}, %[[VAR_c1_i32_0]] : i32 %add = arith.addi %arg, %2 : i32 // CHECK-NEXT: return %[[VAR_1]] : i32 return %add : i32 } /// The same test as above except that we are testing on a cfg embedded within /// an operation region. // CHECK-LABEL: func @up_propagate_region func.func @up_propagate_region() -> i32 { // CHECK-NEXT: {{.*}} "foo.region" %0 = "foo.region"() ({ // CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true // CHECK-NEXT: cf.cond_br %1 = arith.constant 0 : i32 %true = arith.constant true cf.cond_br %true, ^bb1, ^bb2(%1 : i32) ^bb1: // CHECK: ^bb1: // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 // CHECK-NEXT: cf.br %c1_i32 = arith.constant 1 : i32 cf.br ^bb2(%c1_i32 : i32) ^bb2(%arg : i32): // CHECK: ^bb2(%[[VAR_1:.*]]: i32): // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 // CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addi %[[VAR_1]], %[[VAR_c1_i32_0]] : i32 // CHECK-NEXT: "foo.yield"(%[[VAR_2]]) : (i32) -> () %c1_i32_0 = arith.constant 1 : i32 %2 = arith.addi %arg, %c1_i32_0 : i32 "foo.yield" (%2) : (i32) -> () }) : () -> (i32) return %0 : i32 } /// This test checks that nested regions that are isolated from above are /// properly handled. // CHECK-LABEL: @nested_isolated func.func @nested_isolated() -> i32 { // CHECK-NEXT: arith.constant 1 %0 = arith.constant 1 : i32 // CHECK-NEXT: @nested_func func.func @nested_func() { // CHECK-NEXT: arith.constant 1 %foo = arith.constant 1 : i32 "foo.yield"(%foo) : (i32) -> () } // CHECK: "foo.region" "foo.region"() ({ // CHECK-NEXT: arith.constant 1 %foo = arith.constant 1 : i32 "foo.yield"(%foo) : (i32) -> () }) : () -> () return %0 : i32 } /// This test is checking that CSE gracefully handles values in graph regions /// where the use occurs before the def, and one of the defs could be CSE'd with /// the other. // CHECK-LABEL: @use_before_def func.func @use_before_def() { // CHECK-NEXT: test.graph_region test.graph_region { // CHECK-NEXT: arith.addi %0 = arith.addi %1, %2 : i32 // CHECK-NEXT: arith.constant 1 // CHECK-NEXT: arith.constant 1 %1 = arith.constant 1 : i32 %2 = arith.constant 1 : i32 // CHECK-NEXT: "foo.yield"(%{{.*}}) : (i32) -> () "foo.yield"(%0) : (i32) -> () } return } /// This test is checking that CSE is removing duplicated read op that follow /// other. // CHECK-LABEL: @remove_direct_duplicated_read_op func.func @remove_direct_duplicated_read_op() -> i32 { // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 %0 = "test.op_with_memread"() : () -> (i32) %1 = "test.op_with_memread"() : () -> (i32) // CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE]], %[[READ_VALUE]] : i32 %2 = arith.addi %0, %1 : i32 return %2 : i32 } /// This test is checking that CSE is removing duplicated read op that follow /// other. // CHECK-LABEL: @remove_multiple_duplicated_read_op func.func @remove_multiple_duplicated_read_op() -> i64 { // CHECK: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i64 %0 = "test.op_with_memread"() : () -> (i64) %1 = "test.op_with_memread"() : () -> (i64) // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %[[READ_VALUE]] : i64 %2 = arith.addi %0, %1 : i64 %3 = "test.op_with_memread"() : () -> (i64) // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64 %4 = arith.addi %2, %3 : i64 %5 = "test.op_with_memread"() : () -> (i64) // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64 %6 = arith.addi %4, %5 : i64 // CHECK-NEXT: return %{{.*}} : i64 return %6 : i64 } /// This test is checking that CSE is not removing duplicated read op that /// have write op in between. // CHECK-LABEL: @dont_remove_duplicated_read_op_with_sideeffecting func.func @dont_remove_duplicated_read_op_with_sideeffecting() -> i32 { // CHECK-NEXT: %[[READ_VALUE0:.