//===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed/variable length instruction set. // //===----------------------------------------------------------------------===// #include "Common/CodeGenHwModes.h" #include "Common/CodeGenInstruction.h" #include "Common/CodeGenTarget.h" #include "Common/InfoByHwMode.h" #include "Common/VarLenCodeEmitterGen.h" #include "TableGenBackends.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/CachedHashString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "decoder-emitter" extern cl::OptionCategory DisassemblerEmitterCat; enum SuppressLevel { SUPPRESSION_DISABLE, SUPPRESSION_LEVEL1, SUPPRESSION_LEVEL2 }; static cl::opt DecoderEmitterSuppressDuplicates( "suppress-per-hwmode-duplicates", cl::desc("Suppress duplication of instrs into per-HwMode decoder tables"), cl::values( clEnumValN( SUPPRESSION_DISABLE, "O0", "Do not prevent DecoderTable duplications caused by HwModes"), clEnumValN( SUPPRESSION_LEVEL1, "O1", "Remove duplicate DecoderTable entries generated due to HwModes"), clEnumValN( SUPPRESSION_LEVEL2, "O2", "Extract HwModes-specific instructions into new DecoderTables, " "significantly reducing Table Duplications")), cl::init(SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); static cl::opt LargeTable( "large-decoder-table", cl::desc("Use large decoder table format. This uses 24 bits for offset\n" "in the table instead of the default 16 bits."), cl::init(false), cl::cat(DisassemblerEmitterCat)); static cl::opt UseFnTableInDecodeToMCInst( "use-fn-table-in-decode-to-mcinst", cl::desc( "Use a table of function pointers instead of a switch case in the\n" "generated `decodeToMCInst` function. Helps improve compile time\n" "of the generated code."), cl::init(false), cl::cat(DisassemblerEmitterCat)); STATISTIC(NumEncodings, "Number of encodings considered"); STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info"); STATISTIC(NumInstructions, "Number of instructions considered"); STATISTIC(NumEncodingsSupported, "Number of encodings supported"); STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); static unsigned getNumToSkipInBytes() { return LargeTable ? 3 : 2; } namespace { struct EncodingField { unsigned Base, Width, Offset; EncodingField(unsigned B, unsigned W, unsigned O) : Base(B), Width(W), Offset(O) {} }; struct OperandInfo { std::vector Fields; std::string Decoder; bool HasCompleteDecoder; uint64_t InitValue = 0; OperandInfo(std::string D, bool HCD) : Decoder(D), HasCompleteDecoder(HCD) {} void addField(unsigned Base, unsigned Width, unsigned Offset) { Fields.push_back(EncodingField(Base, Width, Offset)); } unsigned numFields() const { return Fields.size(); } typedef std::vector::const_iterator const_iterator; const_iterator begin() const { return Fields.begin(); } const_iterator end() const { return Fields.end(); } }; typedef std::vector FixupList; typedef std::vector FixupScopeList; typedef SmallSetVector PredicateSet; typedef SmallSetVector DecoderSet; class DecoderTable { public: DecoderTable() { Data.reserve(16384); } void clear() { Data.clear(); } void push_back(uint8_t Item) { Data.push_back(Item); } size_t size() const { return Data.size(); } const uint8_t *data() const { return Data.data(); } using const_iterator = std::vector::const_iterator; const_iterator begin() const { return Data.begin(); } const_iterator end() const { return Data.end(); } // Insert a ULEB128 encoded value into the table. void insertULEB128(uint64_t Value) { // Encode and emit the value to filter against. uint8_t Buffer[16]; unsigned Len = encodeULEB128(Value, Buffer); Data.insert(Data.end(), Buffer, Buffer + Len); } // Insert space for `NumToSkip` and return the position // in the table for patching. size_t insertNumToSkip() { size_t Size = Data.size(); Data.insert(Data.end(), getNumToSkipInBytes(), 0); return Size; } void patchNumToSkip(size_t FixupIdx, uint32_t DestIdx) { // Calculate the distance from the byte following the fixup entry byte // to the destination. The Target is calculated from after the // `getNumToSkipInBytes()`-byte NumToSkip entry itself, so subtract // `getNumToSkipInBytes()` from the displacement here to account for that. assert(DestIdx >= FixupIdx + getNumToSkipInBytes() && "Expecting a forward jump in the decoding table"); uint32_t Delta = DestIdx - FixupIdx - getNumToSkipInBytes(); if (!isUIntN(8 * getNumToSkipInBytes(), Delta)) PrintFatalError( "disassembler decoding table too large, try --large-decoder-table"); Data[FixupIdx] = static_cast(Delta); Data[FixupIdx + 1] = static_cast(Delta >> 8); if (getNumToSkipInBytes() == 3) Data[FixupIdx + 2] = static_cast(Delta >> 16); } private: std::vector Data; }; struct DecoderTableInfo { DecoderTable Table; FixupScopeList FixupStack; PredicateSet Predicates; DecoderSet Decoders; bool isOutermostScope() const { return FixupStack.size() == 1; } }; struct EncodingAndInst { const Record *EncodingDef; const CodeGenInstruction *Inst; StringRef HwModeName; EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst, StringRef HwModeName = "") : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {} }; struct EncodingIDAndOpcode { unsigned EncodingID; unsigned Opcode; EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {} EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode) : EncodingID(EncodingID), Opcode(Opcode) {} }; using EncodingIDsVec = std::vector; using NamespacesHwModesMap = std::map>; class DecoderEmitter { const RecordKeeper &RK; std::vector NumberedEncodings; public: DecoderEmitter(const RecordKeeper &R, StringRef PredicateNamespace) : RK(R), Target(R), PredicateNamespace(PredicateNamespace) {} // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned emitTable(formatted_raw_ostream &OS, DecoderTable &Table, unsigned BitWidth, StringRef Namespace, const EncodingIDsVec &EncodingIDs) const; void emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const; void emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const; void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders) const; // run - Output the code emitter void run(raw_ostream &o); private: CodeGenTarget Target; public: StringRef PredicateNamespace; }; // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. struct BitValue { enum bit_value_t : uint8_t { BIT_FALSE, // '0' BIT_TRUE, // '1' BIT_UNSET, // '?', printed as '_' BIT_UNFILTERED // unfiltered, printed as '.' }; BitValue(bit_value_t V) : V(V) {} explicit BitValue(const Init *Init) { if (const auto *Bit = dyn_cast(Init)) V = Bit->getValue() ? BIT_TRUE : BIT_FALSE; else V = BIT_UNSET; } BitValue(const BitsInit &Bits, unsigned Idx) : BitValue(Bits.getBit(Idx)) {} bool isSet() const { return V == BIT_TRUE || V == BIT_FALSE; } bool isUnset() const { return V == BIT_UNSET; } std::optional getValue() const { if (isSet()) return static_cast(V); return std::nullopt; } // For printing a bit value. operator StringRef() const { switch (V) { case BIT_FALSE: return "0"; case BIT_TRUE: return "1"; case BIT_UNSET: return "_"; case BIT_UNFILTERED: return "."; } llvm_unreachable("Unknow bit value"); } bool operator==(bit_value_t Other) const { return Other == V; } bool operator!=(bit_value_t Other) const { return Other != V; } private: bit_value_t V; }; } // end anonymous namespace static raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) { if (Value.EncodingDef != Value.Inst->TheDef) OS << Value.EncodingDef->getName() << ":"; OS << Value.Inst->TheDef->getName(); return OS; } // Prints the bit value for each position. static void dumpBits(raw_ostream &OS, const BitsInit &Bits) { for (const Init *Bit : reverse(Bits.getBits())) OS << BitValue(Bit); } static const BitsInit &getBitsField(const Record &Def, StringRef FieldName) { const RecordVal *RV = Def.getValue(FieldName); if (const BitsInit *Bits = dyn_cast(RV->getValue())) return *Bits; // Handle variable length instructions. VarLenInst VLI(cast(RV->getValue()), RV); SmallVector Bits; for (const auto &SI : VLI) { if (const BitsInit *BI = dyn_cast(SI.Value)) llvm::append_range(Bits, BI->getBits()); else if (const BitInit *BI = dyn_cast(SI.Value)) Bits.push_back(BI); else Bits.append(SI.BitWidth, UnsetInit::get(Def.getRecords())); } return *BitsInit::get(Def.getRecords(), Bits); } // Representation of the instruction to work on. typedef std::vector insn_t; namespace { static constexpr uint64_t NO_FIXED_SEGMENTS_SENTINEL = std::numeric_limits::max(); class FilterChooser; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Conflict: /// 111101000.00........00010000.... /// 111101000.00........0001........ /// 1111010...00........0001........ /// 1111010...00.................... /// 1111010......................... /// 1111............................ /// ................................ /// VST4q8a 111101000_00________00010000____ /// VST4q8b 111101000_00________00010000____ /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. class Filter { protected: const FilterChooser &Owner; // FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map> FilteredInstructions; // Set of uid's with non-constant segment values. std::vector VariableInstructions; // Map of well-known segment value to its delegate. std::map> FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. EncodingIDAndOpcode LastOpcFiltered; public: Filter(Filter &&f); Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); ~Filter() = default; unsigned getNumFiltered() const { return NumFiltered; } EncodingIDAndOpcode getSingletonOpc() const { assert(NumFiltered == 1); return LastOpcFiltered; } // Return the filter chooser for the group of instructions without constant // segment values. const FilterChooser &getVariableFC() const { assert(NumFiltered == 1 && FilterChooserMap.size() == 1); return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second); } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit table entries to decode instructions given a segment or segments of // bits. void emitTableEntry(DecoderTableInfo &TableInfo) const; // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // end class Filter // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. enum bitAttr_t { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED }; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. class FilterChooser { protected: friend class Filter; // Vector of codegen instructions to choose our filter. ArrayRef AllInstructions; // Vector of uid's for this filter chooser to work on. // The first member of the pair is the opcode id being decoded, the second is // the opcode id that should be emitted. ArrayRef Opcodes; // Lookup table for the operand decoding of instructions. const std::map> &Operands; // Vector of candidate filters. std::vector Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. std::vector FilterBitValues; // Links to the FilterChooser above us in the decoding tree. const FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; // Width of instructions unsigned BitWidth; // Parent emitter const DecoderEmitter *Emitter; struct Island { unsigned StartBit; unsigned NumBits; uint64_t FieldVal; }; public: FilterChooser(ArrayRef Insts, ArrayRef IDs, const std::map> &Ops, unsigned BW, const DecoderEmitter *E) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), FilterBitValues(BW, BitValue::BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), BitWidth(BW), Emitter(E) { doFilter(); } FilterChooser(ArrayRef Insts, ArrayRef IDs, const std::map> &Ops, const std::vector &ParentFilterBitValues, const FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth), Emitter(parent.Emitter) { doFilter(); } FilterChooser(const FilterChooser &) = delete; void operator=(const FilterChooser &) = delete; unsigned getBitWidth() const { return BitWidth; } protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; const BitsInit &Bits = getBitsField(*EncodingDef, "Inst"); Insn.resize(std::max(BitWidth, Bits.getNumBits()), BitValue::BIT_UNSET); // We may have a SoftFail bitmask, which specifies a mask where an encoding // may differ from the value in "Inst" and yet still be valid, but the // disassembler should return SoftFail instead of Success. // // This is used for marking UNPREDICTABLE instructions in the ARM world. const RecordVal *RV = EncodingDef->getValue("SoftFail"); const BitsInit *SFBits = RV ? dyn_cast(RV->getValue()) : nullptr; for (unsigned i = 0; i < Bits.getNumBits(); ++i) { if (SFBits && BitValue(*SFBits, i) == BitValue::BIT_TRUE) Insn[i] = BitValue::BIT_UNSET; else Insn[i] = BitValue(Bits, i); } } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns a pair of values (indicator, field), where the indicator is false // if there exists any uninitialized bit value in the range and true if all // bits are well-known. The second value is the potentially populated field. std::pair fieldFromInsn(const insn_t &Insn, unsigned StartBit, unsigned NumBits) const; /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void dumpFilterArray(raw_ostream &OS, ArrayRef Filter) const; /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &OS, const char *prefix) const; Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } bool PositionFiltered(unsigned Idx) const { return FilterBitValues[Idx].isSet(); } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned getIslands(std::vector &Islands, const insn_t &Insn) const; // Emits code to check the Predicates member of an instruction are true. // Returns true if predicate matches were emitted, false otherwise. bool emitPredicateMatch(raw_ostream &OS, unsigned Opc) const; bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, raw_ostream &OS) const; bool doesOpcodeNeedPredicate(unsigned Opc) const; unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; // Emits table entries to decode the singleton. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, EncodingIDAndOpcode Opc) const; // Emits code to decode the singleton, and then to decode the rest. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const; bool emitBinaryParser(raw_ostream &OS, indent Indent, const OperandInfo &OpInfo) const; bool emitDecoder(raw_ostream &OS, indent Indent, unsigned Opc) const; std::pair getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const; // Assign a single filter and run with it. void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); public: // emitTableEntries - Emit state machine entries to decode our share of // instructions. void emitTableEntries(DecoderTableInfo &TableInfo) const; }; } // end anonymous namespace /////////////////////////// // // // Filter Implementation // // // /////////////////////////// Filter::Filter(Filter &&f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(std::move(f.FilteredInstructions)), VariableInstructions(std::move(f.VariableInstructions)), FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered) {} Filter::Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < Owner.BitWidth); NumFiltered = 0; LastOpcFiltered = {0, 0}; for (const auto &OpcPair : Owner.Opcodes) { insn_t Insn; // Populates the insn given the uid. Owner.insnWithID(Insn, OpcPair.EncodingID); // Scans the segment for possibly well-specified encoding bits. auto [Ok, Field] = Owner.fieldFromInsn(Insn, StartBit, NumBits); if (Ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = OpcPair; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecified. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(OpcPair); } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { // Starts by inheriting our parent filter chooser's filter bit values. std::vector BitValueArray(Owner.FilterBitValues); if (!VariableInstructions.empty()) { // Conservatively marks each segment position as BIT_UNSET. