//===- unittest/ProfileData/InstrProfTest.cpp -------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/ProfileData/IndexedMemProfData.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/ProfileData/InstrProfWriter.h" #include "llvm/ProfileData/MemProf.h" #include "llvm/ProfileData/MemProfData.inc" #include "llvm/ProfileData/MemProfRadixTree.h" #include "llvm/Support/Compression.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Testing/Support/Error.h" #include "gtest/gtest.h" #include #include #include using namespace llvm; using ::llvm::memprof::LineLocation; using ::testing::ElementsAre; using ::testing::EndsWith; using ::testing::IsSubsetOf; using ::testing::Pair; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; [[nodiscard]] static ::testing::AssertionResult ErrorEquals(instrprof_error Expected, Error E) { instrprof_error Found; std::string FoundMsg; handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { Found = IPE.get(); FoundMsg = IPE.message(); }); if (Expected == Found) return ::testing::AssertionSuccess(); return ::testing::AssertionFailure() << "error: " << FoundMsg << "\n"; } namespace llvm { bool operator==(const TemporalProfTraceTy &lhs, const TemporalProfTraceTy &rhs) { return lhs.Weight == rhs.Weight && lhs.FunctionNameRefs == rhs.FunctionNameRefs; } } // end namespace llvm namespace { struct InstrProfTest : ::testing::Test { InstrProfWriter Writer; std::unique_ptr Reader; void SetUp() override { Writer.setOutputSparse(false); } void readProfile(std::unique_ptr Profile, std::unique_ptr Remapping = nullptr) { auto ReaderOrErr = IndexedInstrProfReader::create(std::move(Profile), std::move(Remapping)); EXPECT_THAT_ERROR(ReaderOrErr.takeError(), Succeeded()); Reader = std::move(ReaderOrErr.get()); } }; struct SparseInstrProfTest : public InstrProfTest { void SetUp() override { Writer.setOutputSparse(true); } }; struct InstrProfReaderWriterTest : public InstrProfTest, public ::testing::WithParamInterface< std::tuple> { void SetUp() override { Writer.setOutputSparse(std::get<0>(GetParam())); } void TearDown() override { // Reset writer value profile data endianness after each test case. Note // it's not necessary to reset reader value profile endianness for each test // case. Each test case creates a new reader; at reader initialization time, // it uses the endianness from hash table object (which is little by // default). Writer.setValueProfDataEndianness(llvm::endianness::little); } uint64_t getProfWeight() const { return std::get<1>(GetParam()); } llvm::endianness getEndianness() const { return std::get<2>(GetParam()); } }; struct MaybeSparseInstrProfTest : public InstrProfTest, public ::testing::WithParamInterface { void SetUp() override { Writer.setOutputSparse(GetParam()); } }; TEST_P(MaybeSparseInstrProfTest, write_and_read_empty_profile) { auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); ASSERT_TRUE(Reader->begin() == Reader->end()); } static const auto Err = [](Error E) { consumeError(std::move(E)); FAIL(); }; TEST_P(MaybeSparseInstrProfTest, write_and_read_one_function) { Writer.addRecord({"foo", 0x1234, {1, 2, 3, 4}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto I = Reader->begin(), E = Reader->end(); ASSERT_TRUE(I != E); ASSERT_EQ(StringRef("foo"), I->Name); ASSERT_EQ(0x1234U, I->Hash); ASSERT_EQ(4U, I->Counts.size()); ASSERT_EQ(1U, I->Counts[0]); ASSERT_EQ(2U, I->Counts[1]); ASSERT_EQ(3U, I->Counts[2]); ASSERT_EQ(4U, I->Counts[3]); ASSERT_TRUE(++I == E); } TEST_P(MaybeSparseInstrProfTest, get_instr_prof_record) { Writer.addRecord({"foo", 0x1234, {1, 2}}, Err); Writer.addRecord({"foo", 0x1235, {3, 4}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto R = Reader->getInstrProfRecord("foo", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(2U, R->Counts.size()); ASSERT_EQ(1U, R->Counts[0]); ASSERT_EQ(2U, R->Counts[1]); R = Reader->getInstrProfRecord("foo", 0x1235); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(2U, R->Counts.size()); ASSERT_EQ(3U, R->Counts[0]); ASSERT_EQ(4U, R->Counts[1]); R = Reader->getInstrProfRecord("foo", 0x5678); ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, R.takeError())); R = Reader->getInstrProfRecord("bar", 0x1234); ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, R.takeError())); } TEST_P(MaybeSparseInstrProfTest, get_function_counts) { Writer.addRecord({"foo", 0x1234, {1, 2}}, Err); Writer.addRecord({"foo", 0x1235, {3, 4}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); std::vector Counts; EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1234, Counts), Succeeded()); ASSERT_EQ(2U, Counts.size()); ASSERT_EQ(1U, Counts[0]); ASSERT_EQ(2U, Counts[1]); EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1235, Counts), Succeeded()); ASSERT_EQ(2U, Counts.size()); ASSERT_EQ(3U, Counts[0]); ASSERT_EQ(4U, Counts[1]); Error E1 = Reader->getFunctionCounts("foo", 0x5678, Counts); ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, std::move(E1))); Error E2 = Reader->getFunctionCounts("bar", 0x1234, Counts); ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, std::move(E2))); } // Profile data is copied from general.proftext TEST_F(InstrProfTest, get_profile_summary) { Writer.addRecord({"func1", 0x1234, {97531}}, Err); Writer.addRecord({"func2", 0x1234, {0, 0}}, Err); Writer.addRecord( {"func3", 0x1234, {2305843009213693952, 1152921504606846976, 576460752303423488, 288230376151711744, 144115188075855872, 72057594037927936}}, Err); Writer.addRecord({"func4", 0x1234, {0}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto VerifySummary = [](ProfileSummary &IPS) mutable { ASSERT_EQ(ProfileSummary::PSK_Instr, IPS.getKind()); ASSERT_EQ(2305843009213693952U, IPS.getMaxFunctionCount()); ASSERT_EQ(2305843009213693952U, IPS.getMaxCount()); ASSERT_EQ(10U, IPS.getNumCounts()); ASSERT_EQ(4539628424389557499U, IPS.getTotalCount()); const std::vector &Details = IPS.getDetailedSummary(); uint32_t Cutoff = 800000; auto Predicate = [&Cutoff](const ProfileSummaryEntry &PE) { return PE.Cutoff == Cutoff; }; auto EightyPerc = find_if(Details, Predicate); Cutoff = 900000; auto NinetyPerc = find_if(Details, Predicate); Cutoff = 950000; auto NinetyFivePerc = find_if(Details, Predicate); Cutoff = 990000; auto NinetyNinePerc = find_if(Details, Predicate); ASSERT_EQ(576460752303423488U, EightyPerc->MinCount); ASSERT_EQ(288230376151711744U, NinetyPerc->MinCount); ASSERT_EQ(288230376151711744U, NinetyFivePerc->MinCount); ASSERT_EQ(72057594037927936U, NinetyNinePerc->MinCount); }; ProfileSummary &PS = Reader->getSummary(/* IsCS */ false); VerifySummary(PS); // Test that conversion of summary to and from Metadata works. LLVMContext Context; Metadata *MD = PS.getMD(Context); ASSERT_TRUE(MD); ProfileSummary *PSFromMD = ProfileSummary::getFromMD(MD); ASSERT_TRUE(PSFromMD); VerifySummary(*PSFromMD); delete PSFromMD; // Test that summary can be attached to and read back from module. Module M("my_module", Context); M.setProfileSummary(MD, ProfileSummary::PSK_Instr); MD = M.getProfileSummary(/* IsCS */ false); ASSERT_TRUE(MD); PSFromMD = ProfileSummary::getFromMD(MD); ASSERT_TRUE(PSFromMD); VerifySummary(*PSFromMD); delete PSFromMD; } TEST_F(InstrProfTest, test_writer_merge) { Writer.addRecord({"func1", 0x1234, {42}}, Err); InstrProfWriter Writer2; Writer2.addRecord({"func2", 0x1234, {0, 0}}, Err); Writer.mergeRecordsFromWriter(std::move(Writer2), Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto R = Reader->getInstrProfRecord("func1", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(1U, R->Counts.size()); ASSERT_EQ(42U, R->Counts[0]); R = Reader->getInstrProfRecord("func2", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(2U, R->Counts.size()); ASSERT_EQ(0U, R->Counts[0]); ASSERT_EQ(0U, R->Counts[1]); } TEST_F(InstrProfTest, test_merge_temporal_prof_traces_truncated) { uint64_t ReservoirSize = 10; uint64_t MaxTraceLength = 2; InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile), Succeeded()); TemporalProfTraceTy LargeTrace, SmallTrace; LargeTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo"), IndexedInstrProf::ComputeHash("bar"), IndexedInstrProf::ComputeHash("goo")}; SmallTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo"), IndexedInstrProf::ComputeHash("bar")}; SmallVector Traces = {LargeTrace, SmallTrace}; Writer.addTemporalProfileTraces(Traces, 2); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); ASSERT_TRUE(Reader->hasTemporalProfile()); EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 2U); EXPECT_THAT(Reader->getTemporalProfTraces(), UnorderedElementsAre(SmallTrace, SmallTrace)); } TEST_F(InstrProfTest, test_merge_traces_from_writer) { uint64_t ReservoirSize = 10; uint64_t MaxTraceLength = 10; InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength); InstrProfWriter Writer2(/*Sparse=*/false, ReservoirSize, MaxTraceLength); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile), Succeeded()); ASSERT_THAT_ERROR(Writer2.mergeProfileKind(InstrProfKind::TemporalProfile), Succeeded()); TemporalProfTraceTy FooTrace, BarTrace; FooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo")}; BarTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("bar")}; SmallVector Traces1({FooTrace}), Traces2({BarTrace}); Writer.addTemporalProfileTraces(Traces1, 1); Writer2.addTemporalProfileTraces(Traces2, 1); Writer.mergeRecordsFromWriter(std::move(Writer2), Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); ASSERT_TRUE(Reader->hasTemporalProfile()); EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 2U); EXPECT_THAT(Reader->getTemporalProfTraces(), UnorderedElementsAre(FooTrace, BarTrace)); } TEST_F(InstrProfTest, test_merge_traces_sampled) { uint64_t ReservoirSize = 3; uint64_t MaxTraceLength = 10; InstrProfWriter Writer(/*Sparse=*/false, ReservoirSize, MaxTraceLength); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::TemporalProfile), Succeeded()); TemporalProfTraceTy FooTrace, BarTrace, GooTrace; FooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("foo")}; BarTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("bar")}; GooTrace.FunctionNameRefs = {IndexedInstrProf::ComputeHash("Goo")}; // Add some sampled traces SmallVector SampledTraces = {FooTrace, BarTrace, GooTrace}; Writer.addTemporalProfileTraces(SampledTraces, 5); // Add some unsampled traces SmallVector UnsampledTraces = {BarTrace, GooTrace}; Writer.addTemporalProfileTraces(UnsampledTraces, 2); UnsampledTraces = {FooTrace}; Writer.addTemporalProfileTraces(UnsampledTraces, 1); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); ASSERT_TRUE(Reader->hasTemporalProfile()); EXPECT_EQ(Reader->getTemporalProfTraceStreamSize(), 8U); // Check that we have a subset of all the traces we added EXPECT_THAT(Reader->getTemporalProfTraces(), SizeIs(ReservoirSize)); EXPECT_THAT( Reader->getTemporalProfTraces(), IsSubsetOf({FooTrace, BarTrace, GooTrace, BarTrace, GooTrace, FooTrace})); } using ::llvm::memprof::IndexedMemProfData; using ::llvm::memprof::IndexedMemProfRecord; using ::llvm::memprof::MemInfoBlock; IndexedMemProfData getMemProfDataForTest() { IndexedMemProfData MemProfData; MemProfData.Frames.insert({0, {0x123, 1, 2, false}}); MemProfData.Frames.insert({1, {0x345, 3, 4, true}}); MemProfData.Frames.insert({2, {0x125, 5, 6, false}}); MemProfData.Frames.insert({3, {0x567, 7, 8, true}}); MemProfData.Frames.insert({4, {0x124, 5, 6, false}}); MemProfData.Frames.insert({5, {0x789, 8, 9, true}}); MemProfData.CallStacks.insert({0x111, {0, 1}}); MemProfData.CallStacks.insert({0x222, {2, 3}}); MemProfData.CallStacks.insert({0x333, {4, 5}}); return MemProfData; } // Populate all of the fields of MIB. MemInfoBlock makeFullMIB() { MemInfoBlock MIB; #define MIBEntryDef(NameTag, Name, Type) MIB.NameTag; #include "llvm/ProfileData/MIBEntryDef.inc" #undef MIBEntryDef return MIB; } // Populate those fields returned by getHotColdSchema. MemInfoBlock makePartialMIB() { MemInfoBlock MIB; MIB.AllocCount = 1; MIB.TotalSize = 5; MIB.TotalLifetime = 10; MIB.TotalLifetimeAccessDensity = 23; return MIB; } IndexedMemProfRecord makeRecordV2(std::initializer_list<::llvm::memprof::CallStackId> AllocFrames, std::initializer_list<::llvm::memprof::CallStackId> CallSiteFrames, const MemInfoBlock &Block, const memprof::MemProfSchema &Schema) { IndexedMemProfRecord MR; for (const auto &CSId : AllocFrames) MR.AllocSites.emplace_back(CSId, Block, Schema); for (const auto &CSId : CallSiteFrames) MR.CallSites.push_back(llvm::memprof::IndexedCallSiteInfo(CSId)); return MR; } MATCHER_P(EqualsRecord, Want, "") { const memprof::MemProfRecord &Got = arg; auto PrintAndFail = [&]() { std::string Buffer; llvm::raw_string_ostream OS(Buffer); OS << "Want:\n"; Want.print(OS); OS << "Got:\n"; Got.print(OS); *result_listener << "MemProf Record differs!\n" << Buffer; return false; }; if (Want.AllocSites.size() != Got.AllocSites.size()) return PrintAndFail(); if (Want.CallSites.size() != Got.CallSites.size()) return PrintAndFail(); for (size_t I = 0; I < Got.AllocSites.size(); I++) { if (Want.AllocSites[I].Info != Got.AllocSites[I].Info) return PrintAndFail(); if (Want.AllocSites[I].CallStack != Got.AllocSites[I].CallStack) return PrintAndFail(); } for (size_t I = 0; I < Got.CallSites.size(); I++) { if (Want.CallSites[I] != Got.CallSites[I]) return PrintAndFail(); } return true; } TEST_F(InstrProfTest, test_memprof_v2_full_schema) { const MemInfoBlock MIB = makeFullMIB(); Writer.setMemProfVersionRequested(memprof::Version2); Writer.setMemProfFullSchema(true); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf), Succeeded()); const IndexedMemProfRecord IndexedMR = makeRecordV2( /*AllocFrames=*/{0x111, 0x222}, /*CallSiteFrames=*/{0x333}, MIB, memprof::getFullSchema()); IndexedMemProfData MemProfData = getMemProfDataForTest(); MemProfData.Records.try_emplace(0x9999, IndexedMR); Writer.addMemProfData(MemProfData, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto RecordOr = Reader->getMemProfRecord(0x9999); ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded()); const memprof::MemProfRecord &Record = RecordOr.get(); memprof::IndexedCallstackIdConverter CSIdConv(MemProfData); const ::llvm::memprof::MemProfRecord WantRecord = IndexedMR.toMemProfRecord(CSIdConv); ASSERT_EQ(CSIdConv.FrameIdConv.LastUnmappedId, std::nullopt) << "could not map frame id: " << *CSIdConv.FrameIdConv.LastUnmappedId; ASSERT_EQ(CSIdConv.CSIdConv.LastUnmappedId, std::nullopt) << "could not map call stack id: " << *CSIdConv.CSIdConv.LastUnmappedId; EXPECT_THAT(WantRecord, EqualsRecord(Record)); } TEST_F(InstrProfTest, test_memprof_v2_partial_schema) { const MemInfoBlock MIB = makePartialMIB(); Writer.setMemProfVersionRequested(memprof::Version2); Writer.setMemProfFullSchema(false); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf), Succeeded()); const IndexedMemProfRecord IndexedMR = makeRecordV2( /*AllocFrames=*/{0x111, 0x222}, /*CallSiteFrames=*/{0x333}, MIB, memprof::getHotColdSchema()); IndexedMemProfData MemProfData = getMemProfDataForTest(); MemProfData.Records.try_emplace(0x9999, IndexedMR); Writer.addMemProfData(MemProfData, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto RecordOr = Reader->getMemProfRecord(0x9999); ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded()); const memprof::MemProfRecord &Record = RecordOr.get(); memprof::IndexedCallstackIdConverter CSIdConv(MemProfData); const ::llvm::memprof::MemProfRecord WantRecord = IndexedMR.toMemProfRecord(CSIdConv); ASSERT_EQ(CSIdConv.FrameIdConv.LastUnmappedId, std::nullopt) << "could not map frame id: " << *CSIdConv.FrameIdConv.LastUnmappedId; ASSERT_EQ(CSIdConv.CSIdConv.LastUnmappedId, std::nullopt) << "could not map call stack id: " << *CSIdConv.CSIdConv.LastUnmappedId; EXPECT_THAT(WantRecord, EqualsRecord(Record)); } TEST_F(InstrProfTest, test_caller_callee_pairs) { const MemInfoBlock MIB = makePartialMIB(); Writer.setMemProfVersionRequested(memprof::Version3); Writer.setMemProfFullSchema(false); ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf), Succeeded()); // Call Hierarchy // // Function GUID:0x123 // Line: 1, Column: 2 // Function GUID: 0x234 // Line: 3, Column: 4 // new(...) // Line: 5, Column: 6 // Function GUID: 0x345 // Line: 7, Column: 8 // new(...) const IndexedMemProfRecord IndexedMR = makeRecordV2( /*AllocFrames=*/{0x111, 0x222}, /*CallSiteFrames=*/{}, MIB, memprof::getHotColdSchema()); IndexedMemProfData MemProfData; MemProfData.Frames.try_emplace(0, 0x123, 1, 2, false); MemProfData.Frames.try_emplace(1, 0x234, 3, 4, true); MemProfData.Frames.try_emplace(2, 0x123, 5, 6, false); MemProfData.Frames.try_emplace(3, 0x345, 7, 8, true); MemProfData.CallStacks.try_emplace( 0x111, std::initializer_list{1, 0}); MemProfData.CallStacks.try_emplace( 0x222, std::initializer_list{3, 2}); MemProfData.Records.try_emplace(0x9999, IndexedMR); Writer.addMemProfData(MemProfData, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto Pairs = Reader->getMemProfCallerCalleePairs(); ASSERT_THAT(Pairs, SizeIs(3)); auto It = Pairs.find(0x123); ASSERT_NE(It, Pairs.end()); EXPECT_THAT(It->second, ElementsAre(Pair(LineLocation(1, 2), 0x234U), Pair(LineLocation(5, 6), 0x345U))); It = Pairs.find(0x234); ASSERT_NE(It, Pairs.end()); EXPECT_THAT(It->second, ElementsAre(Pair(LineLocation(3, 4), 0U))); It = Pairs.find(0x345); ASSERT_NE(It, Pairs.end()); EXPECT_THAT(It->second, ElementsAre(Pair(LineLocation(7, 8), 0U))); } TEST_F(InstrProfTest, test_memprof_getrecord_error) { ASSERT_THAT_ERROR(Writer.mergeProfileKind(InstrProfKind::MemProf), Succeeded()); Writer.setMemProfVersionRequested(memprof::Version3); // Generate an empty profile. auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); // Missing functions give a unknown_function error. auto RecordOr = Reader->getMemProfRecord(0x1111); ASSERT_TRUE( ErrorEquals(instrprof_error::unknown_function, RecordOr.takeError())); } TEST_F(InstrProfTest, test_memprof_merge) { Writer.addRecord({"func1", 0x1234, {42}}, Err); InstrProfWriter Writer2; Writer2.setMemProfVersionRequested(memprof::Version3); ASSERT_THAT_ERROR(Writer2.mergeProfileKind(InstrProfKind::MemProf), Succeeded()); const IndexedMemProfRecord IndexedMR = makeRecordV2( /*AllocFrames=*/{0x111, 0x222}, /*CallSiteFrames=*/{}, makePartialMIB(), memprof::getHotColdSchema()); IndexedMemProfData MemProfData = getMemProfDataForTest(); MemProfData.Records.try_emplace(0x9999, IndexedMR); Writer2.addMemProfData(MemProfData, Err); ASSERT_THAT_ERROR(Writer.mergeProfileKind(Writer2.getProfileKind()), Succeeded()); Writer.mergeRecordsFromWriter(std::move(Writer2), Err); Writer.setMemProfVersionRequested(memprof::Version3); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto R = Reader->getInstrProfRecord("func1", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(1U, R->Counts.size()); ASSERT_EQ(42U, R->Counts[0]); auto RecordOr = Reader->getMemProfRecord(0x9999); ASSERT_THAT_ERROR(RecordOr.takeError(), Succeeded()); const memprof::MemProfRecord &Record = RecordOr.get(); std::optional LastUnmappedFrameId; memprof::IndexedCallstackIdConverter CSIdConv(MemProfData); const ::llvm::memprof::MemProfRecord WantRecord = IndexedMR.toMemProfRecord(CSIdConv); ASSERT_EQ(LastUnmappedFrameId, std::nullopt) << "could not map frame id: " << *LastUnmappedFrameId; EXPECT_THAT(WantRecord, EqualsRecord(Record)); } TEST_F(InstrProfTest, test_irpgo_function_name) { LLVMContext Ctx; auto M = std::make_unique("MyModule.cpp", Ctx); auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); std::vector> Data; Data.emplace_back("ExternalFoo", Function::ExternalLinkage, "ExternalFoo"); Data.emplace_back("InternalFoo", Function::InternalLinkage, "MyModule.cpp;InternalFoo"); Data.emplace_back("\01-[C dynamicFoo:]", Function::ExternalLinkage, "-[C dynamicFoo:]"); Data.emplace_back("\01-[C internalFoo:]", Function::InternalLinkage, "MyModule.cpp;-[C internalFoo:]"); for (auto &[Name, Linkage, ExpectedIRPGOFuncName] : Data) Function::Create(FTy, Linkage, Name, M.get()); for (auto &[Name, Linkage, ExpectedIRPGOFuncName] : Data) { auto *F = M->getFunction(Name); auto IRPGOFuncName = getIRPGOFuncName(*F); EXPECT_EQ(IRPGOFuncName, ExpectedIRPGOFuncName); auto [Filename, ParsedIRPGOFuncName] = getParsedIRPGOName(IRPGOFuncName); StringRef ExpectedParsedIRPGOFuncName = IRPGOFuncName; if (ExpectedParsedIRPGOFuncName.consume_front("MyModule.cpp;")) { EXPECT_EQ(Filename, "MyModule.cpp"); } else { EXPECT_EQ(Filename, ""); } EXPECT_EQ(ParsedIRPGOFuncName, ExpectedParsedIRPGOFuncName); } } TEST_F(InstrProfTest, test_pgo_function_name) { LLVMContext Ctx; auto M = std::make_unique("MyModule.cpp", Ctx); auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); std::vector> Data; Data.emplace_back("ExternalFoo", Function::ExternalLinkage, "ExternalFoo"); Data.emplace_back("InternalFoo", Function::InternalLinkage, "MyModule.cpp:InternalFoo"); Data.emplace_back("\01-[C externalFoo:]", Function::ExternalLinkage, "-[C externalFoo:]"); Data.emplace_back("\01-[C internalFoo:]", Function::InternalLinkage, "MyModule.cpp:-[C internalFoo:]"); for (auto &[Name, Linkage, ExpectedPGOFuncName] : Data) Function::Create(FTy, Linkage, Name, M.get()); for (auto &[Name, Linkage, ExpectedPGOFuncName] : Data) { auto *F = M->getFunction(Name); EXPECT_EQ(getPGOFuncName(*F), ExpectedPGOFuncName); } } TEST_F(InstrProfTest, test_irpgo_read_deprecated_names) { LLVMContext Ctx; auto M = std::make_unique("MyModule.cpp", Ctx); auto *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); auto *InternalFooF = Function::Create(FTy, Function::InternalLinkage, "InternalFoo", M.get()); auto *ExternalFooF = Function::Create(FTy, Function::ExternalLinkage, "ExternalFoo", M.get()); auto *InternalBarF = Function::Create(FTy, Function::InternalLinkage, "InternalBar", M.get()); auto *ExternalBarF = Function::Create(FTy, Function::ExternalLinkage, "ExternalBar", M.get()); Writer.addRecord({getIRPGOFuncName(*InternalFooF), 0x1234, {1}}, Err); Writer.addRecord({getIRPGOFuncName(*ExternalFooF), 0x5678, {1}}, Err); // Write a record with a deprecated name Writer.addRecord({getPGOFuncName(*InternalBarF), 0x1111, {2}}, Err); Writer.addRecord({getPGOFuncName(*ExternalBarF), 0x2222, {2}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); EXPECT_THAT_EXPECTED( Reader->getInstrProfRecord(getIRPGOFuncName(*InternalFooF), 0x1234, getPGOFuncName(*InternalFooF)), Succeeded()); EXPECT_THAT_EXPECTED( Reader->getInstrProfRecord(getIRPGOFuncName(*ExternalFooF), 0x5678, getPGOFuncName(*ExternalFooF)), Succeeded()); // Ensure we can still read this old record name EXPECT_THAT_EXPECTED( Reader->getInstrProfRecord(getIRPGOFuncName(*InternalBarF), 0x1111, getPGOFuncName(*InternalBarF)), Succeeded()); EXPECT_THAT_EXPECTED( Reader->getInstrProfRecord(getIRPGOFuncName(*ExternalBarF), 0x2222, getPGOFuncName(*ExternalBarF)), Succeeded()); } // callee1 to callee6 are from vtable1 to vtable6 respectively. static const char callee1[] = "callee1"; static const char callee2[] = "callee2"; static const char callee3[] = "callee3"; static const char callee4[] = "callee4"; static const char callee5[] = "callee5"; static const char callee6[] = "callee6"; // callee7 and callee8 are not from any vtables. static const char callee7[] = "callee7"; static const char callee8[] = "callee8"; // 'callee' is primarily used to create multiple-element vtables. static const char callee[] = "callee"; static const uint64_t vtable1[] = {uint64_t(callee), uint64_t(callee1)}; static const uint64_t vtable2[] = {uint64_t(callee2), uint64_t(callee)}; static const uint64_t vtable3[] = { uint64_t(callee), uint64_t(callee3), }; static const uint64_t vtable4[] = {uint64_t(callee4), uint64_t(callee)}; static const uint64_t vtable5[] = {uint64_t(callee5), uint64_t(callee)}; static const uint64_t vtable6[] = {uint64_t(callee6), uint64_t(callee)}; // Returns