//===- llvm/unittest/IR/ConstantsTest.cpp - Constants unit tests ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/IR/Constants.h" #include "llvm-c/Core.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/ConstantFold.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" namespace llvm { namespace { TEST(ConstantsTest, Integer_i1) { LLVMContext Context; IntegerType *Int1 = IntegerType::get(Context, 1); Constant *One = ConstantInt::get(Int1, 1, true); Constant *Zero = ConstantInt::get(Int1, 0); Constant *NegOne = ConstantInt::get(Int1, static_cast(-1), true); EXPECT_EQ(NegOne, ConstantInt::getSigned(Int1, -1)); Constant *Poison = PoisonValue::get(Int1); // Input: @b = constant i1 add(i1 1 , i1 1) // Output: @b = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getAdd(One, One)); // @c = constant i1 add(i1 -1, i1 1) // @c = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, One)); // @d = constant i1 add(i1 -1, i1 -1) // @d = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, NegOne)); // @e = constant i1 sub(i1 -1, i1 1) // @e = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getSub(NegOne, One)); // @f = constant i1 sub(i1 1 , i1 -1) // @f = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getSub(One, NegOne)); // @g = constant i1 sub(i1 1 , i1 1) // @g = constant i1 false EXPECT_EQ(Zero, ConstantExpr::getSub(One, One)); // @h = constant i1 shl(i1 1 , i1 1) ; poison // @h = constant i1 poison EXPECT_EQ(Poison, ConstantExpr::getShl(One, One)); // @i = constant i1 shl(i1 1 , i1 0) // @i = constant i1 true EXPECT_EQ(One, ConstantExpr::getShl(One, Zero)); // @n = constant i1 mul(i1 -1, i1 1) // @n = constant i1 true EXPECT_EQ(One, ConstantExpr::getMul(NegOne, One)); // @o = constant i1 sdiv(i1 -1, i1 1) ; overflow // @o = constant i1 true EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::SDiv, NegOne, One)); // @p = constant i1 sdiv(i1 1 , i1 -1); overflow // @p = constant i1 true EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::SDiv, One, NegOne)); // @q = constant i1 udiv(i1 -1, i1 1) // @q = constant i1 true EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::UDiv, NegOne, One)); // @r = constant i1 udiv(i1 1, i1 -1) // @r = constant i1 true EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::UDiv, One, NegOne)); // @s = constant i1 srem(i1 -1, i1 1) ; overflow // @s = constant i1 false EXPECT_EQ(Zero, ConstantFoldBinaryInstruction(Instruction::SRem, NegOne, One)); // @u = constant i1 srem(i1 1, i1 -1) ; overflow // @u = constant i1 false EXPECT_EQ(Zero, ConstantFoldBinaryInstruction(Instruction::SRem, One, NegOne)); } TEST(ConstantsTest, IntSigns) { LLVMContext Context; IntegerType *Int8Ty = Type::getInt8Ty(Context); EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, false)->getSExtValue()); EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, true)->getSExtValue()); EXPECT_EQ(100, ConstantInt::getSigned(Int8Ty, 100)->getSExtValue()); EXPECT_EQ(-50, ConstantInt::get(Int8Ty, 206)->getSExtValue()); EXPECT_EQ(-50, ConstantInt::getSigned(Int8Ty, -50)->getSExtValue()); EXPECT_EQ(206U, ConstantInt::getSigned(Int8Ty, -50)->getZExtValue()); // Overflow is handled by truncation. EXPECT_EQ(0x3b, ConstantInt::get(Int8Ty, 0x13b)->getSExtValue()); } TEST(ConstantsTest, PointerCast) { LLVMContext C; Type *PtrTy = PointerType::get(C, 0); Type *Int64Ty = Type::getInt64Ty(C); VectorType *PtrVecTy = FixedVectorType::get(PtrTy, 4); VectorType *Int64VecTy = FixedVectorType::get(Int64Ty, 4); VectorType *PtrScalableVecTy = ScalableVectorType::get(PtrTy, 4); VectorType *Int64ScalableVecTy = ScalableVectorType::get(Int64Ty, 4); // ptrtoint ptr to i64 EXPECT_EQ( Constant::getNullValue(Int64Ty), ConstantExpr::getPointerCast(Constant::getNullValue(PtrTy), Int64Ty)); // bitcast ptr to ptr EXPECT_EQ(Constant::getNullValue(PtrTy), ConstantExpr::getPointerCast(Constant::getNullValue(PtrTy), PtrTy)); // ptrtoint <4 x ptr> to <4 x i64> EXPECT_EQ(Constant::getNullValue(Int64VecTy), ConstantExpr::getPointerCast(Constant::getNullValue(PtrVecTy), Int64VecTy)); // ptrtoint to EXPECT_EQ(Constant::getNullValue(Int64ScalableVecTy), ConstantExpr::getPointerCast( Constant::getNullValue(PtrScalableVecTy), Int64ScalableVecTy)); // bitcast <4 x ptr> to <4 x ptr> EXPECT_EQ( Constant::getNullValue(PtrVecTy), ConstantExpr::getPointerCast(Constant::getNullValue(PtrVecTy), PtrVecTy)); // bitcast to EXPECT_EQ(Constant::getNullValue(PtrScalableVecTy), ConstantExpr::getPointerCast( Constant::getNullValue(PtrScalableVecTy), PtrScalableVecTy)); Type *Ptr1Ty = PointerType::get(C, 1); ConstantInt *K = ConstantInt::get(Type::getInt64Ty(C), 1234); // Make sure that addrspacecast of inttoptr is not folded away. EXPECT_NE(K, ConstantExpr::getAddrSpaceCast( ConstantExpr::getIntToPtr(K, PtrTy), Ptr1Ty)); EXPECT_NE(K, ConstantExpr::getAddrSpaceCast( ConstantExpr::getIntToPtr(K, Ptr1Ty), PtrTy)); Constant *NullPtr0 = Constant::getNullValue(PtrTy); Constant *NullPtr1 = Constant::getNullValue(Ptr1Ty); // Make sure that addrspacecast of null is not folded away. EXPECT_NE(Constant::getNullValue(PtrTy), ConstantExpr::getAddrSpaceCast(NullPtr0, Ptr1Ty)); EXPECT_NE(Constant::getNullValue(Ptr1Ty), ConstantExpr::getAddrSpaceCast(NullPtr1, PtrTy)); } #define CHECK(x, y) \ { \ std::string __s; \ raw_string_ostream __o(__s); \ Instruction *__I = cast(x)->getAsInstruction(); \ __I->print(__o); \ __I->deleteValue(); \ __o.flush(); \ EXPECT_EQ(std::string(" = " y), __s); \ } TEST(ConstantsTest, AsInstructionsTest) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); Type *Int64Ty = Type::getInt64Ty(Context); Type *Int32Ty = Type::getInt32Ty(Context); Type *Int16Ty = Type::getInt16Ty(Context); Constant *Global = M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty)); Constant *Global2 = M->getOrInsertGlobal("dummy2", PointerType::getUnqual(Int32Ty)); Constant *P0 = ConstantExpr::getPtrToInt(Global, Int32Ty); Constant *P4 = ConstantExpr::getPtrToInt(Global2, Int32Ty); Constant *P6 = ConstantExpr::getBitCast(P4, FixedVectorType::get(Int16Ty, 2)); Constant *One = ConstantInt::get(Int32Ty, 1); Constant *Two = ConstantInt::get(Int64Ty, 2); Constant *Big = ConstantInt::get(Context, APInt{256, uint64_t(-1), true}); Constant *Elt = ConstantInt::get(Int16Ty, 2015); Constant *Poison16 = PoisonValue::get(Int16Ty); Constant *Undef64 = UndefValue::get(Int64Ty); Constant *PoisonV16 = PoisonValue::get(P6->getType()); #define P0STR "ptrtoint (ptr @dummy to i32)" #define P3STR "ptrtoint (ptr @dummy to i1)" #define P4STR "ptrtoint (ptr @dummy2 to i32)" #define P6STR "bitcast (i32 ptrtoint (ptr @dummy2 to i32) to <2 x i16>)" CHECK(ConstantExpr::getNeg(P0), "sub i32 0, " P0STR); CHECK(ConstantExpr::getNot(P0), "xor i32 " P0STR ", -1"); CHECK(ConstantExpr::getAdd(P0, P0), "add i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getAdd(P0, P0, false, true), "add nsw i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getAdd(P0, P0, true, true), "add nuw nsw i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getSub(P0, P0), "sub i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getMul(P0, P0), "mul i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getXor(P0, P0), "xor