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) BitValueArray[StartBit + bitIndex] = BitValue::BIT_UNSET; // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. FilterChooserMap.try_emplace( NO_FIXED_SEGMENTS_SENTINEL, std::make_unique(Owner.AllInstructions, VariableInstructions, Owner.Operands, BitValueArray, Owner)); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit*(). if (getNumFiltered() == 1) { assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (const auto &Inst : FilteredInstructions) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) BitValueArray[StartBit + bitIndex] = Inst.first & (1ULL << bitIndex) ? BitValue::BIT_TRUE : BitValue::BIT_FALSE; // Delegates to an inferior filter chooser for further processing on this // category of instructions. FilterChooserMap.try_emplace( Inst.first, std::make_unique(Owner.AllInstructions, Inst.second, Owner.Operands, BitValueArray, Owner)); } } static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, uint32_t DestIdx) { // Any NumToSkip fixups in the current scope can resolve to the // current location. for (uint32_t FixupIdx : Fixups) Table.patchNumToSkip(FixupIdx, DestIdx); } // Emit table entries to decode instructions given a segment or segments // of bits. void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!"); TableInfo.Table.push_back(MCD::OPC_ExtractField); TableInfo.Table.insertULEB128(StartBit); TableInfo.Table.push_back(NumBits); // If the NO_FIXED_SEGMENTS_SENTINEL is present, we need to add a new scope // for this filter. Otherwise, we can skip adding a new scope and any // patching added will automatically be added to the enclosing scope. // If NO_FIXED_SEGMENTS_SENTINEL is present, it will be last entry in // FilterChooserMap. const uint64_t LastFilter = FilterChooserMap.rbegin()->first; bool HasFallthrough = LastFilter == NO_FIXED_SEGMENTS_SENTINEL; if (HasFallthrough) TableInfo.FixupStack.emplace_back(); DecoderTable &Table = TableInfo.Table; size_t PrevFilter = 0; for (const auto &[FilterVal, Delegate] : FilterChooserMap) { // Field value NO_FIXED_SEGMENTS_SENTINEL implies a non-empty set of // variable instructions. See also recurse(). if (FilterVal == NO_FIXED_SEGMENTS_SENTINEL) { // Each scope should always have at least one filter value to check // for. assert(PrevFilter != 0 && "empty filter set!"); FixupList &CurScope = TableInfo.FixupStack.back(); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(Table, CurScope, Table.size()); // Delete the scope we have added here. TableInfo.FixupStack.pop_back(); PrevFilter = 0; // Don't re-process the filter's fallthrough. } else { // The last filtervalue emitted can be OPC_FilterValue if we are at // outermost scope. const uint8_t DecoderOp = FilterVal == LastFilter && TableInfo.isOutermostScope() ? MCD::OPC_FilterValueOrFail : MCD::OPC_FilterValue; Table.push_back(DecoderOp); Table.insertULEB128(FilterVal); if (DecoderOp == MCD::OPC_FilterValue) { // Reserve space for the NumToSkip entry. We'll backpatch the value // later. PrevFilter = Table.insertNumToSkip(); } else { PrevFilter = 0; } } // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. Delegate->emitTableEntries(TableInfo); // Now that we've emitted the body of the handler, update the NumToSkip // of the filter itself to be able to skip forward when false. if (PrevFilter) Table.patchNumToSkip(PrevFilter, Table.size()); } // If there is no fallthrough and the final filter was not in the outermost // scope, then it must be fixed up according to the enclosing scope rather // than the current position. if (PrevFilter) TableInfo.FixupStack.back().push_back(PrevFilter); } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { return FilteredInstructions.size() + VariableInstructions.empty(); } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, unsigned BitWidth, StringRef Namespace, const EncodingIDsVec &EncodingIDs) const { // We'll need to be able to map from a decoded opcode into the corresponding // EncodingID for this specific combination of BitWidth and Namespace. This // is used below to index into NumberedEncodings. DenseMap OpcodeToEncodingID; OpcodeToEncodingID.reserve(EncodingIDs.size()); for (const auto &EI : EncodingIDs) OpcodeToEncodingID[EI.Opcode] = EI.EncodingID; OS << "static const uint8_t DecoderTable" << Namespace << BitWidth << "[] = {\n"; // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. auto emitULEB128 = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { while (*I >= 128) OS << (unsigned)*I++ << ", "; OS << (unsigned)*I++ << ", "; }; // Emit `getNumToSkipInBytes()`-byte numtoskip value to OS, returning the // NumToSkip value. auto emitNumToSkip = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << (unsigned)Byte << ", "; Byte = *I++; OS << (unsigned)Byte << ", "; NumToSkip |= Byte << 8; if (getNumToSkipInBytes() == 3) { Byte = *I++; OS << (unsigned)(Byte) << ", "; NumToSkip |= Byte << 16; } return NumToSkip; }; // FIXME: We may be able to use the NumToSkip values to recover // appropriate indentation levels. DecoderTable::const_iterator I = Table.begin(); DecoderTable::const_iterator E = Table.end(); const uint8_t *const EndPtr = Table.data() + Table.size(); auto emitNumToSkipComment = [&](uint32_t NumToSkip, bool InComment = false) { uint32_t Index = ((I - Table.begin()) + NumToSkip); OS << (InComment ? ", " : "// "); OS << "Skip to: " << Index; if (*(I + NumToSkip) == MCD::OPC_Fail) OS << " (Fail)"; }; unsigned OpcodeMask = 0; while (I != E) { assert(I < E && "incomplete decode table entry!"); uint64_t Pos = I - Table.begin(); OS << "/* " << Pos << " */"; OS.PadToColumn(12); const uint8_t DecoderOp = *I++; OpcodeMask |= (1 << DecoderOp); switch (DecoderOp) { default: PrintFatalError("Invalid decode table opcode: " + Twine((int)DecoderOp) + " at index " + Twine(Pos)); case MCD::OPC_ExtractField: { OS << " MCD::OPC_ExtractField, "; // ULEB128 encoded start value. const char *ErrMsg = nullptr; unsigned Start = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); unsigned Len = *I++; OS << Len << ", // Inst{"; if (Len > 1) OS << (Start + Len - 1) << "-"; OS << Start << "} ...\n"; break; } case MCD::OPC_FilterValue: case MCD::OPC_FilterValueOrFail: { bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; OS << " MCD::OPC_FilterValue" << (IsFail ? "OrFail, " : ", "); // The filter value is ULEB128 encoded. emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_CheckField: case MCD::OPC_CheckFieldOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; OS << " MCD::OPC_CheckField" << (IsFail ? "OrFail, " : ", "); // ULEB128 encoded start value. emitULEB128(I, OS); // 8-bit length. unsigned Len = *I++; OS << Len << ", "; // ULEB128 encoded field value. emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_CheckPredicate: case MCD::OPC_CheckPredicateOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; OS << " MCD::OPC_CheckPredicate" << (IsFail ? "OrFail, " : ", "); emitULEB128(I, OS); if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); emitNumToSkipComment(NumToSkip); } OS << '\n'; break; } case MCD::OPC_Decode: case MCD::OPC_TryDecode: case MCD::OPC_TryDecodeOrFail: { bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; bool IsTry = DecoderOp == MCD::OPC_TryDecode || IsFail; // Decode the Opcode value. const char *ErrMsg = nullptr; unsigned Opc = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); OS << " MCD::OPC_" << (IsTry ? "Try" : "") << "Decode" << (IsFail ? "OrFail, " : ", "); emitULEB128(I, OS); // Decoder index. unsigned DecodeIdx = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); auto EncI = OpcodeToEncodingID.find(Opc); assert(EncI != OpcodeToEncodingID.end() && "no encoding entry"); auto EncodingID = EncI->second; if (!IsTry) { OS << "// Opcode: " << NumberedEncodings[EncodingID] << ", DecodeIdx: " << DecodeIdx << '\n'; break; } // Fallthrough for OPC_TryDecode. if (!IsFail) { uint32_t NumToSkip = emitNumToSkip(I, OS); OS << "// Opcode: " << NumberedEncodings[EncodingID] << ", DecodeIdx: " << DecodeIdx; emitNumToSkipComment(NumToSkip, /*InComment=*/true); } OS << '\n'; break; } case MCD::OPC_SoftFail: { OS << " MCD::OPC_SoftFail, "; // Decode the positive mask. const char *ErrMsg = nullptr; uint64_t PositiveMask = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); // Decode the negative mask. uint64_t NegativeMask = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); emitULEB128(I, OS); OS << "// +ve mask: 0x"; OS.write_hex(PositiveMask); OS << ", -ve mask: 0x"; OS.write_hex(NegativeMask); OS << '\n'; break; } case MCD::OPC_Fail: OS << " MCD::OPC_Fail,\n"; break; } } OS << " 0\n"; OS << "};\n\n"; return OpcodeMask; } void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const { OS << "static const uint8_t InstrLenTable[] = {\n"; for (unsigned Len : InstrLen) OS << Len << ",\n"; OS << "};\n\n"; } void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const { // The predicate function is just a big switch statement based on the // input predicate index. OS << "static bool checkDecoderPredicate(unsigned Idx, const FeatureBitset " "&Bits) {\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid index!