the address of callee with a numbered suffix in vtable. static uint64_t getCalleeAddress(const uint64_t *vtableAddr) { uint64_t CalleeAddr; // Callee with a numbered suffix is the 2nd element in vtable1 and vtable3, // and the 1st element in the rest of vtables. if (vtableAddr == vtable1 || vtableAddr == vtable3) CalleeAddr = uint64_t(vtableAddr) + 8; else CalleeAddr = uint64_t(vtableAddr); return CalleeAddr; } TEST_P(InstrProfReaderWriterTest, icall_and_vtable_data_read_write) { NamedInstrProfRecord Record1("caller", 0x1234, {1, 2}); // 4 indirect call value sites. { Record1.reserveSites(IPVK_IndirectCallTarget, 4); InstrProfValueData VD0[] = { {(uint64_t)callee1, 1}, {(uint64_t)callee2, 2}, {(uint64_t)callee3, 3}}; Record1.addValueData(IPVK_IndirectCallTarget, 0, VD0, nullptr); // No value profile data at the second site. Record1.addValueData(IPVK_IndirectCallTarget, 1, {}, nullptr); InstrProfValueData VD2[] = {{(uint64_t)callee1, 1}, {(uint64_t)callee2, 2}}; Record1.addValueData(IPVK_IndirectCallTarget, 2, VD2, nullptr); InstrProfValueData VD3[] = {{(uint64_t)callee7, 1}, {(uint64_t)callee8, 2}}; Record1.addValueData(IPVK_IndirectCallTarget, 3, VD3, nullptr); } // 2 vtable value sites. { InstrProfValueData VD0[] = { {getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, {getCalleeAddress(vtable3), 3}, }; InstrProfValueData VD2[] = { {getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, }; Record1.addValueData(IPVK_VTableTarget, 0, VD0, nullptr); Record1.addValueData(IPVK_VTableTarget, 1, VD2, nullptr); } Writer.addRecord(std::move(Record1), getProfWeight(), Err); Writer.addRecord({"callee1", 0x1235, {3, 4}}, Err); Writer.addRecord({"callee2", 0x1235, {3, 4}}, Err); Writer.addRecord({"callee3", 0x1235, {3, 4}}, Err); Writer.addRecord({"callee7", 0x1235, {3, 4}}, Err); Writer.addRecord({"callee8", 0x1235, {3, 4}}, Err); // Set writer value prof data endianness. Writer.setValueProfDataEndianness(getEndianness()); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); // Set reader value prof data endianness. Reader->setValueProfDataEndianness(getEndianness()); auto R = Reader->getInstrProfRecord("caller", 0x1234); ASSERT_THAT_ERROR(R.takeError(), Succeeded()); // Test the number of instrumented indirect call sites and the number of // profiled values at each site. ASSERT_EQ(4U, R->getNumValueSites(IPVK_IndirectCallTarget)); // Test the number of instrumented vtable sites and the number of profiled // values at each site. ASSERT_EQ(R->getNumValueSites(IPVK_VTableTarget), 2U); // First indirect site. { auto VD = R->getValueArrayForSite(IPVK_IndirectCallTarget, 0); ASSERT_THAT(VD, SizeIs(3)); EXPECT_EQ(VD[0].Count, 3U * getProfWeight()); EXPECT_EQ(VD[1].Count, 2U * getProfWeight()); EXPECT_EQ(VD[2].Count, 1U * getProfWeight()); EXPECT_STREQ((const char *)VD[0].Value, "callee3"); EXPECT_STREQ((const char *)VD[1].Value, "callee2"); EXPECT_STREQ((const char *)VD[2].Value, "callee1"); } EXPECT_THAT(R->getValueArrayForSite(IPVK_IndirectCallTarget, 1), SizeIs(0)); EXPECT_THAT(R->getValueArrayForSite(IPVK_IndirectCallTarget, 2), SizeIs(2)); EXPECT_THAT(R->getValueArrayForSite(IPVK_IndirectCallTarget, 3), SizeIs(2)); // First vtable site. { auto VD = R->getValueArrayForSite(IPVK_VTableTarget, 0); ASSERT_THAT(VD, SizeIs(3)); EXPECT_EQ(VD[0].Count, 3U * getProfWeight()); EXPECT_EQ(VD[1].Count, 2U * getProfWeight()); EXPECT_EQ(VD[2].Count, 1U * getProfWeight()); EXPECT_EQ(VD[0].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD[1].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD[2].Value, getCalleeAddress(vtable1)); } // Second vtable site. { auto VD = R->getValueArrayForSite(IPVK_VTableTarget, 1); ASSERT_THAT(VD, SizeIs(2)); EXPECT_EQ(VD[0].Count, 2U * getProfWeight()); EXPECT_EQ(VD[1].Count, 1U * getProfWeight()); EXPECT_EQ(VD[0].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD[1].Value, getCalleeAddress(vtable1)); } } INSTANTIATE_TEST_SUITE_P( WeightAndEndiannessTest, InstrProfReaderWriterTest, ::testing::Combine( ::testing::Bool(), /* Sparse */ ::testing::Values(1U, 10U), /* ProfWeight */ ::testing::Values(llvm::endianness::big, llvm::endianness::little) /* Endianness */ )); TEST_P(MaybeSparseInstrProfTest, annotate_vp_data) { NamedInstrProfRecord Record("caller", 0x1234, {1, 2}); Record.reserveSites(IPVK_IndirectCallTarget, 1); InstrProfValueData VD0[] = {{1000, 1}, {2000, 2}, {3000, 3}, {5000, 5}, {4000, 4}, {6000, 6}}; Record.addValueData(IPVK_IndirectCallTarget, 0, VD0, nullptr); Writer.addRecord(std::move(Record), Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto R = Reader->getInstrProfRecord("caller", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); LLVMContext Ctx; std::unique_ptr M(new Module("MyModule", Ctx)); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "caller", M.get()); BasicBlock *BB = BasicBlock::Create(Ctx, "", F); IRBuilder<> Builder(BB); BasicBlock *TBB = BasicBlock::Create(Ctx, "", F); BasicBlock *FBB = BasicBlock::Create(Ctx, "", F); // Use branch instruction to annotate with value profile data for simplicity Instruction *Inst = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); Instruction *Inst2 = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); annotateValueSite(*M, *Inst, R.get(), IPVK_IndirectCallTarget, 0); uint64_t T; auto ValueData = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5, T); ASSERT_THAT(ValueData, SizeIs(3)); ASSERT_EQ(21U, T); // The result should be sorted already: ASSERT_EQ(6000U, ValueData[0].Value); ASSERT_EQ(6U, ValueData[0].Count); ASSERT_EQ(5000U, ValueData[1].Value); ASSERT_EQ(5U, ValueData[1].Count); ASSERT_EQ(4000U, ValueData[2].Value); ASSERT_EQ(4U, ValueData[2].Count); ValueData = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 1, T); ASSERT_THAT(ValueData, SizeIs(1)); ASSERT_EQ(21U, T); ValueData = getValueProfDataFromInst(*Inst2, IPVK_IndirectCallTarget, 5, T); ASSERT_THAT(ValueData, SizeIs(0)); // Remove the MD_prof metadata Inst->setMetadata(LLVMContext::MD_prof, 0); // Annotate 5 records this time. annotateValueSite(*M, *Inst, R.get(), IPVK_IndirectCallTarget, 0, 5); ValueData = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5, T); ASSERT_THAT(ValueData, SizeIs(5)); ASSERT_EQ(21U, T); ASSERT_EQ(6000U, ValueData[0].Value); ASSERT_EQ(6U, ValueData[0].Count); ASSERT_EQ(5000U, ValueData[1].Value); ASSERT_EQ(5U, ValueData[1].Count); ASSERT_EQ(4000U, ValueData[2].Value); ASSERT_EQ(4U, ValueData[2].Count); ASSERT_EQ(3000U, ValueData[3].Value); ASSERT_EQ(3U, ValueData[3].Count); ASSERT_EQ(2000U, ValueData[4].Value); ASSERT_EQ(2U, ValueData[4].Count); // Remove the MD_prof metadata Inst->setMetadata(LLVMContext::MD_prof, 0); // Annotate with 4 records. InstrProfValueData VD0Sorted[] = {{1000, 6}, {2000, 5}, {3000, 4}, {4000, 3}, {5000, 2}, {6000, 1}}; annotateValueSite(*M, *Inst, ArrayRef(VD0Sorted).slice(2), 10, IPVK_IndirectCallTarget, 5); ValueData = getValueProfDataFromInst(*Inst, IPVK_IndirectCallTarget, 5, T); ASSERT_THAT(ValueData, SizeIs(4)); ASSERT_EQ(10U, T); ASSERT_EQ(3000U, ValueData[0].Value); ASSERT_EQ(4U, ValueData[0].Count); ASSERT_EQ(4000U, ValueData[1].Value); ASSERT_EQ(3U, ValueData[1].Count); ASSERT_EQ(5000U, ValueData[2].Value); ASSERT_EQ(2U, ValueData[2].Count); ASSERT_EQ(6000U, ValueData[3].Value); ASSERT_EQ(1U, ValueData[3].Count); } TEST_P(MaybeSparseInstrProfTest, icall_and_vtable_data_merge) { static const char caller[] = "caller"; NamedInstrProfRecord Record11(caller, 0x1234, {1, 2}); NamedInstrProfRecord Record12(caller, 0x1234, {1, 2}); // 5 value sites for indirect calls. { Record11.reserveSites(IPVK_IndirectCallTarget, 5); InstrProfValueData VD0[] = {{uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}, {uint64_t(callee4), 4}}; Record11.addValueData(IPVK_IndirectCallTarget, 0, VD0, nullptr); // No value profile data at the second site. Record11.addValueData(IPVK_IndirectCallTarget, 1, {}, nullptr); InstrProfValueData