//===----------------------------------------------------------------------===// // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVISelLowering.h" #include "RISCVSelectionDAGInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/AsmParser/Parser.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "gtest/gtest.h" namespace llvm { class RISCVSelectionDAGTest : public testing::Test { protected: static void SetUpTestCase() { LLVMInitializeRISCVTargetInfo(); LLVMInitializeRISCVTarget(); LLVMInitializeRISCVTargetMC(); } void SetUp() override { StringRef Assembly = "define void @f() { ret void }"; Triple TargetTriple("riscv64", "unknown", "linux"); std::string Error; const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error); TargetOptions Options; TM = std::unique_ptr(T->createTargetMachine( TargetTriple, "generic", "", Options, std::nullopt, std::nullopt, CodeGenOptLevel::Default)); SMDiagnostic SMError; M = parseAssemblyString(Assembly, SMError, Context); if (!M) report_fatal_error(SMError.getMessage()); M->setDataLayout(TM->createDataLayout()); F = M->getFunction("f"); if (!F) report_fatal_error("Function 'f' not found"); MachineModuleInfo MMI(TM.get()); MF = std::make_unique(*F, *TM, *TM->getSubtargetImpl(*F), MMI.getContext(), /*FunctionNum*/ 0); DAG = std::make_unique(*TM, CodeGenOptLevel::None); if (!DAG) report_fatal_error("SelectionDAG allocation failed"); OptimizationRemarkEmitter ORE(F); DAG->init(*MF, ORE, /*LibInfo*/ nullptr, /*AA*/ nullptr, /*AC*/ nullptr, /*MDT*/ nullptr, /*MSDT*/ nullptr, MMI, nullptr); } LLVMContext Context; std::unique_ptr TM; std::unique_ptr M; Function *F = nullptr; std::unique_ptr MF; std::unique_ptr DAG; }; /// SRLW: Logical Shift Right TEST_F(RISCVSelectionDAGTest, computeKnownBits_SRLW) { // Given the following IR snippet: // define i64 @f(i32 %x, i32 %y) { // %a = and i32 %x, 2147483647 ; zeros the MSB for %x // %b = lshr i32 %a, %y // %c = zext i32 %b to i64 ; makes the most significant 32 bits 0 // ret i64 %c // } // The Optimized SelectionDAG as show by llc -mtriple="riscv64" // -debug-only=isel-dump is: // t0: ch,glue = EntryToken // t2: i64,ch = CopyFromReg t0, Register:i64 %0 // t18: i64 = and t2, Constant:i64<2147483647> // t4: i64,ch = CopyFromReg t0, Register:i64 %1 // t20: i64 = RISCVISD::SRLW t18, t4 // t22: i64 = and t20, Constant:i64<4294967295> // t13: ch,glue = CopyToReg t0, Register:i64 $x10, t22 // t14: ch = RISCVISD::RET_GLUE t13, Register:i64 $x10, t13:1 // // The DAG created below is derived from this SDLoc Loc; auto Int64VT = EVT::getIntegerVT(Context, 64); auto Px = DAG->getRegister(0, Int64VT); auto Py = DAG->getConstant(2147483647, Loc, Int64VT); auto N1 = DAG->getNode(ISD::AND, Loc, Int64VT, Px, Py); auto Qx = DAG->getRegister(0, Int64VT); auto N2 = DAG->getNode(RISCVISD::SRLW, Loc, Int64VT, N1, Qx); auto Py2 = DAG->getConstant(4294967295, Loc, Int64VT); auto N3 = DAG->getNode(ISD::AND, Loc, Int64VT, N2, Py2); // N1 = Px & 0x7FFFFFFF // The first AND ensures that the input to the shift has bit 31 cleared. // This means bits [63:31] of N1 are known to be zero. // // N2 = SRLW N1, Qx // SRLW performs a 32-bit logical right shift and then sign-extends the // 32-bit result to 64 bits. Because we know N1's bit 31 is 0, the // 32-bit result of the shift will also have its sign bit (bit 31) as 0. // Therefore, the sign-extension is guaranteed to be a zero-extension. // // N3 = N2 & 0xFFFFFFFF // This second AND is part of the canonical pattern to clear the upper // 32 bits, explicitly performing the zero-extension. From a KnownBits // perspective, it's redundant, as N2's upper bits are already known zero. // // As a result, for N3, we know the upper 32 bits are zero (from the effective // zero-extension) and we also know bit 31 is zero (from the initial AND). // This gives us 33 known most-significant zero bits. KnownBits Known = DAG->computeKnownBits(N3); EXPECT_EQ(Known.Zero, APInt(64, -2147483648)); EXPECT_EQ(Known.One, APInt(64, 0)); } } // end namespace llvm