\");\n"; for (const auto &[Index, Predicate] : enumerate(Predicates)) { OS << " case " << Index << ":\n"; OS << " return (" << Predicate << ");\n"; } OS << " }\n"; OS << "}\n\n"; } void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders) const { // The decoder function is just a big switch statement or a table of function // pointers based on the input decoder index. // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits // It would be better for emitBinaryParser to use a 64-bit tmp whenever // possible but fall back to an InsnType-sized tmp for truly large fields. StringRef TmpTypeDecl = "using TmpType = std::conditional_t::value, " "InsnType, uint64_t>;\n"; StringRef DecodeParams = "DecodeStatus S, InsnType insn, MCInst &MI, uint64_t Address, const " "MCDisassembler *Decoder, bool &DecodeComplete"; if (UseFnTableInDecodeToMCInst) { // Emit a function for each case first. for (const auto &[Index, Decoder] : enumerate(Decoders)) { OS << "template \n"; OS << "DecodeStatus decodeFn" << Index << "(" << DecodeParams << ") {\n"; OS << " " << TmpTypeDecl; OS << " [[maybe_unused]] TmpType tmp;\n"; OS << Decoder; OS << " return S;\n"; OS << "}\n\n"; } } OS << "// Handling " << Decoders.size() << " cases.\n"; OS << "template \n"; OS << "static DecodeStatus decodeToMCInst(unsigned Idx, " << DecodeParams << ") {\n"; OS << " DecodeComplete = true;\n"; if (UseFnTableInDecodeToMCInst) { // Build a table of function pointers. OS << " using DecodeFnTy = DecodeStatus (*)(" << DecodeParams << ");\n"; OS << " static constexpr DecodeFnTy decodeFnTable[] = {\n"; for (size_t Index : llvm::seq(Decoders.size())) OS << " decodeFn" << Index << ",\n"; OS << " };\n"; OS << " if (Idx >= " << Decoders.size() << ")\n"; OS << " llvm_unreachable(\"Invalid index!\");\n"; OS << " return decodeFnTable[Idx](S, insn, MI, Address, Decoder, " "DecodeComplete);\n"; } else { OS << " " << TmpTypeDecl; OS << " TmpType tmp;\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid index!\");\n"; for (const auto &[Index, Decoder] : enumerate(Decoders)) { OS << " case " << Index << ":\n"; OS << Decoder; OS << " return S;\n"; } OS << " }\n"; } OS << "}\n"; } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns a pair of values (indicator, field), where the indicator is false // if there exists any uninitialized bit value in the range and true if all // bits are well-known. The second value is the potentially populated field. std::pair FilterChooser::fieldFromInsn(const insn_t &Insn, unsigned StartBit, unsigned NumBits) const { uint64_t Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BitValue::BIT_UNSET) return {false, Field}; if (Insn[StartBit + i] == BitValue::BIT_TRUE) Field = Field | (1ULL << i); } return {true, Field}; } /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void FilterChooser::dumpFilterArray(raw_ostream &OS, ArrayRef Filter) const { for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) OS << Filter[bitIndex - 1]; } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &OS, const char *prefix) const { const FilterChooser *current = this; while (current) { OS << prefix; dumpFilterArray(OS, current->FilterBitValues); OS << '\n'; current = current->Parent; } } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned FilterChooser::getIslands(std::vector &Islands, const insn_t &Insn) const { uint64_t FieldVal; unsigned StartBit; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) unsigned State = 0; for (unsigned i = 0; i < BitWidth; ++i) { std::optional Val = Insn[i].getValue(); bool Filtered = PositionFiltered(i); switch (State) { default: llvm_unreachable("Unreachable code!"); case 0: case 1: if (Filtered || !Val) { State = 1; // Still in Water } else { State = 2; // Into the Island StartBit = i; FieldVal = *Val; } break; case 2: if (Filtered || !Val) { State = 1; // Into the Water Islands.push_back({StartBit, i - StartBit, FieldVal}); } else { State = 2; // Still in Island FieldVal |= *Val << (i - StartBit); } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) Islands.push_back({StartBit, BitWidth - StartBit, FieldVal}); return Islands.size(); } bool FilterChooser::emitBinaryParser(raw_ostream &OS, indent Indent, const OperandInfo &OpInfo) const { const std::string &Decoder = OpInfo.Decoder; bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0; if (UseInsertBits) { OS << Indent << "tmp = 0x"; OS.write_hex(OpInfo.InitValue); OS << ";\n"; } for (const EncodingField &EF : OpInfo) { OS << Indent; if (UseInsertBits) OS << "insertBits(tmp, "; else OS << "tmp = "; OS << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')'; if (UseInsertBits) OS << ", " << EF.Offset << ", " << EF.Width << ')'; else if (EF.Offset != 0) OS << " << " << EF.Offset; OS << ";\n"; } bool OpHasCompleteDecoder; if (!Decoder.empty()) { OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; OS << Indent << "if (!Check(S, " << Decoder << "(MI, tmp, Address, Decoder))) { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; } else { OpHasCompleteDecoder = true; OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n"; } return OpHasCompleteDecoder; } bool FilterChooser::emitDecoder(raw_ostream &OS, indent Indent, unsigned Opc) const { bool HasCompleteDecoder = true; for (const auto &Op : Operands.find(Opc)->second) { // If a custom instruction decoder was specified, use that. if (Op.numFields() == 0 && !Op.Decoder.empty()) { HasCompleteDecoder = Op.HasCompleteDecoder; OS << Indent << "if (!Check(S, " << Op.Decoder << "(MI, insn, Address, Decoder))) { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; break; } HasCompleteDecoder &= emitBinaryParser(OS, Indent, Op); } return HasCompleteDecoder; } std::pair FilterChooser::getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const { // Build up the predicate string. SmallString<256> Decoder; // FIXME: emitDecoder() function can take a buffer directly rather than // a stream. raw_svector_ostream S(Decoder); indent Indent(UseFnTableInDecodeToMCInst ? 2 : 4); bool HasCompleteDecoder = emitDecoder(S, Indent, Opc); // Using the full decoder string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. Decoders.insert(CachedHashString(Decoder)); // Now figure out the index for when we write out the table. DecoderSet::const_iterator P = find(Decoders, Decoder.str()); return {(unsigned)(P - Decoders.begin()), HasCompleteDecoder}; } // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||. bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, raw_ostream &OS) const { if (const auto *D = dyn_cast(&Val)) { if (!D->getDef()->isSubClassOf("SubtargetFeature")) return true; OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString() << "]"; return false; } if (const auto *D = dyn_cast(&Val)) { std::string Op = D->getOperator()->getAsString(); if (Op == "not" && D->getNumArgs() == 1) { OS << '!'; return emitPredicateMatchAux(*D->getArg(0), true, OS); } if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) { bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true); if (Paren) OS << '('; ListSeparator LS(Op == "any_of" ? " || " : " && "); for (auto *Arg : D->getArgs()) { OS << LS; if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS)) return true; } if (Paren) OS << ')'; return false; } } return true; } bool FilterChooser::emitPredicateMatch(raw_ostream &OS, unsigned Opc) const { const ListInit *Predicates = AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); bool IsFirstEmission = true; for (unsigned i = 0; i < Predicates->size(); ++i) { const Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; if (!isa(Pred->getValue("AssemblerCondDag")->getValue())) continue; if (!IsFirstEmission) OS << " && "; if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"), Predicates->size() > 1, OS)) PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); IsFirstEmission = false; } return !Predicates->empty(); } bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { const ListInit *Predicates = AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); for (unsigned i = 0; i < Predicates->size(); ++i) { const Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; if (isa(Pred->getValue("AssemblerCondDag")->getValue())) return