VD2[] = { {uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}}; Record11.addValueData(IPVK_IndirectCallTarget, 2, VD2, nullptr); InstrProfValueData VD3[] = {{uint64_t(callee7), 1}, {uint64_t(callee8), 2}}; Record11.addValueData(IPVK_IndirectCallTarget, 3, VD3, nullptr); InstrProfValueData VD4[] = { {uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}}; Record11.addValueData(IPVK_IndirectCallTarget, 4, VD4, nullptr); } // 3 value sites for vtables. { Record11.reserveSites(IPVK_VTableTarget, 3); InstrProfValueData VD0[] = {{getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, {getCalleeAddress(vtable3), 3}, {getCalleeAddress(vtable4), 4}}; Record11.addValueData(IPVK_VTableTarget, 0, VD0, nullptr); InstrProfValueData VD2[] = {{getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, {getCalleeAddress(vtable3), 3}}; Record11.addValueData(IPVK_VTableTarget, 1, VD2, nullptr); InstrProfValueData VD4[] = {{getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, {getCalleeAddress(vtable3), 3}}; Record11.addValueData(IPVK_VTableTarget, 2, VD4, nullptr); } // A different record for the same caller. Record12.reserveSites(IPVK_IndirectCallTarget, 5); InstrProfValueData VD02[] = {{uint64_t(callee2), 5}, {uint64_t(callee3), 3}}; Record12.addValueData(IPVK_IndirectCallTarget, 0, VD02, nullptr); // No value profile data at the second site. Record12.addValueData(IPVK_IndirectCallTarget, 1, {}, nullptr); InstrProfValueData VD22[] = { {uint64_t(callee2), 1}, {uint64_t(callee3), 3}, {uint64_t(callee4), 4}}; Record12.addValueData(IPVK_IndirectCallTarget, 2, VD22, nullptr); Record12.addValueData(IPVK_IndirectCallTarget, 3, {}, nullptr); InstrProfValueData VD42[] = { {uint64_t(callee1), 1}, {uint64_t(callee2), 2}, {uint64_t(callee3), 3}}; Record12.addValueData(IPVK_IndirectCallTarget, 4, VD42, nullptr); // 3 value sites for vtables. { Record12.reserveSites(IPVK_VTableTarget, 3); InstrProfValueData VD0[] = {{getCalleeAddress(vtable2), 5}, {getCalleeAddress(vtable3), 3}}; Record12.addValueData(IPVK_VTableTarget, 0, VD0, nullptr); InstrProfValueData VD2[] = {{getCalleeAddress(vtable2), 1}, {getCalleeAddress(vtable3), 3}, {getCalleeAddress(vtable4), 4}}; Record12.addValueData(IPVK_VTableTarget, 1, VD2, nullptr); InstrProfValueData VD4[] = {{getCalleeAddress(vtable1), 1}, {getCalleeAddress(vtable2), 2}, {getCalleeAddress(vtable3), 3}}; Record12.addValueData(IPVK_VTableTarget, 2, VD4, nullptr); } Writer.addRecord(std::move(Record11), Err); // Merge profile data. Writer.addRecord(std::move(Record12), Err); Writer.addRecord({callee1, 0x1235, {3, 4}}, Err); Writer.addRecord({callee2, 0x1235, {3, 4}}, Err); Writer.addRecord({callee3, 0x1235, {3, 4}}, Err); Writer.addRecord({callee3, 0x1235, {3, 4}}, Err); Writer.addRecord({callee4, 0x1235, {3, 5}}, Err); Writer.addRecord({callee7, 0x1235, {3, 5}}, Err); Writer.addRecord({callee8, 0x1235, {3, 5}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); // Test the number of instrumented value sites and the number of profiled // values for each site. auto R = Reader->getInstrProfRecord("caller", 0x1234); EXPECT_THAT_ERROR(R.takeError(), Succeeded()); // For indirect calls. ASSERT_EQ(5U, R->getNumValueSites(IPVK_IndirectCallTarget)); // For vtables. ASSERT_EQ(R->getNumValueSites(IPVK_VTableTarget), 3U); // Test the merged values for indirect calls. { auto VD = R->getValueArrayForSite(IPVK_IndirectCallTarget, 0); ASSERT_THAT(VD, SizeIs(4)); EXPECT_STREQ((const char *)VD[0].Value, "callee2"); EXPECT_EQ(VD[0].Count, 7U); EXPECT_STREQ((const char *)VD[1].Value, "callee3"); EXPECT_EQ(VD[1].Count, 6U); EXPECT_STREQ((const char *)VD[2].Value, "callee4"); EXPECT_EQ(VD[2].Count, 4U); EXPECT_STREQ((const char *)VD[3].Value, "callee1"); EXPECT_EQ(VD[3].Count, 1U); ASSERT_THAT(R->getValueArrayForSite(IPVK_IndirectCallTarget, 1), SizeIs(0)); auto VD_2 = R->getValueArrayForSite(IPVK_IndirectCallTarget, 2); ASSERT_THAT(VD_2, SizeIs(4)); EXPECT_STREQ((const char *)VD_2[0].Value, "callee3"); EXPECT_EQ(VD_2[0].Count, 6U); EXPECT_STREQ((const char *)VD_2[1].Value, "callee4"); EXPECT_EQ(VD_2[1].Count, 4U); EXPECT_STREQ((const char *)VD_2[2].Value, "callee2"); EXPECT_EQ(VD_2[2].Count, 3U); EXPECT_STREQ((const char *)VD_2[3].Value, "callee1"); EXPECT_EQ(VD_2[3].Count, 1U); auto VD_3 = R->getValueArrayForSite(IPVK_IndirectCallTarget, 3); ASSERT_THAT(VD_3, SizeIs(2)); EXPECT_STREQ((const char *)VD_3[0].Value, "callee8"); EXPECT_EQ(VD_3[0].Count, 2U); EXPECT_STREQ((const char *)VD_3[1].Value, "callee7"); EXPECT_EQ(VD_3[1].Count, 1U); auto VD_4 = R->getValueArrayForSite(IPVK_IndirectCallTarget, 4); ASSERT_THAT(VD_4, SizeIs(3)); EXPECT_STREQ((const char *)VD_4[0].Value, "callee3"); EXPECT_EQ(VD_4[0].Count, 6U); EXPECT_STREQ((const char *)VD_4[1].Value, "callee2"); EXPECT_EQ(VD_4[1].Count, 4U); EXPECT_STREQ((const char *)VD_4[2].Value, "callee1"); EXPECT_EQ(VD_4[2].Count, 2U); } // Test the merged values for vtables { auto VD0 = R->getValueArrayForSite(IPVK_VTableTarget, 0); ASSERT_THAT(VD0, SizeIs(4)); EXPECT_EQ(VD0[0].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD0[0].Count, 7U); EXPECT_EQ(VD0[1].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD0[1].Count, 6U); EXPECT_EQ(VD0[2].Value, getCalleeAddress(vtable4)); EXPECT_EQ(VD0[2].Count, 4U); EXPECT_EQ(VD0[3].Value, getCalleeAddress(vtable1)); EXPECT_EQ(VD0[3].Count, 1U); auto VD1 = R->getValueArrayForSite(IPVK_VTableTarget, 1); ASSERT_THAT(VD1, SizeIs(4)); EXPECT_EQ(VD1[0].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD1[0].Count, 6U); EXPECT_EQ(VD1[1].Value, getCalleeAddress(vtable4)); EXPECT_EQ(VD1[1].Count, 4U); EXPECT_EQ(VD1[2].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD1[2].Count, 3U); EXPECT_EQ(VD1[3].Value, getCalleeAddress(vtable1)); EXPECT_EQ(VD1[3].Count, 1U); auto VD2 = R->getValueArrayForSite(IPVK_VTableTarget, 2); ASSERT_THAT(VD2, SizeIs(3)); EXPECT_EQ(VD2[0].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD2[0].Count, 6U); EXPECT_EQ(VD2[1].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD2[1].Count, 4U); EXPECT_EQ(VD2[2].Value, getCalleeAddress(vtable1)); EXPECT_EQ(VD2[2].Count, 2U); } } struct ValueProfileMergeEdgeCaseTest : public InstrProfTest, public ::testing::WithParamInterface> { void SetUp() override { Writer.setOutputSparse(std::get<0>(GetParam())); } uint32_t getValueProfileKind() const { return std::get<1>(GetParam()); } }; TEST_P(ValueProfileMergeEdgeCaseTest, value_profile_data_merge_saturation) { const uint32_t ValueKind = getValueProfileKind(); static const char bar[] = "bar"; const uint64_t ProfiledValue = 0x5678; const uint64_t MaxValCount = std::numeric_limits::max(); const uint64_t MaxEdgeCount = getInstrMaxCountValue(); instrprof_error Result; auto Err = [&](Error E) { Result = std::get<0>(InstrProfError::take(std::move(E))); }; Result = instrprof_error::success; Writer.addRecord({"foo", 0x1234, {1}}, Err); ASSERT_EQ(Result, instrprof_error::success); // Verify counter overflow. Result = instrprof_error::success; Writer.addRecord({"foo", 0x1234, {MaxEdgeCount}}, Err); ASSERT_EQ(Result, instrprof_error::counter_overflow); Result = instrprof_error::success; Writer.addRecord({bar, 0x9012, {8}}, Err); ASSERT_EQ(Result, instrprof_error::success); NamedInstrProfRecord Record4("baz", 0x5678, {3, 4}); Record4.reserveSites(ValueKind, 1); InstrProfValueData VD4[] = {{ProfiledValue, 1}}; Record4.addValueData(ValueKind, 0, VD4, nullptr); Result = instrprof_error::success; Writer.addRecord(std::move(Record4), Err); ASSERT_EQ(Result, instrprof_error::success); // Verify value data counter overflow. NamedInstrProfRecord Record5("baz", 0x5678, {5, 6}); Record5.reserveSites(ValueKind, 1); InstrProfValueData VD5[] = {{ProfiledValue, MaxValCount}}; Record5.addValueData(ValueKind, 0, VD5, nullptr); Result = instrprof_error::success; Writer.addRecord(std::move(Record5), Err); ASSERT_EQ(Result, instrprof_error::counter_overflow); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); // Verify