*]] = "test.op_with_memread"() : () -> i32 %0 = "test.op_with_memread"() : () -> (i32) "test.op_with_memwrite"() : () -> () // CHECK: %[[READ_VALUE1:.*]] = "test.op_with_memread"() : () -> i32 %1 = "test.op_with_memread"() : () -> (i32) // CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE0]], %[[READ_VALUE1]] : i32 %2 = arith.addi %0, %1 : i32 return %2 : i32 } // Check that an operation with a single region can CSE. func.func @cse_single_block_ops(%a : tensor, %b : tensor) -> (tensor, tensor) { %0 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32): test.region_yield %arg0 : f32 } : tensor, tensor -> tensor %1 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32): test.region_yield %arg0 : f32 } : tensor, tensor -> tensor return %0, %1 : tensor, tensor } // CHECK-LABEL: func @cse_single_block_ops // CHECK: %[[OP:.+]] = test.cse_of_single_block_op // CHECK-NOT: test.cse_of_single_block_op // CHECK: return %[[OP]], %[[OP]] // Operations with different number of bbArgs dont CSE. func.func @no_cse_varied_bbargs(%a : tensor, %b : tensor) -> (tensor, tensor) { %0 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): test.region_yield %arg0 : f32 } : tensor, tensor -> tensor %1 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32): test.region_yield %arg0 : f32 } : tensor, tensor -> tensor return %0, %1 : tensor, tensor } // CHECK-LABEL: func @no_cse_varied_bbargs // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op // CHECK: return %[[OP0]], %[[OP1]] // Operations with different regions dont CSE func.func @no_cse_region_difference_simple(%a : tensor, %b : tensor) -> (tensor, tensor) { %0 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): test.region_yield %arg0 : f32 } : tensor, tensor -> tensor %1 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): test.region_yield %arg1 : f32 } : tensor, tensor -> tensor return %0, %1 : tensor, tensor } // CHECK-LABEL: func @no_cse_region_difference_simple // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op // CHECK: return %[[OP0]], %[[OP1]] // Operation with identical region with multiple statements CSE. func.func @cse_single_block_ops_identical_bodies(%a : tensor, %b : tensor, %c : f32, %d : i1) -> (tensor, tensor) { %0 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): %1 = arith.divf %arg0, %arg1 : f32 %2 = arith.remf %arg0, %c : f32 %3 = arith.select %d, %1, %2 : f32 test.region_yield %3 : f32 } : tensor, tensor -> tensor %1 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): %1 = arith.divf %arg0, %arg1 : f32 %2 = arith.remf %arg0, %c : f32 %3 = arith.select %d, %1, %2 : f32 test.region_yield %3 : f32 } : tensor, tensor -> tensor return %0, %1 : tensor, tensor } // CHECK-LABEL: func @cse_single_block_ops_identical_bodies // CHECK: %[[OP:.+]] = test.cse_of_single_block_op // CHECK-NOT: test.cse_of_single_block_op // CHECK: return %[[OP]], %[[OP]] // Operation with non-identical regions dont CSE. func.func @no_cse_single_block_ops_different_bodies(%a : tensor, %b : tensor, %c : f32, %d : i1) -> (tensor, tensor) { %0 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): %1 = arith.divf %arg0, %arg1 : f32 %2 = arith.remf %arg0, %c : f32 %3 = arith.select %d, %1, %2 : f32 test.region_yield %3 : f32 } : tensor, tensor -> tensor %1 = test.cse_of_single_block_op inputs(%a, %b) { ^bb0(%arg0 : f32, %arg1 : f32): %1 = arith.divf %arg0, %arg1 : f32 %2 = arith.remf %arg0, %c : f32 %3 = arith.select %d, %2, %1 : f32 test.region_yield %3 : f32 } : tensor, tensor -> tensor return %0, %1 : tensor, tensor } // CHECK-LABEL: func @no_cse_single_block_ops_different_bodies // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op // CHECK: return %[[OP0]], %[[OP1]] func.func @failing_issue_59135(%arg0: tensor<2x2xi1>, %arg1: f32, %arg2 : tensor<2xi1>) -> (tensor<2xi1>, tensor<2xi1>) { %false_2 = arith.constant false %true_5 = arith.constant true %9 = test.cse_of_single_block_op inputs(%arg2) { ^bb0(%out: i1): %true_144 = arith.constant true test.region_yield %true_144 : i1 } : tensor<2xi1> -> tensor<2xi1> %15 = test.cse_of_single_block_op inputs(%arg2) { ^bb0(%out: i1): %true_144 = arith.constant true test.region_yield %true_144 : i1 } : tensor<2xi1> -> tensor<2xi1> %93 = arith.maxsi %false_2, %true_5 : i1 return %9, %15 : tensor<2xi1>, tensor<2xi1> } // CHECK-LABEL: func @failing_issue_59135 // CHECK: %[[TRUE:.+]] = arith.constant true // CHECK: %[[OP:.+]] = test.cse_of_single_block_op // CHECK: test.region_yield %[[TRUE]] // CHECK: return %[[OP]], %[[OP]] func.func @cse_multiple_regions(%c: i1, %t: tensor<5xf32>) -> (tensor<5xf32>, tensor<5xf32>) { %r1 = scf.if %c -> (tensor<5xf32>) { %0 = tensor.empty() : tensor<5xf32> scf.yield %0 : tensor<5xf32> } else { scf.yield %t : tensor<5xf32> } %r2 = scf.if %c -> (tensor<5xf32>) { %0 = tensor.empty() : tensor<5xf32> scf.yield %0 : tensor<5xf32> } else { scf.yield %t : tensor<5xf32> } return %r1, %r2 : tensor<5xf32>, tensor<5xf32> } // CHECK-LABEL: func @cse_multiple_regions // CHECK: %[[if:.*]] = scf.if {{.*}} { // CHECK: tensor.empty // CHECK: scf.yield // CHECK: } else { // CHECK: scf.yield // CHECK: } // CHECK-NOT: scf.if // CHECK: return %[[if]], %[[if]] // CHECK-LABEL: @cse_recursive_effects_success func.func @cse_recursive_effects_success() -> (i32, i32, i32) { // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 %0 = "test.op_with_memread"() : () -> (i32) // do something with recursive effects, containing no side effects %true = arith.constant true // CHECK-NEXT: %[[TRUE:.+]] = arith.constant true // CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) { %1 = scf.if %true -> (i32) { %c42 = arith.constant 42 : i32 scf.yield %c42 : i32 // CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32 // CHECK-NEXT: scf.yield %[[C42]] // CHECK-NEXT: } else { } else { %c24 = arith.constant 24 : i32 scf.yield %c24 : i32 // CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32 // CHECK-NEXT: scf.yield %[[C24]] // CHECK-NEXT: } } // %2 can be removed // CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE]], %[[IF]] : i32, i32, i32 %2 = "test.op_with_memread"() : () -> (i32) return %0, %2, %1 : i32, i32, i32 } // CHECK-LABEL: @cse_recursive_effects_failure func.func @cse_recursive_effects_failure() -> (i32, i32, i32) { // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 %0 = "test.op_with_memread"() : () -> (i32) // do something with recursive effects, containing a write effect %true = arith.constant true // CHECK-NEXT: %[[TRUE:.+]] = arith.constant true // CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) { %1 = scf.if %true -> (i32) { "test.op_with_memwrite"() : () -> () // CHECK-NEXT: "test.op_with_memwrite"() : () -> () %c42 = arith.constant 42 : i32 scf.yield %c42 : i32 // CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32 // CHECK-NEXT: scf.yield %[[C42]] // CHECK-NEXT: } else { } else { %c24 = arith.constant 24 : i32 scf.yield %c24 : i32 // CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32 // CHECK-NEXT: scf.yield %[[C24]] // CHECK-NEXT: } } // %2 can not be be removed because of the write // CHECK-NEXT: %[[READ_VALUE2:.*]] = "test.op_with_memread"() : () -> i32 // CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE2]], %[[IF]] : i32, i32, i32 %2 = "test.op_with_memread"() : () -> (i32) return %0, %2, %1 : i32, i32, i32 }