true; } return false; } unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, StringRef Predicate) const { // Using the full predicate string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. TableInfo.Predicates.insert(CachedHashString(Predicate)); // Now figure out the index for when we write out the table. PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); return (unsigned)(P - TableInfo.Predicates.begin()); } void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { if (!doesOpcodeNeedPredicate(Opc)) return; // Build up the predicate string. SmallString<256> Predicate; // FIXME: emitPredicateMatch() functions can take a buffer directly rather // than a stream. raw_svector_ostream PS(Predicate); emitPredicateMatch(PS, Opc); // Figure out the index into the predicate table for the predicate just // computed. unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); const uint8_t DecoderOp = TableInfo.isOutermostScope() ? MCD::OPC_CheckPredicateOrFail : MCD::OPC_CheckPredicate; TableInfo.Table.push_back(DecoderOp); TableInfo.Table.insertULEB128(PIdx); if (DecoderOp == MCD::OPC_CheckPredicate) { // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { const Record *EncodingDef = AllInstructions[Opc].EncodingDef; const RecordVal *RV = EncodingDef->getValue("SoftFail"); const BitsInit *SFBits = RV ? dyn_cast(RV->getValue()) : nullptr; if (!SFBits) return; const BitsInit *InstBits = EncodingDef->getValueAsBitsInit("Inst"); APInt PositiveMask(BitWidth, 0ULL); APInt NegativeMask(BitWidth, 0ULL); for (unsigned i = 0; i < BitWidth; ++i) { BitValue B(*SFBits, i); BitValue IB(*InstBits, i); if (B != BitValue::BIT_TRUE) continue; if (IB == BitValue::BIT_FALSE) { // The bit is meant to be false, so emit a check to see if it is true. PositiveMask.setBit(i); } else if (IB == BitValue::BIT_TRUE) { // The bit is meant to be true, so emit a check to see if it is false. NegativeMask.setBit(i); } else { // The bit is not set; this must be an error! errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << AllInstructions[Opc] << " is set but Inst{" << i << "} is unset!\n" << " - You can only mark a bit as SoftFail if it is fully defined" << " (1/0 - not '?') in Inst\n"; return; } } bool NeedPositiveMask = PositiveMask.getBoolValue(); bool NeedNegativeMask = NegativeMask.getBoolValue(); if (!NeedPositiveMask && !NeedNegativeMask) return; TableInfo.Table.push_back(MCD::OPC_SoftFail); TableInfo.Table.insertULEB128(PositiveMask.getZExtValue()); TableInfo.Table.insertULEB128(NegativeMask.getZExtValue()); } // Emits table entries to decode the singleton. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, EncodingIDAndOpcode Opc) const { std::vector Islands; insn_t Insn; insnWithID(Insn, Opc.EncodingID); // Look for islands of undecoded bits of the singleton. getIslands(Islands, Insn); // Emit the predicate table entry if one is needed. emitPredicateTableEntry(TableInfo, Opc.EncodingID); // Check any additional encoding fields needed. for (const Island &Ilnd : reverse(Islands)) { unsigned NumBits = Ilnd.NumBits; assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!"); const uint8_t DecoderOp = TableInfo.isOutermostScope() ? MCD::OPC_CheckFieldOrFail : MCD::OPC_CheckField; TableInfo.Table.push_back(DecoderOp); TableInfo.Table.insertULEB128(Ilnd.StartBit); TableInfo.Table.push_back(NumBits); TableInfo.Table.insertULEB128(Ilnd.FieldVal); if (DecoderOp == MCD::OPC_CheckField) { // Allocate space in the table for fixup so all our relative position // calculations work OK even before we fully resolve the real value here. // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } // Check for soft failure of the match. emitSoftFailTableEntry(TableInfo, Opc.EncodingID); auto [DIdx, HasCompleteDecoder] = getDecoderIndex(TableInfo.Decoders, Opc.EncodingID); // Produce OPC_Decode or OPC_TryDecode opcode based on the information // whether the instruction decoder is complete or not. If it is complete // then it handles all possible values of remaining variable/unfiltered bits // and for any value can determine if the bitpattern is a valid instruction // or not. This means OPC_Decode will be the final step in the decoding // process. If it is not complete, then the Fail return code from the // decoder method indicates that additional processing should be done to see // if there is any other instruction that also matches the bitpattern and // can decode it. const uint8_t DecoderOp = HasCompleteDecoder ? MCD::OPC_Decode : (TableInfo.isOutermostScope() ? MCD::OPC_TryDecodeOrFail : MCD::OPC_TryDecode); TableInfo.Table.push_back(DecoderOp); NumEncodingsSupported++; TableInfo.Table.insertULEB128(Opc.Opcode); TableInfo.Table.insertULEB128(DIdx); if (DecoderOp == MCD::OPC_TryDecode) { // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.insertNumToSkip()); } } // Emits table entries to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const { EncodingIDAndOpcode Opc = Best.getSingletonOpc(); // complex singletons need predicate checks from the first singleton // to refer forward to the variable filterchooser that follows. TableInfo.FixupStack.emplace_back(); emitSingletonTableEntry(TableInfo, Opc); resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.pop_back(); Best.getVariableFC().emitTableEntries(TableInfo); } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filters.emplace_back(*this, startBit, numBit, true); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (RA == ATTR_MIXED && AllowMixed) Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); else if (RA == ATTR_ALL_SET && !AllowMixed) Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (const auto &Opcode : Opcodes) { std::vector Islands; insn_t Insn; insnWithID(Insn, Opcode.EncodingID); // Look for islands of undecoded bits of any instruction. if (getIslands(Islands, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(Islands[0].StartBit, Islands[0].NumBits, true); return true; } } } unsigned BitIndex; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) std::vector bitAttrs(BitWidth, ATTR_NONE); // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) if (FilterBitValues[BitIndex].isSet()) bitAttrs[BitIndex] = ATTR_FILTERED; for (const auto &OpcPair : Opcodes) { insn_t insn; insnWithID(insn, OpcPair.EncodingID); for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { switch (bitAttrs[BitIndex]) { case ATTR_NONE: if (insn[BitIndex] == BitValue::BIT_UNSET) bitAttrs[BitIndex] = ATTR_ALL_UNSET; else bitAttrs[BitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[BitIndex] == BitValue::BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[BitIndex] != BitValue::BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { bitAttr_t bitAttr = bitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (const auto &[Idx, Filter] : enumerate(Filters)) { unsigned Usefulness = Filter.usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = Idx; BestScore = Usefulness; } } if (!AllUseless) bestFilter().recurse(); return !AllUseless; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Try regions of consecutive known bit values first. if (filterProcessor(false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Set the BestIndex to -1 to indicate so. BestIndex = -1; } // emitTableEntries - Emit state machine entries to decode our share of // instructions. void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { if (Opcodes.size() == 1) { // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. emitSingletonTableEntry(TableInfo, Opcodes[0]); return; } // Choose the best filter to do the decodings! if (BestIndex != -1) { const Filter &Best = Filters[BestIndex]; if (Best.getNumFiltered() == 1) emitSingletonTableEntry(TableInfo, Best); else Best.emitTableEntry(TableInfo); return; } // We don't know how to decode these instructions! Dump the // conflict set and bail. // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; dumpStack(errs(), "\t\t"); for (auto Opcode : Opcodes) { const EncodingAndInst &Enc = AllInstructions[Opcode.EncodingID]; errs() << '\t' << Enc << ' '; dumpBits(errs(), getBitsField(*Enc.EncodingDef, "Inst")); errs() << '\n'; } PrintFatalError("Decoding conflict encountered"); } static std::string findOperandDecoderMethod(const