saturation of counts. auto ReadRecord1 = Reader->getInstrProfRecord("foo", 0x1234); ASSERT_THAT_ERROR(ReadRecord1.takeError(), Succeeded()); EXPECT_EQ(MaxEdgeCount, ReadRecord1->Counts[0]); auto ReadRecord2 = Reader->getInstrProfRecord("baz", 0x5678); ASSERT_TRUE(bool(ReadRecord2)); ASSERT_EQ(1U, ReadRecord2->getNumValueSites(ValueKind)); auto VD = ReadRecord2->getValueArrayForSite(ValueKind, 0); EXPECT_EQ(ProfiledValue, VD[0].Value); EXPECT_EQ(MaxValCount, VD[0].Count); } // This test tests that when there are too many values for a given site, the // merged results are properly truncated. TEST_P(ValueProfileMergeEdgeCaseTest, value_profile_data_merge_site_trunc) { const uint32_t ValueKind = getValueProfileKind(); static const char caller[] = "caller"; NamedInstrProfRecord Record11(caller, 0x1234, {1, 2}); NamedInstrProfRecord Record12(caller, 0x1234, {1, 2}); // 2 value sites. Record11.reserveSites(ValueKind, 2); InstrProfValueData VD0[255]; for (int I = 0; I < 255; I++) { VD0[I].Value = 2 * I; VD0[I].Count = 2 * I + 1000; } Record11.addValueData(ValueKind, 0, VD0, nullptr); Record11.addValueData(ValueKind, 1, {}, nullptr); Record12.reserveSites(ValueKind, 2); InstrProfValueData VD1[255]; for (int I = 0; I < 255; I++) { VD1[I].Value = 2 * I + 1; VD1[I].Count = 2 * I + 1001; } Record12.addValueData(ValueKind, 0, VD1, nullptr); Record12.addValueData(ValueKind, 1, {}, nullptr); Writer.addRecord(std::move(Record11), Err); // Merge profile data. Writer.addRecord(std::move(Record12), Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto R = Reader->getInstrProfRecord("caller", 0x1234); ASSERT_THAT_ERROR(R.takeError(), Succeeded()); ASSERT_EQ(2U, R->getNumValueSites(ValueKind)); auto VD = R->getValueArrayForSite(ValueKind, 0); EXPECT_THAT(VD, SizeIs(255)); for (unsigned I = 0; I < 255; I++) { EXPECT_EQ(VD[I].Value, 509 - I); EXPECT_EQ(VD[I].Count, 1509 - I); } } INSTANTIATE_TEST_SUITE_P( EdgeCaseTest, ValueProfileMergeEdgeCaseTest, ::testing::Combine(::testing::Bool(), /* Sparse */ ::testing::Values(IPVK_IndirectCallTarget, IPVK_MemOPSize, IPVK_VTableTarget) /* ValueKind */ )); static void addValueProfData(InstrProfRecord &Record) { // Add test data for indirect calls. { Record.reserveSites(IPVK_IndirectCallTarget, 6); InstrProfValueData VD0[] = {{uint64_t(callee1), 400}, {uint64_t(callee2), 1000}, {uint64_t(callee3), 500}, {uint64_t(callee4), 300}, {uint64_t(callee5), 100}}; Record.addValueData(IPVK_IndirectCallTarget, 0, VD0, nullptr); InstrProfValueData VD1[] = {{uint64_t(callee5), 800}, {uint64_t(callee3), 1000}, {uint64_t(callee2), 2500}, {uint64_t(callee1), 1300}}; Record.addValueData(IPVK_IndirectCallTarget, 1, VD1, nullptr); InstrProfValueData VD2[] = {{uint64_t(callee6), 800}, {uint64_t(callee3), 1000}, {uint64_t(callee4), 5500}}; Record.addValueData(IPVK_IndirectCallTarget, 2, VD2, nullptr); InstrProfValueData VD3[] = {{uint64_t(callee2), 1800}, {uint64_t(callee3), 2000}}; Record.addValueData(IPVK_IndirectCallTarget, 3, VD3, nullptr); Record.addValueData(IPVK_IndirectCallTarget, 4, {}, nullptr); InstrProfValueData VD5[] = {{uint64_t(callee7), 1234}, {uint64_t(callee8), 5678}}; Record.addValueData(IPVK_IndirectCallTarget, 5, VD5, nullptr); } // Add test data for vtables { Record.reserveSites(IPVK_VTableTarget, 4); InstrProfValueData VD0[] = { {getCalleeAddress(vtable1), 400}, {getCalleeAddress(vtable2), 1000}, {getCalleeAddress(vtable3), 500}, {getCalleeAddress(vtable4), 300}, {getCalleeAddress(vtable5), 100}, }; InstrProfValueData VD1[] = {{getCalleeAddress(vtable5), 800}, {getCalleeAddress(vtable3), 1000}, {getCalleeAddress(vtable2), 2500}, {getCalleeAddress(vtable1), 1300}}; InstrProfValueData VD2[] = { {getCalleeAddress(vtable6), 800}, {getCalleeAddress(vtable3), 1000}, {getCalleeAddress(vtable4), 5500}, }; InstrProfValueData VD3[] = {{getCalleeAddress(vtable2), 1800}, {getCalleeAddress(vtable3), 2000}}; Record.addValueData(IPVK_VTableTarget, 0, VD0, nullptr); Record.addValueData(IPVK_VTableTarget, 1, VD1, nullptr); Record.addValueData(IPVK_VTableTarget, 2, VD2, nullptr); Record.addValueData(IPVK_VTableTarget, 3, VD3, nullptr); } } TEST(ValueProfileReadWriteTest, value_prof_data_read_write) { InstrProfRecord SrcRecord({1ULL << 31, 2}); addValueProfData(SrcRecord); std::unique_ptr VPData = ValueProfData::serializeFrom(SrcRecord); InstrProfRecord Record({1ULL << 31, 2}); VPData->deserializeTo(Record, nullptr); // Now read data from Record and sanity check the data ASSERT_EQ(6U, Record.getNumValueSites(IPVK_IndirectCallTarget)); auto Cmp = [](const InstrProfValueData &VD1, const InstrProfValueData &VD2) { return VD1.Count > VD2.Count; }; SmallVector VD_0( Record.getValueArrayForSite(IPVK_IndirectCallTarget, 0)); ASSERT_THAT(VD_0, SizeIs(5)); llvm::sort(VD_0, Cmp); EXPECT_STREQ((const char *)VD_0[0].Value, "callee2"); EXPECT_EQ(1000U, VD_0[0].Count); EXPECT_STREQ((const char *)VD_0[1].Value, "callee3"); EXPECT_EQ(500U, VD_0[1].Count); EXPECT_STREQ((const char *)VD_0[2].Value, "callee1"); EXPECT_EQ(400U, VD_0[2].Count); EXPECT_STREQ((const char *)VD_0[3].Value, "callee4"); EXPECT_EQ(300U, VD_0[3].Count); EXPECT_STREQ((const char *)VD_0[4].Value, "callee5"); EXPECT_EQ(100U, VD_0[4].Count); SmallVector VD_1( Record.getValueArrayForSite(IPVK_IndirectCallTarget, 1)); ASSERT_THAT(VD_1, SizeIs(4)); llvm::sort(VD_1, Cmp); EXPECT_STREQ((const char *)VD_1[0].Value, "callee2"); EXPECT_EQ(VD_1[0].Count, 2500U); EXPECT_STREQ((const char *)VD_1[1].Value, "callee1"); EXPECT_EQ(VD_1[1].Count, 1300U); EXPECT_STREQ((const char *)VD_1[2].Value, "callee3"); EXPECT_EQ(VD_1[2].Count, 1000U); EXPECT_STREQ((const char *)VD_1[3].Value, "callee5"); EXPECT_EQ(VD_1[3].Count, 800U); SmallVector VD_2( Record.getValueArrayForSite(IPVK_IndirectCallTarget, 2)); ASSERT_THAT(VD_2, SizeIs(3)); llvm::sort(VD_2, Cmp); EXPECT_STREQ((const char *)VD_2[0].Value, "callee4"); EXPECT_EQ(VD_2[0].Count, 5500U); EXPECT_STREQ((const char *)VD_2[1].Value, "callee3"); EXPECT_EQ(VD_2[1].Count, 1000U); EXPECT_STREQ((const char *)VD_2[2].Value, "callee6"); EXPECT_EQ(VD_2[2].Count, 800U); SmallVector VD_3( Record.getValueArrayForSite(IPVK_IndirectCallTarget, 3)); ASSERT_THAT(VD_3, SizeIs(2)); llvm::sort(VD_3, Cmp); EXPECT_STREQ((const char *)VD_3[0].Value, "callee3"); EXPECT_EQ(VD_3[0].Count, 2000U); EXPECT_STREQ((const char *)VD_3[1].Value, "callee2"); EXPECT_EQ(VD_3[1].Count, 1800U); ASSERT_THAT(Record.getValueArrayForSite(IPVK_IndirectCallTarget, 4), SizeIs(0)); ASSERT_THAT(Record.getValueArrayForSite(IPVK_IndirectCallTarget, 5), SizeIs(2)); ASSERT_EQ(Record.getNumValueSites(IPVK_VTableTarget), 4U); SmallVector VD0( Record.getValueArrayForSite(IPVK_VTableTarget, 0)); ASSERT_THAT(VD0, SizeIs(5)); llvm::sort(VD0, Cmp); EXPECT_EQ(VD0[0].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD0[0].Count, 1000U); EXPECT_EQ(VD0[1].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD0[1].Count, 500U); EXPECT_EQ(VD0[2].Value, getCalleeAddress(vtable1)); EXPECT_EQ(VD0[2].Count, 400U); EXPECT_EQ(VD0[3].Value, getCalleeAddress(vtable4)); EXPECT_EQ(VD0[3].Count, 300U); EXPECT_EQ(VD0[4].Value, getCalleeAddress(vtable5)); EXPECT_EQ(VD0[4].Count, 100U); SmallVector VD1( Record.getValueArrayForSite(IPVK_VTableTarget, 1)); ASSERT_THAT(VD1, SizeIs(4)); llvm::sort(VD1, Cmp); EXPECT_EQ(VD1[0].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD1[0].Count, 2500U); EXPECT_EQ(VD1[1].Value, getCalleeAddress(vtable1)); EXPECT_EQ(VD1[1].Count, 1300U); EXPECT_EQ(VD1[2].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD1[2].Count, 1000U); EXPECT_EQ(VD1[3].Value, getCalleeAddress(vtable5)); EXPECT_EQ(VD1[3].Count, 800U); SmallVector VD2( Record.getValueArrayForSite(IPVK_VTableTarget, 2)); ASSERT_THAT(VD2, SizeIs(3)); llvm::sort(VD2, Cmp); EXPECT_EQ(VD2[0].Value, getCalleeAddress(vtable4)); EXPECT_EQ(VD2[0].Count, 5500U); EXPECT_EQ(VD2[1].