//===- DialectLinalg.cpp - Pybind module for Linalg dialect API support --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir-c/Dialect/Linalg.h" #include "mlir-c/IR.h" #include "mlir/Bindings/Python/Nanobind.h" #include "mlir/Bindings/Python/NanobindAdaptors.h" namespace nb = nanobind; using namespace mlir::python::nanobind_adaptors; static std::optional InferContractionDimensions(MlirOperation op) { MlirLinalgContractionDimensions dims = mlirLinalgInferContractionDimensions(op); // Detect "empty" result. This occurs when `op` is not a contraction op, // or when `linalg::inferContractionDims` fails. if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.m) && mlirAttributeIsNull(dims.n) && mlirAttributeIsNull(dims.k)) { return std::nullopt; } return dims; } static std::optional InferConvolutionDimensions(MlirOperation op) { MlirLinalgConvolutionDimensions dims = mlirLinalgInferConvolutionDimensions(op); // Detect "empty" result. This occurs when `op` is not a convolution op, // or when `linalg::inferConvolutionDims` fails. if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.outputImage) && mlirAttributeIsNull(dims.outputChannel) && mlirAttributeIsNull(dims.filterLoop) && mlirAttributeIsNull(dims.inputChannel) && mlirAttributeIsNull(dims.depth) && mlirAttributeIsNull(dims.strides) && mlirAttributeIsNull(dims.dilations)) { return std::nullopt; } return dims; } static void populateDialectLinalgSubmodule(nb::module_ m) { m.def( "fill_builtin_region", [](MlirOperation op) { mlirLinalgFillBuiltinNamedOpRegion(op); }, nb::arg("op"), "Fill the region for `op`, which is assumed to be a builtin named Linalg " "op."); m.def("isa_contraction_op", &mlirLinalgIsAContractionOp, "Checks if the given operation is a Linalg contraction operation.", nb::arg("op")); nb::class_(m, "ContractionDimensions") .def_prop_ro("batch", [](const MlirLinalgContractionDimensions &self) { return self.batch; }) .def_prop_ro( "m", [](const MlirLinalgContractionDimensions &self) { return self.m; }) .def_prop_ro( "n", [](const MlirLinalgContractionDimensions &self) { return self.n; }) .def_prop_ro("k", [](const MlirLinalgContractionDimensions &self) { return self.k; }); m.def("infer_contraction_dimensions", &InferContractionDimensions, "Infers contraction dimensions (batch/m/n/k) for a Linalg contraction " "op.", nb::arg("op")); m.def("isa_convolution_op", &mlirLinalgIsAConvolutionOp, "Checks if the given operation is a Linalg convolution operation.", nb::arg("op")); nb::class_(m, "ConvolutionDimensions") .def_prop_ro("batch", [](const MlirLinalgConvolutionDimensions &self) { return self.batch; }) .def_prop_ro("output_image", [](const MlirLinalgConvolutionDimensions &self) { return self.outputImage; }) .def_prop_ro("output_channel", [](const MlirLinalgConvolutionDimensions &self) { return self.outputChannel; }) .def_prop_ro("filter_loop", [](const MlirLinalgConvolutionDimensions &self) { return self.filterLoop; }) .def_prop_ro("input_channel", [](const MlirLinalgConvolutionDimensions &self) { return self.inputChannel; }) .def_prop_ro("depth", [](const MlirLinalgConvolutionDimensions &self) { return self.depth; }) .def_prop_ro("strides", [](const MlirLinalgConvolutionDimensions &self) { return self.strides; }) .def_prop_ro("dilations", [](const MlirLinalgConvolutionDimensions &self) { return self.dilations; }); m.def("infer_convolution_dimensions", &InferConvolutionDimensions, "Infers convolution dimensions", nb::arg("op")); m.def( "get_indexing_maps", [](MlirOperation op) -> std::optional { MlirAttribute attr = mlirLinalgGetIndexingMapsAttribute(op); if (mlirAttributeIsNull(attr)) return std::nullopt; return attr; }, "Returns the indexing_maps attribute for a linalg op."); } NB_MODULE(_mlirDialectsLinalg, m) { m.doc() = "MLIR Linalg dialect."; populateDialectLinalgSubmodule(m); }