Record *Record) { std::string Decoder; const RecordVal *DecoderString = Record->getValue("DecoderMethod"); const StringInit *String = DecoderString ? dyn_cast(DecoderString->getValue()) : nullptr; if (String) { Decoder = String->getValue().str(); if (!Decoder.empty()) return Decoder; } if (Record->isSubClassOf("RegisterOperand")) // Allows use of a DecoderMethod in referenced RegisterClass if set. return findOperandDecoderMethod(Record->getValueAsDef("RegClass")); if (Record->isSubClassOf("RegisterClass")) { Decoder = "Decode" + Record->getName().str() + "RegisterClass"; } else if (Record->isSubClassOf("PointerLikeRegClass")) { Decoder = "DecodePointerLikeRegClass" + utostr(Record->getValueAsInt("RegClassKind")); } return Decoder; } OperandInfo getOpInfo(const Record *TypeRecord) { const RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder"); const BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? dyn_cast(HasCompleteDecoderVal->getValue()) : nullptr; bool HasCompleteDecoder = HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; return OperandInfo(findOperandDecoderMethod(TypeRecord), HasCompleteDecoder); } static void parseVarLenInstOperand(const Record &Def, std::vector &Operands, const CodeGenInstruction &CGI) { const RecordVal *RV = Def.getValue("Inst"); VarLenInst VLI(cast(RV->getValue()), RV); SmallVector TiedTo; for (const auto &[Idx, Op] : enumerate(CGI.Operands)) { if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0) for (auto *Arg : Op.MIOperandInfo->getArgs()) Operands.push_back(getOpInfo(cast(Arg)->getDef())); else Operands.push_back(getOpInfo(Op.Rec)); int TiedReg = Op.getTiedRegister(); TiedTo.push_back(-1); if (TiedReg != -1) { TiedTo[Idx] = TiedReg; TiedTo[TiedReg] = Idx; } } unsigned CurrBitPos = 0; for (const auto &EncodingSegment : VLI) { unsigned Offset = 0; StringRef OpName; if (const StringInit *SI = dyn_cast(EncodingSegment.Value)) { OpName = SI->getValue(); } else if (const DagInit *DI = dyn_cast(EncodingSegment.Value)) { OpName = cast(DI->getArg(0))->getValue(); Offset = cast(DI->getArg(2))->getValue(); } if (!OpName.empty()) { auto OpSubOpPair = const_cast(CGI).Operands.ParseOperandName( OpName); unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair); Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); if (!EncodingSegment.CustomDecoder.empty()) Operands[OpIdx].Decoder = EncodingSegment.CustomDecoder.str(); int TiedReg = TiedTo[OpSubOpPair.first]; if (TiedReg != -1) { unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber( {TiedReg, OpSubOpPair.second}); Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); } } CurrBitPos += EncodingSegment.BitWidth; } } static void debugDumpRecord(const Record &Rec) { // Dump the record, so we can see what's going on. PrintNote([&Rec](raw_ostream &OS) { OS << "Dumping record for previous error:\n"; OS << Rec; }); } /// For an operand field named OpName: populate OpInfo.InitValue with the /// constant-valued bit values, and OpInfo.Fields with the ranges of bits to /// insert from the decoded instruction. static void addOneOperandFields(const Record &EncodingDef, const BitsInit &Bits, std::map &TiedNames, StringRef OpName, OperandInfo &OpInfo) { // Some bits of the operand may be required to be 1 depending on the // instruction's encoding. Collect those bits. if (const RecordVal *EncodedValue = EncodingDef.getValue(OpName)) if (const BitsInit *OpBits = dyn_cast(EncodedValue->getValue())) for (unsigned I = 0; I < OpBits->getNumBits(); ++I) if (const BitInit *OpBit = dyn_cast(OpBits->getBit(I))) if (OpBit->getValue()) OpInfo.InitValue |= 1ULL << I; for (unsigned I = 0, J = 0; I != Bits.getNumBits(); I = J) { const VarInit *Var; unsigned Offset = 0; for (; J != Bits.getNumBits(); ++J) { const VarBitInit *BJ = dyn_cast(Bits.getBit(J)); if (BJ) { Var = dyn_cast(BJ->getBitVar()); if (I == J) Offset = BJ->getBitNum(); else if (BJ->getBitNum() != Offset + J - I) break; } else { Var = dyn_cast(Bits.getBit(J)); } if (!Var || (Var->getName() != OpName && Var->getName() != TiedNames[OpName])) break; } if (I == J) ++J; else OpInfo.addField(I, J - I, Offset); } } static unsigned populateInstruction(const CodeGenTarget &Target, const Record &EncodingDef, const CodeGenInstruction &CGI, unsigned Opc, std::map> &Operands, bool IsVarLenInst) { const Record &Def = *CGI.TheDef; // If all the bit positions are not specified; do not decode this instruction. // We are bound to fail! For proper disassembly, the well-known encoding bits // of the instruction must be fully specified. const BitsInit &Bits = getBitsField(EncodingDef, "Inst"); if (Bits.allInComplete()) return 0; std::vector InsnOperands; // If the instruction has specified a custom decoding hook, use that instead // of trying to auto-generate the decoder. StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod"); if (!InstDecoder.empty()) { bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder"); InsnOperands.push_back( OperandInfo(InstDecoder.str(), HasCompleteInstDecoder)); Operands[Opc] = std::move(InsnOperands); return Bits.getNumBits(); } // Generate a description of the operand of the instruction that we know // how to decode automatically. // FIXME: We'll need to have a way to manually override this as needed. // Gather the outputs/inputs of the instruction, so we can find their // positions in the encoding. This assumes for now that they appear in the // MCInst in the order that they're listed. std::vector> InOutOperands; const DagInit *Out = Def.getValueAsDag("OutOperandList"); const DagInit *In = Def.getValueAsDag("InOperandList"); for (const auto &[Idx, Arg] : enumerate(Out->getArgs())) InOutOperands.emplace_back(Arg, Out->getArgNameStr(Idx)); for (const auto &[Idx, Arg] : enumerate(In->getArgs())) InOutOperands.emplace_back(Arg, In->getArgNameStr(Idx)); // Search for tied operands, so that we can correctly instantiate // operands that are not explicitly represented in the encoding. std::map TiedNames; for (const auto &Op : CGI.Operands) { for (const auto &[J, CI] : enumerate(Op.Constraints)) { if (!CI.isTied()) continue; std::pair SO = CGI.Operands.getSubOperandNumber(CI.getTiedOperand()); StringRef TiedName = CGI.Operands[SO.first].SubOpNames[SO.second]; if (TiedName.empty()) TiedName = CGI.Operands[SO.first].Name; StringRef MyName = Op.SubOpNames[J]; if (MyName.empty()) MyName = Op.Name; TiedNames[MyName] = TiedName; TiedNames[TiedName] = MyName; } } if (IsVarLenInst) { parseVarLenInstOperand(EncodingDef, InsnOperands, CGI); } else { // For each operand, see if we can figure out where it is encoded. for (const auto &Op : InOutOperands) { const Init *OpInit = Op.first; StringRef OpName = Op.second; // We're ready to find the instruction encoding locations for this // operand. // First, find the operand type ("OpInit"), and sub-op names // ("SubArgDag") if present. const DagInit *SubArgDag = dyn_cast(OpInit); if (SubArgDag) OpInit = SubArgDag->getOperator(); const Record *OpTypeRec = cast(OpInit)->getDef(); // Lookup the sub-operands from the operand type record (note that only // Operand subclasses have MIOperandInfo, see CodeGenInstruction.cpp). const DagInit *SubOps = OpTypeRec->isSubClassOf("Operand") ? OpTypeRec->getValueAsDag("MIOperandInfo") : nullptr; // Lookup the decoder method and construct a new OperandInfo to hold our // result. OperandInfo OpInfo = getOpInfo(OpTypeRec); // If we have named sub-operands... if (SubArgDag) { // Then there should not be a custom decoder specified on the top-level // type. if (!OpInfo.Decoder.empty()) { PrintError(EncodingDef.getLoc(), "DecoderEmitter: operand \"" + OpName + "\" has type \"" + OpInit->getAsString() + "\" with a custom DecoderMethod, but also named " "sub-operands."); continue; } // Decode each of the sub-ops separately. assert(SubOps && SubArgDag->getNumArgs() == SubOps->getNumArgs()); for (const auto &[I, Arg] : enumerate(SubOps->getArgs())) { StringRef SubOpName = SubArgDag->getArgNameStr(I); OperandInfo SubOpInfo = getOpInfo(cast(Arg)->getDef()); addOneOperandFields(EncodingDef, Bits, TiedNames, SubOpName, SubOpInfo); InsnOperands.push_back(std::move(SubOpInfo)); } continue; } // Otherwise, if we have an operand with sub-operands, but they aren't // named... if (SubOps && OpInfo.Decoder.empty()) { // If