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD2[1].Count, 1000U); EXPECT_EQ(VD2[2].Value, getCalleeAddress(vtable6)); EXPECT_EQ(VD2[2].Count, 800U); SmallVector VD3( Record.getValueArrayForSite(IPVK_VTableTarget, 3)); ASSERT_THAT(VD3, SizeIs(2)); llvm::sort(VD3, Cmp); EXPECT_EQ(VD3[0].Value, getCalleeAddress(vtable3)); EXPECT_EQ(VD3[0].Count, 2000U); EXPECT_EQ(VD3[1].Value, getCalleeAddress(vtable2)); EXPECT_EQ(VD3[1].Count, 1800U); } TEST(ValueProfileReadWriteTest, symtab_mapping) { NamedInstrProfRecord SrcRecord("caller", 0x1234, {1ULL << 31, 2}); addValueProfData(SrcRecord); std::unique_ptr VPData = ValueProfData::serializeFrom(SrcRecord); NamedInstrProfRecord Record("caller", 0x1234, {1ULL << 31, 2}); InstrProfSymtab Symtab; Symtab.mapAddress(uint64_t(callee1), 0x1000ULL); Symtab.mapAddress(uint64_t(callee2), 0x2000ULL); Symtab.mapAddress(uint64_t(callee3), 0x3000ULL); Symtab.mapAddress(uint64_t(callee4), 0x4000ULL); // Missing mapping for callee5 auto getVTableStartAddr = [](const uint64_t *vtable) -> uint64_t { return uint64_t(vtable); }; auto getVTableEndAddr = [](const uint64_t *vtable) -> uint64_t { return uint64_t(vtable) + 16; }; auto getVTableMidAddr = [](const uint64_t *vtable) -> uint64_t { return uint64_t(vtable) + 8; }; // vtable1, vtable2, vtable3, vtable4 get mapped; vtable5, vtable6 are not // mapped. Symtab.mapVTableAddress(getVTableStartAddr(vtable1), getVTableEndAddr(vtable1), MD5Hash("vtable1")); Symtab.mapVTableAddress(getVTableStartAddr(vtable2), getVTableEndAddr(vtable2), MD5Hash("vtable2")); Symtab.mapVTableAddress(getVTableStartAddr(vtable3), getVTableEndAddr(vtable3), MD5Hash("vtable3")); Symtab.mapVTableAddress(getVTableStartAddr(vtable4), getVTableEndAddr(vtable4), MD5Hash("vtable4")); VPData->deserializeTo(Record, &Symtab); // Now read data from Record and sanity check the data ASSERT_EQ(Record.getNumValueSites(IPVK_IndirectCallTarget), 6U); // Look up the value correpsonding to the middle of a vtable in symtab and // test that it's the hash of the name. EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable1)), MD5Hash("vtable1")); EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable2)), MD5Hash("vtable2")); EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable3)), MD5Hash("vtable3")); EXPECT_EQ(Symtab.getVTableHashFromAddress(getVTableMidAddr(vtable4)), MD5Hash("vtable4")); auto Cmp = [](const InstrProfValueData &VD1, const InstrProfValueData &VD2) { return VD1.Count > VD2.Count; }; SmallVector VD_0( Record.getValueArrayForSite(IPVK_IndirectCallTarget, 0)); ASSERT_THAT(VD_0, SizeIs(5)); llvm::sort(VD_0, Cmp); ASSERT_EQ(VD_0[0].Value, 0x2000ULL); ASSERT_EQ(VD_0[0].Count, 1000U); ASSERT_EQ(VD_0[1].Value, 0x3000ULL); ASSERT_EQ(VD_0[1].Count, 500U); ASSERT_EQ(VD_0[2].Value, 0x1000ULL); ASSERT_EQ(VD_0[2].Count, 400U); // callee5 does not have a mapped value -- default to 0. ASSERT_EQ(VD_0[4].Value, 0ULL); // Sanity check the vtable value data ASSERT_EQ(Record.getNumValueSites(IPVK_VTableTarget), 4U); { // The first vtable site. SmallVector VD( Record.getValueArrayForSite(IPVK_VTableTarget, 0)); ASSERT_THAT(VD, SizeIs(5)); llvm::sort(VD, Cmp); EXPECT_EQ(VD[0].Count, 1000U); EXPECT_EQ(VD[0].Value, MD5Hash("vtable2")); EXPECT_EQ(VD[1].Count, 500U); EXPECT_EQ(VD[1].Value, MD5Hash("vtable3")); EXPECT_EQ(VD[2].Value, MD5Hash("vtable1")); EXPECT_EQ(VD[2].Count, 400U); EXPECT_EQ(VD[3].Value, MD5Hash("vtable4")); EXPECT_EQ(VD[3].Count, 300U); // vtable5 isn't mapped -- default to 0. EXPECT_EQ(VD[4].Value, 0U); EXPECT_EQ(VD[4].Count, 100U); } { // The second vtable site. SmallVector VD( Record.getValueArrayForSite(IPVK_VTableTarget, 1)); ASSERT_THAT(VD, SizeIs(4)); llvm::sort(VD, Cmp); EXPECT_EQ(VD[0].Value, MD5Hash("vtable2")); EXPECT_EQ(VD[0].Count, 2500U); EXPECT_EQ(VD[1].Value, MD5Hash("vtable1")); EXPECT_EQ(VD[1].Count, 1300U); EXPECT_EQ(VD[2].Value, MD5Hash("vtable3")); EXPECT_EQ(VD[2].Count, 1000U); // vtable5 isn't mapped -- default to 0. EXPECT_EQ(VD[3].Value, 0U); EXPECT_EQ(VD[3].Count, 800U); } { // The third vtable site. SmallVector VD( Record.getValueArrayForSite(IPVK_VTableTarget, 2)); ASSERT_THAT(VD, SizeIs(3)); llvm::sort(VD, Cmp); EXPECT_EQ(VD[0].Count, 5500U); EXPECT_EQ(VD[0].Value, MD5Hash("vtable4")); EXPECT_EQ(VD[1].Count, 1000U); EXPECT_EQ(VD[1].Value, MD5Hash("vtable3")); // vtable6 isn't mapped -- default to 0. EXPECT_EQ(VD[2].Value, 0U); EXPECT_EQ(VD[2].Count, 800U); } { // The fourth vtable site. SmallVector VD( Record.getValueArrayForSite(IPVK_VTableTarget, 3)); ASSERT_THAT(VD, SizeIs(2)); llvm::sort(VD, Cmp); EXPECT_EQ(VD[0].Count, 2000U); EXPECT_EQ(VD[0].Value, MD5Hash("vtable3")); EXPECT_EQ(VD[1].Count, 1800U); EXPECT_EQ(VD[1].Value, MD5Hash("vtable2")); } } TEST_P(MaybeSparseInstrProfTest, get_max_function_count) { Writer.addRecord({"foo", 0x1234, {1ULL << 31, 2}}, Err); Writer.addRecord({"bar", 0, {1ULL << 63}}, Err); Writer.addRecord({"baz", 0x5678, {0, 0, 0, 0}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); ASSERT_EQ(1ULL << 63, Reader->getMaximumFunctionCount(/* IsCS */ false)); } TEST_P(MaybeSparseInstrProfTest, get_weighted_function_counts) { Writer.addRecord({"foo", 0x1234, {1, 2}}, 3, Err); Writer.addRecord({"foo", 0x1235, {3, 4}}, 5, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); std::vector Counts; EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1234, Counts), Succeeded()); ASSERT_EQ(2U, Counts.size()); ASSERT_EQ(3U, Counts[0]); ASSERT_EQ(6U, Counts[1]); EXPECT_THAT_ERROR(Reader->getFunctionCounts("foo", 0x1235, Counts), Succeeded()); ASSERT_EQ(2U, Counts.size()); ASSERT_EQ(15U, Counts[0]); ASSERT_EQ(20U, Counts[1]); } // Testing symtab creator interface used by indexed profile reader. TEST(SymtabTest, instr_prof_symtab_test) { std::vector FuncNames; FuncNames.push_back("func1"); FuncNames.push_back("func2"); FuncNames.push_back("func3"); FuncNames.push_back("bar1"); FuncNames.push_back("bar2"); FuncNames.push_back("bar3"); InstrProfSymtab Symtab; EXPECT_THAT_ERROR(Symtab.create(FuncNames), Succeeded()); StringRef R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func1")); ASSERT_EQ(StringRef("func1"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func2")); ASSERT_EQ(StringRef("func2"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func3")); ASSERT_EQ(StringRef("func3"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar1")); ASSERT_EQ(StringRef("bar1"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar2")); ASSERT_EQ(StringRef("bar2"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar3")); ASSERT_EQ(StringRef("bar3"), R); // negative tests R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar4")); ASSERT_EQ(StringRef(), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("foo4")); ASSERT_EQ(StringRef(), R); // Now incrementally update the symtab EXPECT_THAT_ERROR(Symtab.addFuncName("blah_1"), Succeeded()); EXPECT_THAT_ERROR(Symtab.addFuncName("blah_2"), Succeeded()); EXPECT_THAT_ERROR(Symtab.addFuncName("blah_3"), Succeeded()); // Check again R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_1")); ASSERT_EQ(StringRef("blah_1"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_2")); ASSERT_EQ(StringRef("blah_2"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("blah_3")); ASSERT_EQ(StringRef("blah_3"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func1")); ASSERT_EQ(StringRef("func1"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func2")); ASSERT_EQ(StringRef("func2"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("func3")); ASSERT_EQ(StringRef("func3"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar1")); ASSERT_EQ(StringRef("bar1"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar2")); ASSERT_EQ(StringRef("bar2"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash("bar3")); ASSERT_EQ(StringRef("bar3"), R); } // Test that we get an error when creating a bogus symtab. TEST(SymtabTest, instr_prof_bogus_symtab_empty_func_name) { InstrProfSymtab