i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getShl(P0, P0), "shl i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getShl(P0, P0, true), "shl nuw i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getShl(P0, P0, false, true), "shl nsw i32 " P0STR ", " P0STR); CHECK(ConstantExpr::getICmp(CmpInst::ICMP_EQ, P0, P4), "icmp eq i32 " P0STR ", " P4STR); std::vector V; V.push_back(One); // FIXME: getGetElementPtr() actually creates an inbounds ConstantGEP, // not a normal one! // CHECK(ConstantExpr::getGetElementPtr(Global, V, false), // "getelementptr i32*, i32** @dummy, i32 1"); CHECK(ConstantExpr::getInBoundsGetElementPtr(PointerType::getUnqual(Int32Ty), Global, V), "getelementptr inbounds ptr, ptr @dummy, i32 1"); CHECK(ConstantExpr::getExtractElement(P6, One), "extractelement <2 x i16> " P6STR ", i32 1"); EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Two)); EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Big)); EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Undef64)); EXPECT_EQ(Elt, ConstantExpr::getExtractElement( ConstantExpr::getInsertElement(P6, Elt, One), One)); EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Two)); EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Big)); EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Undef64)); } #ifdef GTEST_HAS_DEATH_TEST #ifndef NDEBUG TEST(ConstantsTest, ReplaceWithConstantTest) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); Type *Int32Ty = Type::getInt32Ty(Context); Constant *One = ConstantInt::get(Int32Ty, 1); Constant *Global = M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty)); Constant *GEP = ConstantExpr::getGetElementPtr( PointerType::getUnqual(Int32Ty), Global, One); EXPECT_DEATH(Global->replaceAllUsesWith(GEP), "this->replaceAllUsesWith\\(expr\\(this\\)\\) is NOT valid!"); } #endif #endif #undef CHECK TEST(ConstantsTest, ConstantArrayReplaceWithConstant) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); Type *IntTy = Type::getInt8Ty(Context); ArrayType *ArrayTy = ArrayType::get(IntTy, 2); Constant *A01Vals[2] = {ConstantInt::get(IntTy, 0), ConstantInt::get(IntTy, 1)}; Constant *A01 = ConstantArray::get(ArrayTy, A01Vals); Constant *Global = new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, nullptr); Constant *GlobalInt = ConstantExpr::getPtrToInt(Global, IntTy); Constant *A0GVals[2] = {ConstantInt::get(IntTy, 0), GlobalInt}; Constant *A0G = ConstantArray::get(ArrayTy, A0GVals); ASSERT_NE(A01, A0G); GlobalVariable *RefArray = new GlobalVariable(*M, ArrayTy, false, GlobalValue::ExternalLinkage, A0G); ASSERT_EQ(A0G, RefArray->getInitializer()); GlobalInt->replaceAllUsesWith(ConstantInt::get(IntTy, 1)); ASSERT_EQ(A01, RefArray->getInitializer()); } TEST(ConstantsTest, ConstantExprReplaceWithConstant) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); Type *IntTy = Type::getInt8Ty(Context); Constant *G1 = new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, nullptr); Constant *G2 = new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, nullptr); ASSERT_NE(G1, G2); Constant *Int1 = ConstantExpr::getPtrToInt(G1, IntTy); Constant *Int2 = ConstantExpr::getPtrToInt(G2, IntTy); ASSERT_NE(Int1, Int2); GlobalVariable *Ref = new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, Int1); ASSERT_EQ(Int1, Ref->getInitializer()); G1->replaceAllUsesWith(G2); ASSERT_EQ(Int2, Ref->getInitializer()); } TEST(ConstantsTest, GEPReplaceWithConstant) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); Type *IntTy = Type::getInt32Ty(Context); Type *PtrTy = PointerType::get(IntTy, 0); auto *C1 = ConstantInt::get(IntTy, 1); auto *Placeholder = new GlobalVariable( *M, IntTy, false, GlobalValue::ExternalWeakLinkage, nullptr); auto *GEP = ConstantExpr::getGetElementPtr(IntTy, Placeholder, C1); ASSERT_EQ(GEP->getOperand(0), Placeholder); auto *Ref = new GlobalVariable(*M, PtrTy, false, GlobalValue::ExternalLinkage, GEP); ASSERT_EQ(GEP, Ref->getInitializer()); auto *Global = new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, nullptr); auto *Alias = GlobalAlias::create(IntTy, 0, GlobalValue::ExternalLinkage, "alias", Global, M.get()); Placeholder->replaceAllUsesWith(Alias); ASSERT_EQ(GEP, Ref->getInitializer()); ASSERT_EQ(GEP->getOperand(0), Alias); } TEST(ConstantsTest, AliasCAPI) { LLVMContext Context; SMDiagnostic Error; std::unique_ptr M = parseAssemblyString("@g = global i32 42", Error, Context); GlobalVariable *G = M->getGlobalVariable("g"); Type *I16Ty = Type::getInt16Ty(Context); Type *I16PTy = PointerType::get(I16Ty, 0); Constant *Aliasee = ConstantExpr::getBitCast(G, I16PTy); LLVMValueRef AliasRef = LLVMAddAlias2(wrap(M.get()), wrap(I16Ty), 0, wrap(Aliasee), "a"); ASSERT_EQ(unwrap(AliasRef)->getAliasee(), Aliasee); } static std::string getNameOfType(Type *T) { std::string S; raw_string_ostream RSOS(S); T->print(RSOS); return S; } TEST(ConstantsTest, BuildConstantDataArrays) { LLVMContext Context; for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context), Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) { ArrayType *ArrayTy = ArrayType::get(T, 2); Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)}; Constant *CA = ConstantArray::get(ArrayTy, Vals); ASSERT_TRUE(isa(CA)) << " T = " << getNameOfType(T); auto *CDA = cast(CA); Constant *CA2 = ConstantDataArray::getRaw( CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType()); ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T); } for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context), Type::getFloatTy(Context), Type::getDoubleTy(Context)}) { ArrayType *ArrayTy = ArrayType::get(T, 2); Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)}; Constant *CA = ConstantArray::get(ArrayTy, Vals); ASSERT_TRUE(isa(CA)) << " T = " << getNameOfType(T); auto *CDA = cast(CA); Constant *CA2 = ConstantDataArray::getRaw( CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType()); ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T); } } TEST(ConstantsTest, BuildConstantDataVectors) { LLVMContext Context; for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context), Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) { Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)}; Constant *CV = ConstantVector::get(Vals); ASSERT_TRUE(isa(CV)) << " T = " << getNameOfType(T); auto *CDV = cast(CV); Constant *CV2 = ConstantDataVector::getRaw( CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType()); ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T); } for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context), Type::getFloatTy(Context), Type::getDoubleTy(Context)}) { Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)}; Constant *CV = ConstantVector::get(Vals); ASSERT_TRUE(isa(CV)) << " T = " << getNameOfType(T); auto *CDV = cast(CV); Constant *CV2 = ConstantDataVector::getRaw( CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType()); ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T); } } TEST(ConstantsTest, BitcastToGEP) { LLVMContext Context; std::unique_ptr M(new Module("MyModule", Context)); auto *i32 = Type::getInt32Ty(Context); auto *U = StructType::create(Context, "Unsized"); Type *EltTys[] = {i32, U}; auto *S = StructType::create(EltTys); auto *G = new