it's a single sub-operand, and no custom decoder, use the decoder // from the one sub-operand. if (SubOps->getNumArgs() == 1) OpInfo = getOpInfo(cast(SubOps->getArg(0))->getDef()); // If we have multiple sub-ops, there'd better have a custom // decoder. (Otherwise we don't know how to populate them properly...) if (SubOps->getNumArgs() > 1) { PrintError(EncodingDef.getLoc(), "DecoderEmitter: operand \"" + OpName + "\" uses MIOperandInfo with multiple ops, but doesn't " "have a custom decoder!"); debugDumpRecord(EncodingDef); continue; } } addOneOperandFields(EncodingDef, Bits, TiedNames, OpName, OpInfo); // FIXME: it should be an error not to find a definition for a given // operand, rather than just failing to add it to the resulting // instruction! (This is a longstanding bug, which will be addressed in an // upcoming change.) if (OpInfo.numFields() > 0) InsnOperands.push_back(std::move(OpInfo)); } } Operands[Opc] = std::move(InsnOperands); #if 0 LLVM_DEBUG({ // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); #endif return Bits.getNumBits(); } // emitFieldFromInstruction - Emit the templated helper function // fieldFromInstruction(). // On Windows we make sure that this function is not inlined when // using the VS compiler. It has a bug which causes the function // to be optimized out in some circumstances. See llvm.org/pr38292 static void emitFieldFromInstruction(formatted_raw_ostream &OS) { OS << R"( // Helper functions for extracting fields from encoded instructions. // InsnType must either be integral or an APInt-like object that must: // * be default-constructible and copy-constructible // * Support extractBitsAsZExtValue(numBits, startBit) // * Support the ~, &, ==, and != operators with other objects of the same type // * Support the != and bitwise & with uint64_t template #if defined(_MSC_VER) && !defined(__clang__) __declspec(noinline) #endif static std::enable_if_t::value, InsnType> fieldFromInstruction(const InsnType &insn, unsigned startBit, unsigned numBits) { assert(startBit + numBits <= 64 && "Cannot support >64-bit extractions!"); assert(startBit + numBits <= (sizeof(InsnType) * 8) && "Instruction field out of bounds!"); InsnType fieldMask; if (numBits == sizeof(InsnType) * 8) fieldMask = (InsnType)(-1LL); else fieldMask = (((InsnType)1 << numBits) - 1) << startBit; return (insn & fieldMask) >> startBit; } template static std::enable_if_t::value, uint64_t> fieldFromInstruction(const InsnType &insn, unsigned startBit, unsigned numBits) { return insn.extractBitsAsZExtValue(numBits, startBit); } )"; } // emitInsertBits - Emit the templated helper function insertBits(). static void emitInsertBits(formatted_raw_ostream &OS) { OS << R"( // Helper function for inserting bits extracted from an encoded instruction into // an integer-typed field. template static std::enable_if_t, void> insertBits(IntType &field, IntType bits, unsigned startBit, unsigned numBits) { // Check that no bit beyond numBits is set, so that a simple bitwise | // is sufficient. assert((~(((IntType)1 << numBits) - 1) & bits) == 0 && "bits has more than numBits bits set"); assert(startBit + numBits <= sizeof(IntType) * 8); (void)numBits; field |= bits << startBit; } )"; } // emitDecodeInstruction - Emit the templated helper function // decodeInstruction(). static void emitDecodeInstruction(formatted_raw_ostream &OS, bool IsVarLenInst, unsigned OpcodeMask) { const bool HasTryDecode = OpcodeMask & ((1 << MCD::OPC_TryDecode) | (1 << MCD::OPC_TryDecodeOrFail)); const bool HasCheckPredicate = OpcodeMask & ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); const bool HasSoftFail = OpcodeMask & (1 << MCD::OPC_SoftFail); OS << R"( static unsigned decodeNumToSkip(const uint8_t *&Ptr) { unsigned NumToSkip = *Ptr++; NumToSkip |= (*Ptr++) << 8; )"; if (getNumToSkipInBytes() == 3) OS << " NumToSkip |= (*Ptr++) << 16;\n"; OS << R"( return NumToSkip; } template static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, InsnType insn, uint64_t Address, const MCDisassembler *DisAsm, const MCSubtargetInfo &STI)"; if (IsVarLenInst) { OS << ",\n " "llvm::function_ref makeUp"; } OS << ") {\n"; if (HasCheckPredicate) OS << " const FeatureBitset &Bits = STI.getFeatureBits();\n"; OS << R"( const uint8_t *Ptr = DecodeTable; uint64_t CurFieldValue = 0; DecodeStatus S = MCDisassembler::Success; while (true) { ptrdiff_t Loc = Ptr - DecodeTable; const uint8_t DecoderOp = *Ptr++; switch (DecoderOp) { default: errs() << Loc << ": Unexpected decode table opcode: " << (int)DecoderOp << '\n'; return MCDisassembler::Fail; case MCD::OPC_ExtractField: { // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr++;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( CurFieldValue = fieldFromInstruction(insn, Start, Len); LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " << Len << "): " << CurFieldValue << "\n"); break; } case MCD::OPC_FilterValue: case MCD::OPC_FilterValueOrFail: { bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; // Decode the field value. uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); bool Failed = Val != CurFieldValue; unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Note: Print NumToSkip even for OPC_FilterValueOrFail to simplify debug // prints. LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_FilterValueOrFail" : "OPC_FilterValue"; dbgs() << Loc << ": " << OpName << '(' << Val << ", " << NumToSkip << ") " << (Failed ? "FAIL:" : "PASS:") << " continuing at " << (Ptr - DecodeTable) << '\n'; }); // Perform the filter operation. if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; } case MCD::OPC_CheckField: case MCD::OPC_CheckFieldOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); // Decode the field value. unsigned PtrLen = 0; uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); Ptr += PtrLen; bool Failed = ExpectedValue != FieldValue; unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_CheckFieldOrFail" : "OPC_CheckField"; dbgs() << Loc << ": " << OpName << '(' << Start << ", " << Len << ", " << ExpectedValue << ", " << NumToSkip << "): FieldValue = " << FieldValue << ", ExpectedValue = " << ExpectedValue << ": " << (Failed ? "FAIL\n" : "PASS\n"); }); // If the actual and expected values don't match, skip or fail. if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; })"; if (HasCheckPredicate) { OS << R"( case MCD::OPC_CheckPredicate: case MCD::OPC_CheckPredicateOrFail: { bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; // Decode the Predicate Index value. unsigned PIdx = decodeULEB128AndIncUnsafe(Ptr); unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Check the predicate. bool Failed = !checkDecoderPredicate(PIdx, Bits); LLVM_DEBUG({ StringRef OpName = IsFail ? "OPC_CheckPredicateOrFail" : "OPC_CheckPredicate"; dbgs() << Loc << ": " << OpName << '(' << PIdx << ", " << NumToSkip << "): " << (Failed ? "FAIL\n" : "PASS\n"); }); if (Failed) { if (IsFail) return MCDisassembler::Fail; Ptr += NumToSkip; } break; })"; } OS << R"( case MCD::OPC_Decode: { // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); MI.clear(); MI.setOpcode(Opc); bool DecodeComplete;)"; if (IsVarLenInst) { OS << "\n unsigned Len = InstrLenTable[Opc];\n" << " makeUp(insn, Len);"; } OS << R"( S = decodeToMCInst(DecodeIdx, S, insn, MI, Address, DisAsm, DecodeComplete); assert(DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc << ", using decoder " << DecodeIdx << ": " << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); return S; })"; if (HasTryDecode) { OS << R"( case MCD::OPC_TryDecode: case MCD::OPC_TryDecodeOrFail: { bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); // Perform the decode operation. MCInst TmpMI; TmpMI.setOpcode(Opc); bool DecodeComplete; S = decodeToMCInst(DecodeIdx, S, insn, TmpMI, Address, DisAsm, DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc << ", using decoder " << DecodeIdx << ": "); if (DecodeComplete) { // Decoding complete. LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); MI = TmpMI; return S; } assert(S == MCDisassembler::Fail); if (IsFail) { LLVM_DEBUG(dbgs() << "FAIL: returning FAIL\n"); return MCDisassembler::Fail; } // If the decoding was incomplete, skip. Ptr += NumToSkip; LLVM_DEBUG(dbgs() << "FAIL: continuing at " << (Ptr - DecodeTable) << "\n"); // Reset decode status. This also drops a SoftFail status that could be // set before the decode attempt. S = MCDisassembler::Success; break; })"; } if (HasSoftFail) { OS << R"( case MCD::OPC_SoftFail: { // Decode the mask values. uint64_t PositiveMask = decodeULEB128AndIncUnsafe(Ptr); uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); bool Failed = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; if (Failed) S = MCDisassembler::SoftFail; LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Failed ? "FAIL\n" : "PASS\n")); break; })"; } OS << R"( case MCD::OPC_Fail: { LLVM_DEBUG(dbgs() << Loc << ": OPC_Fail\n"); return MCDisassembler::Fail; } } } llvm_unreachable("bogosity detected in disassembler state machine!"); } )"; } // Helper to propagate SoftFail status. Returns false if the status is Fail; // callers are expected to early-exit in that condition. (Note, the '&' operator // is correct to propagate the values of this enum; see comment on 'enum // DecodeStatus'.) static void emitCheck(formatted_raw_ostream &OS) { OS << R"( static bool Check(DecodeStatus &Out, DecodeStatus In) { Out = static_cast(Out & In); return Out != MCDisassembler::Fail; } )"; } // Collect all HwModes referenced by the target for encoding purposes, // returning a vector of corresponding names. static void collectHwModesReferencedForEncodings( const CodeGenHwModes &HWM, std::vector &Names, NamespacesHwModesMap &NamespacesWithHwModes) { SmallBitVector BV(HWM.getNumModeIds()); for (const auto &MS : HWM.getHwModeSelects()) { for (const HwModeSelect::PairType &P : MS.second.Items) { if (P.second->isSubClassOf("InstructionEncoding")) { std::string DecoderNamespace = P.second->getValueAsString("DecoderNamespace").str(); if (P.first == DefaultMode) { NamespacesWithHwModes[DecoderNamespace].insert(""); } else { NamespacesWithHwModes[DecoderNamespace].insert( HWM.getMode(P.first).Name); } BV.set(P.first); } } } transform(BV.set_bits(), std::back_inserter(Names), [&HWM](const int &M) { if (M == DefaultMode) return StringRef(""); return HWM.getModeName(M, /*IncludeDefault=*/true); }); } static void handleHwModesUnrelatedEncodings(const CodeGenInstruction *Instr, ArrayRef HwModeNames, NamespacesHwModesMap &NamespacesWithHwModes, std::vector &GlobalEncodings) { const Record *InstDef = Instr->TheDef; switch (DecoderEmitterSuppressDuplicates) { case SUPPRESSION_DISABLE: { for (StringRef HwModeName : HwModeNames) GlobalEncodings.emplace_back(InstDef, Instr, HwModeName); break; } case SUPPRESSION_LEVEL1: { std::string DecoderNamespace = InstDef->getValueAsString("DecoderNamespace").str(); auto It = NamespacesWithHwModes.find(DecoderNamespace); if (It != NamespacesWithHwModes.end()) { for (StringRef HwModeName : It->second) GlobalEncodings.emplace_back(InstDef, Instr, HwModeName); } else { // Only emit the encoding once, as it's DecoderNamespace doesn't // contain any HwModes. GlobalEncodings.emplace_back(InstDef, Instr, ""); } break; } case SUPPRESSION_LEVEL2: GlobalEncodings.emplace_back(InstDef, Instr, ""); break; } } // Emits disassembler code for instruction decoding. void DecoderEmitter::run(raw_ostream &o) { formatted_raw_ostream OS(o); OS << R"( #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include namespace { )"; emitFieldFromInstruction(OS); emitInsertBits(OS); emitCheck(OS); Target.reverseBitsForLittleEndianEncoding(); // Parameterize the decoders based on namespace and instruction width. // First, collect all encoding-related HwModes referenced by the target. // And establish a mapping table between DecoderNamespace and HwMode. // If HwModeNames is empty, add the empty string so we always have one HwMode. const CodeGenHwModes &HWM = Target.getHwModes(); std::vector HwModeNames; NamespacesHwModesMap NamespacesWithHwModes; collectHwModesReferencedForEncodings(HWM, HwModeNames, NamespacesWithHwModes); if (HwModeNames.empty()) HwModeNames.push_back(""); const auto &NumberedInstructions = Target.getInstructions(); NumberedEncodings.reserve(NumberedInstructions.size()); for (const auto &NumberedInstruction : NumberedInstructions) { const Record *InstDef = NumberedInstruction->TheDef; if (const RecordVal *RV = InstDef->getValue("EncodingInfos")) { if (const DefInit *DI = dyn_cast_or_null(RV->getValue())) { EncodingInfoByHwMode EBM(DI->getDef(), HWM); for (auto &[ModeId, Encoding] : EBM) { // DecoderTables with DefaultMode should not have any suffix. if (ModeId == DefaultMode) { NumberedEncodings.emplace_back(Encoding, NumberedInstruction, ""); } else { NumberedEncodings.emplace_back(Encoding, NumberedInstruction, HWM.getMode(ModeId).Name); } } continue; } } // This instruction is encoded the same on all HwModes. // According to user needs, provide varying degrees of suppression. handleHwModesUnrelatedEncodings(NumberedInstruction, HwModeNames, NamespacesWithHwModes, NumberedEncodings); } for (const Record *NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding")) NumberedEncodings.emplace_back( NumberedAlias, &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf"))); std::map, std::vector> OpcMap; std::map> Operands; std::vector InstrLen; bool IsVarLenInst = Target.hasVariableLengthEncodings(); unsigned MaxInstLen = 0; for (const auto &[NEI, NumberedEncoding] : enumerate(NumberedEncodings)) { const Record *EncodingDef = NumberedEncoding.EncodingDef; const CodeGenInstruction *Inst = NumberedEncoding.Inst; const Record *Def = Inst->TheDef; unsigned Size = EncodingDef->getValueAsInt("Size"); if (Def->getValueAsString("Namespace") == "TargetOpcode" || Def->getValueAsBit("isPseudo") || Def->getValueAsBit("isAsmParserOnly") || Def->getValueAsBit("isCodeGenOnly")) { NumEncodingsLackingDisasm++; continue; } if (NEI < NumberedInstructions.size()) NumInstructions++; NumEncodings++; if (!Size && !IsVarLenInst) continue; if (IsVarLenInst) InstrLen.resize(NumberedInstructions.size(), 0); if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, NEI, Operands, IsVarLenInst)) { if (IsVarLenInst) { MaxInstLen = std::max(MaxInstLen, Len); InstrLen[NEI] = Len; } std::string DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace").str(); if (!NumberedEncoding.HwModeName.empty()) DecoderNamespace += "_" + NumberedEncoding.HwModeName.str(); OpcMap[{DecoderNamespace, Size}].emplace_back( NEI, Target.getInstrIntValue(Def)); } else { NumEncodingsOmitted++; } } DecoderTableInfo TableInfo; unsigned OpcodeMask = 0; for (const auto &[NSAndByteSize, EncodingIDs] : OpcMap) { const std::string &DecoderNamespace = NSAndByteSize.first; const unsigned BitWidth = 8 * NSAndByteSize.second; // Emit the decoder for this namespace+width combination. FilterChooser FC(NumberedEncodings, EncodingIDs, Operands, IsVarLenInst ? MaxInstLen : BitWidth, this); // The decode table is cleared for each top level decoder function. The // predicates and decoders themselves, however, are shared across all // decoders to give more opportunities for uniqueing. TableInfo.Table.clear(); TableInfo.FixupStack.clear(); TableInfo.FixupStack.emplace_back(); FC.emitTableEntries(TableInfo); // Any NumToSkip fixups in the top level scope can resolve to the // OPC_Fail at the end of the table. assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.clear(); TableInfo.Table.push_back(MCD::OPC_Fail); // Print the table to the output stream. OpcodeMask |= emitTable(OS, TableInfo.Table, FC.getBitWidth(), DecoderNamespace, EncodingIDs); } // For variable instruction, we emit a instruction length table // to let the decoder know how long the instructions are. // You can see example usage in M68k's disassembler. if (IsVarLenInst) emitInstrLenTable(OS, InstrLen); const bool HasCheckPredicate = OpcodeMask & ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); // Emit the predicate function. if (HasCheckPredicate) emitPredicateFunction(OS, TableInfo.Predicates); // Emit the decoder function. emitDecoderFunction(OS, TableInfo.Decoders); // Emit the main entry point for the decoder, decodeInstruction(). emitDecodeInstruction(OS, IsVarLenInst, OpcodeMask); OS << "\n} // namespace\n"; } void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS, StringRef PredicateNamespace) { DecoderEmitter(RK, PredicateNamespace).run(OS); }