Symtab; EXPECT_TRUE(ErrorEquals(instrprof_error::malformed, Symtab.addFuncName(""))); } // Testing symtab creator interface used by value profile transformer. TEST(SymtabTest, instr_prof_symtab_module_test) { LLVMContext Ctx; std::unique_ptr M = std::make_unique("MyModule.cpp", Ctx); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); Function::Create(FTy, Function::ExternalLinkage, "Gfoo", M.get()); Function::Create(FTy, Function::ExternalLinkage, "Gblah", M.get()); Function::Create(FTy, Function::ExternalLinkage, "Gbar", M.get()); Function::Create(FTy, Function::InternalLinkage, "Ifoo", M.get()); Function::Create(FTy, Function::InternalLinkage, "Iblah", M.get()); Function::Create(FTy, Function::InternalLinkage, "Ibar", M.get()); Function::Create(FTy, Function::PrivateLinkage, "Pfoo", M.get()); Function::Create(FTy, Function::PrivateLinkage, "Pblah", M.get()); Function::Create(FTy, Function::PrivateLinkage, "Pbar", M.get()); Function::Create(FTy, Function::WeakODRLinkage, "Wfoo", M.get()); Function::Create(FTy, Function::WeakODRLinkage, "Wblah", M.get()); Function::Create(FTy, Function::WeakODRLinkage, "Wbar", M.get()); // [ptr, ptr, ptr] ArrayType *VTableArrayType = ArrayType::get( PointerType::get(Ctx, M->getDataLayout().getDefaultGlobalsAddressSpace()), 3); Constant *Int32TyNull = llvm::ConstantExpr::getNullValue(PointerType::getUnqual(Ctx)); SmallVector tys = {VTableArrayType}; StructType *VTableType = llvm::StructType::get(Ctx, tys); // Create two vtables in the module, one with external linkage and the other // with local linkage. for (auto [Name, Linkage] : {std::pair{"ExternalGV", GlobalValue::ExternalLinkage}, {"LocalGV", GlobalValue::InternalLinkage}}) { llvm::Twine FuncName(Name, StringRef("VFunc")); Function *VFunc = Function::Create(FTy, Linkage, FuncName, M.get()); GlobalVariable *GV = new llvm::GlobalVariable( *M, VTableType, /* isConstant= */ true, Linkage, llvm::ConstantStruct::get( VTableType, {llvm::ConstantArray::get(VTableArrayType, {Int32TyNull, Int32TyNull, VFunc})}), Name); // Add type metadata for the test data, since vtables with type metadata // are added to symtab. GV->addTypeMetadata(16, MDString::get(Ctx, Name)); } InstrProfSymtab ProfSymtab; EXPECT_THAT_ERROR(ProfSymtab.create(*M), Succeeded()); StringRef Funcs[] = {"Gfoo", "Gblah", "Gbar", "Ifoo", "Iblah", "Ibar", "Pfoo", "Pblah", "Pbar", "Wfoo", "Wblah", "Wbar"}; for (unsigned I = 0; I < std::size(Funcs); I++) { Function *F = M->getFunction(Funcs[I]); std::string IRPGOName = getIRPGOFuncName(*F); auto IRPGOFuncName = ProfSymtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(IRPGOName)); EXPECT_EQ(IRPGOName, IRPGOFuncName); EXPECT_EQ(Funcs[I], getParsedIRPGOName(IRPGOFuncName).second); // Ensure we can still read this old record name. std::string PGOName = getPGOFuncName(*F); auto PGOFuncName = ProfSymtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(PGOName)); EXPECT_EQ(PGOName, PGOFuncName); EXPECT_THAT(PGOFuncName.str(), EndsWith(Funcs[I].str())); } for (auto [VTableName, PGOName] : {std::pair{"ExternalGV", "ExternalGV"}, {"LocalGV", "MyModule.cpp;LocalGV"}}) { GlobalVariable *GV = M->getGlobalVariable(VTableName, /* AllowInternal=*/true); // Test that ProfSymtab returns the expected name given a hash. std::string IRPGOName = getPGOName(*GV); EXPECT_STREQ(IRPGOName.c_str(), PGOName); uint64_t GUID = IndexedInstrProf::ComputeHash(IRPGOName); EXPECT_EQ(IRPGOName, ProfSymtab.getFuncOrVarName(GUID)); EXPECT_EQ(VTableName, getParsedIRPGOName(IRPGOName).second); // Test that ProfSymtab returns the expected global variable EXPECT_EQ(GV, ProfSymtab.getGlobalVariable(GUID)); } } // Testing symtab serialization and creator/deserialization interface // used by coverage map reader, and raw profile reader. TEST(SymtabTest, instr_prof_symtab_compression_test) { std::vector FuncNames1; std::vector FuncNames2; for (int I = 0; I < 3; I++) { std::string str; raw_string_ostream OS(str); OS << "func_" << I; FuncNames1.push_back(OS.str()); str.clear(); OS << "f oooooooooooooo_" << I; FuncNames1.push_back(OS.str()); str.clear(); OS << "BAR_" << I; FuncNames2.push_back(OS.str()); str.clear(); OS << "BlahblahBlahblahBar_" << I; FuncNames2.push_back(OS.str()); } for (bool DoCompression : {false, true}) { // Compressing: std::string FuncNameStrings1; EXPECT_THAT_ERROR(collectGlobalObjectNameStrings( FuncNames1, (DoCompression && compression::zlib::isAvailable()), FuncNameStrings1), Succeeded()); // Compressing: std::string FuncNameStrings2; EXPECT_THAT_ERROR(collectGlobalObjectNameStrings( FuncNames2, (DoCompression && compression::zlib::isAvailable()), FuncNameStrings2), Succeeded()); for (int Padding = 0; Padding < 2; Padding++) { // Join with paddings : std::string FuncNameStrings = FuncNameStrings1; for (int P = 0; P < Padding; P++) { FuncNameStrings.push_back('\0'); } FuncNameStrings += FuncNameStrings2; // Now decompress: InstrProfSymtab Symtab; EXPECT_THAT_ERROR(Symtab.create(StringRef(FuncNameStrings)), Succeeded()); // Now do the checks: // First sampling some data points: StringRef R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(FuncNames1[0])); ASSERT_EQ(StringRef("func_0"), R); R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(FuncNames1[1])); ASSERT_EQ(StringRef("f oooooooooooooo_0"), R); for (int I = 0; I < 3; I++) { std::string N[4]; N[0] = FuncNames1[2 * I]; N[1] = FuncNames1[2 * I + 1]; N[2] = FuncNames2[2 * I]; N[3] = FuncNames2[2 * I + 1]; for (int J = 0; J < 4; J++) { StringRef R = Symtab.getFuncOrVarName(IndexedInstrProf::ComputeHash(N[J])); ASSERT_EQ(StringRef(N[J]), R); } } } } } TEST_P(MaybeSparseInstrProfTest, remapping_test) { Writer.addRecord({"_Z3fooi", 0x1234, {1, 2, 3, 4}}, Err); Writer.addRecord({"file;_Z3barf", 0x567, {5, 6, 7}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile), llvm::MemoryBuffer::getMemBuffer(R"( type i l name 3bar 4quux )")); std::vector Counts; for (StringRef FooName : {"_Z3fooi", "_Z3fool"}) { EXPECT_THAT_ERROR(Reader->getFunctionCounts(FooName, 0x1234, Counts), Succeeded()); ASSERT_EQ(4u, Counts.size()); EXPECT_EQ(1u, Counts[0]); EXPECT_EQ(2u, Counts[1]); EXPECT_EQ(3u, Counts[2]); EXPECT_EQ(4u, Counts[3]); } for (StringRef BarName : {"file;_Z3barf", "file;_Z4quuxf"}) { EXPECT_THAT_ERROR(Reader->getFunctionCounts(BarName, 0x567, Counts), Succeeded()); ASSERT_EQ(3u, Counts.size()); EXPECT_EQ(5u, Counts[0]); EXPECT_EQ(6u, Counts[1]); EXPECT_EQ(7u, Counts[2]); } for (StringRef BadName : {"_Z3foof", "_Z4quuxi", "_Z3barl", "", "_ZZZ", "_Z3barf", "otherfile:_Z4quuxf"}) { EXPECT_THAT_ERROR(Reader->getFunctionCounts(BadName, 0x1234, Counts), Failed()); EXPECT_THAT_ERROR(Reader->getFunctionCounts(BadName, 0x567, Counts), Failed()); } } TEST_F(SparseInstrProfTest, preserve_no_records) { Writer.addRecord({"foo", 0x1234, {0}}, Err); Writer.addRecord({"bar", 0x4321, {0, 0}}, Err); Writer.addRecord({"baz", 0x4321, {0, 0, 0}}, Err); auto Profile = Writer.writeBuffer(); readProfile(std::move(Profile)); auto I = Reader->begin(), E = Reader->end(); ASSERT_TRUE(I == E); } INSTANTIATE_TEST_SUITE_P(MaybeSparse, MaybeSparseInstrProfTest, ::testing::Bool()); #if defined(_LP64) && defined(EXPENSIVE_CHECKS) TEST(ProfileReaderTest, ReadsLargeFiles) { const size_t LargeSize = 1ULL << 32; // 4GB auto RawProfile = WritableMemoryBuffer::getNewUninitMemBuffer(LargeSize); if (!RawProfile) GTEST_SKIP(); auto RawProfileReaderOrErr = InstrProfReader::create(std::move(RawProfile)); ASSERT_TRUE( std::get<0>(InstrProfError::take(RawProfileReaderOrErr.takeError())) == instrprof_error::unrecognized_format); auto IndexedProfile = WritableMemoryBuffer::getNewUninitMemBuffer(LargeSize); if (!IndexedProfile) GTEST_SKIP(); auto IndexedReaderOrErr = IndexedInstrProfReader::create(std::move(IndexedProfile), nullptr); ASSERT_TRUE( std::get<0>(InstrProfError::take(IndexedReaderOrErr.takeError())) == instrprof_error::bad_magic); } #endif } // end anonymous namespace