GlobalVariable(*M, S, false, GlobalValue::ExternalLinkage, nullptr); auto *PtrTy = PointerType::get(i32, 0); auto *C = ConstantExpr::getBitCast(G, PtrTy); /* With opaque pointers, no cast is necessary. */ EXPECT_EQ(C, G); } bool foldFuncPtrAndConstToNull(LLVMContext &Context, Module *TheModule, uint64_t AndValue, MaybeAlign FunctionAlign = std::nullopt) { Type *VoidType(Type::getVoidTy(Context)); FunctionType *FuncType(FunctionType::get(VoidType, false)); Function *Func( Function::Create(FuncType, GlobalValue::ExternalLinkage, "", TheModule)); if (FunctionAlign) Func->setAlignment(*FunctionAlign); IntegerType *ConstantIntType(Type::getInt32Ty(Context)); ConstantInt *TheConstant(ConstantInt::get(ConstantIntType, AndValue)); Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Func, ConstantIntType)); Constant *C = ConstantFoldBinaryInstruction(Instruction::And, TheConstantExpr, TheConstant); bool Result = C && C->isNullValue(); if (!TheModule) { // If the Module exists then it will delete the Function. delete Func; } return Result; } TEST(ConstantsTest, FoldFunctionPtrAlignUnknownAnd2) { LLVMContext Context; Module TheModule("TestModule", Context); // When the DataLayout doesn't specify a function pointer alignment we // assume in this case that it is 4 byte aligned. This is a bug but we can't // fix it directly because it causes a code size regression on X86. // FIXME: This test should be changed once existing targets have // appropriate defaults. See associated FIXME in ConstantFoldBinaryInstruction ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2)); } TEST(ConstantsTest, DontFoldFunctionPtrAlignUnknownAnd4) { LLVMContext Context; Module TheModule("TestModule", Context); ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 4)); } TEST(ConstantsTest, FoldFunctionPtrAlign4) { LLVMContext Context; Module TheModule("TestModule", Context); const char *AlignmentStrings[] = {"Fi32", "Fn32"}; for (unsigned AndValue = 1; AndValue <= 2; ++AndValue) { for (const char *AlignmentString : AlignmentStrings) { TheModule.setDataLayout(AlignmentString); ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, AndValue)); } } } TEST(ConstantsTest, DontFoldFunctionPtrAlign1) { LLVMContext Context; Module TheModule("TestModule", Context); const char *AlignmentStrings[] = {"Fi8", "Fn8"}; for (const char *AlignmentString : AlignmentStrings) { TheModule.setDataLayout(AlignmentString); ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2)); } } TEST(ConstantsTest, FoldFunctionAlign4PtrAlignMultiple) { LLVMContext Context; Module TheModule("TestModule", Context); TheModule.setDataLayout("Fn8"); ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4))); } TEST(ConstantsTest, DontFoldFunctionAlign4PtrAlignIndependent) { LLVMContext Context; Module TheModule("TestModule", Context); TheModule.setDataLayout("Fi8"); ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4))); } TEST(ConstantsTest, DontFoldFunctionPtrIfNoModule) { LLVMContext Context; // Even though the function is explicitly 4 byte aligned, in the absence of a // DataLayout we can't assume that the function pointer is aligned. ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, nullptr, 2, Align(4))); } TEST(ConstantsTest, FoldGlobalVariablePtr) { LLVMContext Context; IntegerType *IntType(Type::getInt32Ty(Context)); std::unique_ptr Global( new GlobalVariable(IntType, true, GlobalValue::ExternalLinkage)); Global->setAlignment(Align(4)); ConstantInt *TheConstant(ConstantInt::get(IntType, 2)); Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Global.get(), IntType)); ASSERT_TRUE(ConstantFoldBinaryInstruction(Instruction::And, TheConstantExpr, TheConstant) ->isNullValue()); } // Check that containsUndefOrPoisonElement and containsPoisonElement is working // great TEST(ConstantsTest, containsUndefElemTest) { LLVMContext Context; Type *Int32Ty = Type::getInt32Ty(Context); Constant *CU = UndefValue::get(Int32Ty); Constant *CP = PoisonValue::get(Int32Ty); Constant *C1 = ConstantInt::get(Int32Ty, 1); Constant *C2 = ConstantInt::get(Int32Ty, 2); { Constant *V1 = ConstantVector::get({C1, C2}); EXPECT_FALSE(V1->containsUndefOrPoisonElement()); EXPECT_FALSE(V1->containsPoisonElement()); } { Constant *V2 = ConstantVector::get({C1, CU}); EXPECT_TRUE(V2->containsUndefOrPoisonElement()); EXPECT_FALSE(V2->containsPoisonElement()); } { Constant *V3 = ConstantVector::get({C1, CP}); EXPECT_TRUE(V3->containsUndefOrPoisonElement()); EXPECT_TRUE(V3->containsPoisonElement()); } { Constant *V4 = ConstantVector::get({CU, CP}); EXPECT_TRUE(V4->containsUndefOrPoisonElement()); EXPECT_TRUE(V4->containsPoisonElement()); } } // Check that undefined elements in vector constants are matched // correctly for both integer and floating-point types. Just don't // crash on vectors of pointers (could be handled?). TEST(ConstantsTest, isElementWiseEqual) { LLVMContext Context; Type *Int32Ty = Type::getInt32Ty(Context); Constant *CU = UndefValue::get(Int32Ty); Constant *C1 = ConstantInt::get(Int32Ty, 1); Constant *C2 = ConstantInt::get(Int32Ty, 2); Constant *C1211 = ConstantVector::get({C1, C2, C1, C1}); Constant *C12U1 = ConstantVector::get({C1, C2, CU, C1}); Constant *C12U2 = ConstantVector::get({C1, C2, CU, C2}); Constant *C12U21 = ConstantVector::get({C1, C2, CU, C2, C1}); EXPECT_TRUE(C1211->isElementWiseEqual(C12U1)); EXPECT_TRUE(C12U1->isElementWiseEqual(C1211)); EXPECT_FALSE(C12U2->isElementWiseEqual(C12U1)); EXPECT_FALSE(C12U1->isElementWiseEqual(C12U2)); EXPECT_FALSE(C12U21->isElementWiseEqual(C12U2)); Type *FltTy = Type::getFloatTy(Context); Constant *CFU = UndefValue::get(FltTy); Constant *CF1 = ConstantFP::get(FltTy, 1.0); Constant *CF2 = ConstantFP::get(FltTy, 2.0); Constant *CF1211 = ConstantVector::get({CF1, CF2, CF1, CF1}); Constant *CF12U1 = ConstantVector::get({CF1, CF2, CFU, CF1}); Constant *CF12U2 = ConstantVector::get({CF1, CF2, CFU, CF2}); Constant *CFUU1U = ConstantVector::get({CFU, CFU, CF1, CFU}); EXPECT_TRUE(CF1211->isElementWiseEqual(CF12U1)); EXPECT_TRUE(CF12U1->isElementWiseEqual(CF1211)); EXPECT_TRUE(CFUU1U->isElementWiseEqual(CF12U1)); EXPECT_FALSE(CF12U2->isElementWiseEqual(CF12U1)); EXPECT_FALSE(CF12U1->isElementWiseEqual(CF12U2)); PointerType *PtrTy = PointerType::get(Context, 0); Constant *CPU = UndefValue::get(PtrTy); Constant *CP0 = ConstantPointerNull::get(PtrTy); Constant *CP0000 = ConstantVector::get({CP0, CP0, CP0, CP0}); Constant *CP00U0 = ConstantVector::get({CP0, CP0, CPU, CP0}); Constant *CP00U = ConstantVector::get({CP0, CP0, CPU}); EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U0)); EXPECT_FALSE(CP00U0->isElementWiseEqual(CP0000)); EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U)); EXPECT_FALSE(CP00U->isElementWiseEqual(CP00U0)); } // Check that vector/aggregate constants correctly store undef and poison // elements. TEST(ConstantsTest, CheckElementWiseUndefPoison) { LLVMContext Context; Type *Int32Ty = Type::getInt32Ty(Context); StructType *STy = StructType::get(Int32Ty, Int32Ty); ArrayType *ATy = ArrayType::get(Int32Ty, 2); Constant *CU = UndefValue::get(Int32Ty); Constant *CP = PoisonValue::get(Int32Ty); { Constant *CUU = ConstantVector::get({CU, CU}); Constant *CPP = ConstantVector::get({CP, CP}); Constant *CUP = ConstantVector::get({CU, CP}); Constant *CPU = ConstantVector::get({CP, CU}); EXPECT_EQ(CUU, UndefValue::get(CUU->getType())); EXPECT_EQ(CPP, PoisonValue::get(CPP->getType())); EXPECT_NE(CUP, UndefValue::get(CUP->getType())); EXPECT_NE(CPU, UndefValue::get(CPU->getType())); } { Constant *CUU = ConstantStruct::get(STy, {CU, CU}); Constant *CPP = ConstantStruct::get(STy, {CP, CP}); Constant *CUP = ConstantStruct::get(STy, {CU, CP}); Constant *CPU = ConstantStruct::get(STy, {CP, CU}); EXPECT_EQ(CUU, UndefValue::get(CUU->getType())); EXPECT_EQ(CPP, PoisonValue::get(CPP->getType())); EXPECT_NE(CUP, UndefValue::get(CUP->getType())); EXPECT_NE(CPU, UndefValue::get(CPU->getType())); } { Constant *CUU = ConstantArray::get(ATy, {CU, CU}); Constant *CPP = ConstantArray::get(ATy, {CP, CP}); Constant *CUP = ConstantArray::get(ATy, {CU, CP}); Constant *CPU = ConstantArray::get(ATy, {CP, CU}); EXPECT_EQ(CUU, UndefValue::get(CUU->getType())); EXPECT_EQ(CPP, PoisonValue::get(CPP->getType())); EXPECT_NE(CUP, UndefValue::get(CUP->getType())); EXPECT_NE(CPU, UndefValue::get(CPU->getType())); } } TEST(ConstantsTest, GetSplatValueRoundTrip) { LLVMContext Context; Type *FloatTy = Type::getFloatTy(Context); Type *Int32Ty = Type::getInt32Ty(Context); Type *Int8Ty = Type::getInt8Ty(Context); for (unsigned Min : {1, 2, 8}) { auto ScalableEC = ElementCount::getScalable(Min); auto FixedEC = ElementCount::getFixed(Min); for (auto EC : {ScalableEC, FixedEC}) { for (auto *Ty : {FloatTy, Int32Ty, Int8Ty}) { Constant *Zero = Constant::getNullValue(Ty); Constant *One = Constant::getAllOnesValue(Ty); for (auto *C : {Zero, One}) { Constant *Splat = ConstantVector::getSplat(EC, C); ASSERT_NE(nullptr, Splat); Constant *SplatVal = Splat->getSplatValue(); EXPECT_NE(nullptr, SplatVal); EXPECT_EQ(SplatVal, C); } } } } } TEST(ConstantsTest, ComdatUserTracking) { LLVMContext Context; Module M("MyModule", Context); Comdat *C = M.getOrInsertComdat("comdat"); const SmallPtrSetImpl &Users = C->getUsers(); EXPECT_TRUE(Users.size() == 0); Type *Ty = Type::getInt8Ty(Context); GlobalVariable *GV1 = cast(M.getOrInsertGlobal("gv1", Ty)); GV1->setComdat(C); EXPECT_TRUE(Users.size() == 1); EXPECT_TRUE(Users.contains(GV1)); GlobalVariable *GV2 = cast(M.getOrInsertGlobal("gv2", Ty)); GV2->setComdat(C); EXPECT_TRUE(Users.size() == 2); EXPECT_TRUE(Users.contains(GV2)); GV1->eraseFromParent(); EXPECT_TRUE(Users.size() == 1); EXPECT_TRUE(Users.contains(GV2)); GV2->eraseFromParent(); EXPECT_TRUE(Users.size() == 0); } // Verify that the C API getters for BlockAddress work TEST(ConstantsTest, BlockAddressCAPITest) { const char *BlockAddressIR = R"( define void @test_block_address_func() { entry: br label %block_bb_0 block_bb_0: ret void } )"; LLVMContext Context; SMDiagnostic Error; std::unique_ptr M = parseAssemblyString(BlockAddressIR, Error, Context); EXPECT_TRUE(M.get() != nullptr); // Get the function auto *Func = M->getFunction("test_block_address_func"); EXPECT_TRUE(Func != nullptr); // Get the second basic block, since we can't use the entry one const BasicBlock &BB = *(++Func->begin()); EXPECT_EQ(BB.getName(), "block_bb_0"); // Construct the C API values LLVMValueRef BlockAddr = LLVMBlockAddress(wrap(Func), wrap(&BB)); EXPECT_TRUE(LLVMIsABlockAddress(BlockAddr)); // Get the Function/BasicBlock values back out auto *OutFunc = unwrap(LLVMGetBlockAddressFunction(BlockAddr)); auto *OutBB = unwrap(LLVMGetBlockAddressBasicBlock(BlockAddr)); // Verify that they round-tripped properly EXPECT_EQ(Func, OutFunc); EXPECT_EQ(&BB, OutBB); } } // end anonymous namespace } // end namespace llvm