//===- ConstantRangeTest.cpp - ConstantRange tests ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/IR/ConstantRange.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/Support/KnownBits.h" #include "gtest/gtest.h" using namespace llvm; namespace { class ConstantRangeTest : public ::testing::Test { protected: static ConstantRange Full; static ConstantRange Empty; static ConstantRange One; static ConstantRange Some; static ConstantRange Wrap; }; template static void EnumerateAPInts(unsigned Bits, Fn TestFn) { APInt N(Bits, 0); do { TestFn(N); } while (++N != 0); } template static void EnumerateConstantRanges(unsigned Bits, Fn TestFn) { unsigned Max = 1 << Bits; for (unsigned Lo = 0; Lo < Max; Lo++) { for (unsigned Hi = 0; Hi < Max; Hi++) { // Enforce ConstantRange invariant. if (Lo == Hi && Lo != 0 && Lo != Max - 1) continue; ConstantRange CR(APInt(Bits, Lo), APInt(Bits, Hi)); TestFn(CR); } } } template static void EnumerateInterestingConstantRanges(Fn TestFn) { // Check 1 bit ranges, because they may have special cases. EnumerateConstantRanges(/* Bits */ 1, TestFn); // Check 4 bit ranges to have decent coverage without being too slow. EnumerateConstantRanges(/* Bits */ 4, TestFn); } template static void EnumerateTwoInterestingConstantRanges(Fn TestFn) { for (unsigned Bits : {1, 4}) { EnumerateConstantRanges(Bits, [&](const ConstantRange &CR1) { EnumerateConstantRanges( Bits, [&](const ConstantRange &CR2) { TestFn(CR1, CR2); }); }); } } template static void ForeachNumInConstantRange(const ConstantRange &CR, Fn TestFn) { if (!CR.isEmptySet()) { APInt N = CR.getLower(); do TestFn(N); while (++N != CR.getUpper()); } } using PreferFn = llvm::function_ref; bool PreferSmallest(const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.isSizeStrictlySmallerThan(CR2); } bool PreferSmallestUnsigned(const ConstantRange &CR1, const ConstantRange &CR2) { if (CR1.isWrappedSet() != CR2.isWrappedSet()) return CR1.isWrappedSet() < CR2.isWrappedSet(); return PreferSmallest(CR1, CR2); } bool PreferSmallestSigned(const ConstantRange &CR1, const ConstantRange &CR2) { if (CR1.isSignWrappedSet() != CR2.isSignWrappedSet()) return CR1.isSignWrappedSet() < CR2.isSignWrappedSet(); return PreferSmallest(CR1, CR2); } bool PreferSmallestNonFullUnsigned(const ConstantRange &CR1, const ConstantRange &CR2) { if (CR1.isFullSet() != CR2.isFullSet()) return CR1.isFullSet() < CR2.isFullSet(); return PreferSmallestUnsigned(CR1, CR2); } bool PreferSmallestNonFullSigned(const ConstantRange &CR1, const ConstantRange &CR2) { if (CR1.isFullSet() != CR2.isFullSet()) return CR1.isFullSet() < CR2.isFullSet(); return PreferSmallestSigned(CR1, CR2); } testing::AssertionResult rangeContains(const ConstantRange &CR, const APInt &N, ArrayRef Inputs) { if (CR.contains(N)) return testing::AssertionSuccess(); testing::AssertionResult Result = testing::AssertionFailure(); Result << CR << " does not contain " << N << " for inputs: "; for (const ConstantRange &Input : Inputs) Result << Input << ", "; return Result; } // Check whether constant range CR is an optimal approximation of the set // Elems under the given PreferenceFn. The preference function should return // true if the first range argument is strictly preferred to the second one. static void TestRange(const ConstantRange &CR, const SmallBitVector &Elems, PreferFn PreferenceFn, ArrayRef Inputs, bool CheckOptimality = true) { unsigned BitWidth = CR.getBitWidth(); // Check conservative correctness. for (unsigned Elem : Elems.set_bits()) { EXPECT_TRUE(rangeContains(CR, APInt(BitWidth, Elem), Inputs)); } if (!CheckOptimality) return; // Make sure we have at least one element for the code below. if (Elems.none()) { EXPECT_TRUE(CR.isEmptySet()); return; } auto NotPreferred = [&](const ConstantRange &PossibleCR) { if (!PreferenceFn(PossibleCR, CR)) return testing::AssertionSuccess(); testing::AssertionResult Result = testing::AssertionFailure(); Result << "Inputs = "; for (const ConstantRange &Input : Inputs) Result << Input << ", "; Result << "CR = " << CR << ", BetterCR = " << PossibleCR; return Result; }; // Look at all pairs of adjacent elements and the slack-free ranges // [Elem, PrevElem] they imply. Check that none of the ranges are strictly // preferred over the computed range (they may have equal preference). int FirstElem = Elems.find_first(); int PrevElem = FirstElem, Elem; do { Elem = Elems.find_next(PrevElem); if (Elem < 0) Elem = FirstElem; // Wrap around to first element. ConstantRange PossibleCR = ConstantRange::getNonEmpty(APInt(BitWidth, Elem), APInt(BitWidth, PrevElem) + 1); // We get a full range any time PrevElem and Elem are adjacent. Avoid // repeated checks by skipping here, and explicitly checking below instead. if (!PossibleCR.isFullSet()) { EXPECT_TRUE(NotPreferred(PossibleCR)); } PrevElem = Elem; } while (Elem != FirstElem); EXPECT_TRUE(NotPreferred(ConstantRange::getFull(BitWidth))); } using UnaryRangeFn = llvm::function_ref; using UnaryIntFn = llvm::function_ref(const APInt &)>; static void TestUnaryOpExhaustive(UnaryRangeFn RangeFn, UnaryIntFn IntFn, PreferFn PreferenceFn = PreferSmallest) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { SmallBitVector Elems(1 << CR.getBitWidth()); ForeachNumInConstantRange(CR, [&](const APInt &N) { if (std::optional ResultN = IntFn(N)) Elems.set(ResultN->getZExtValue()); }); TestRange(RangeFn(CR), Elems, PreferenceFn, {CR}); }); } using BinaryRangeFn = llvm::function_ref; using BinaryIntFn = llvm::function_ref(const APInt &, const APInt &)>; using BinaryCheckFn = llvm::function_ref; static bool CheckAll(const ConstantRange &, const ConstantRange &) { return true; } static bool CheckSingleElementsOnly(const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.isSingleElement() && CR2.isSingleElement(); } static bool CheckNonWrappedOnly(const ConstantRange &CR1, const ConstantRange &CR2) { return !CR1.isWrappedSet() && !CR2.isWrappedSet(); } static bool CheckNonSignWrappedOnly(const ConstantRange &CR1, const ConstantRange &CR2) { return !CR1.isSignWrappedSet() && !CR2.isSignWrappedSet(); } static bool CheckNonWrappedOrSignWrappedOnly(const ConstantRange &CR1, const ConstantRange &CR2) { return !CR1.isWrappedSet() && !CR1.isSignWrappedSet() && !CR2.isWrappedSet() && !CR2.isSignWrappedSet(); } // CheckFn determines whether optimality is checked for a given range pair. // Correctness is always checked. static void TestBinaryOpExhaustive(BinaryRangeFn RangeFn, BinaryIntFn IntFn, PreferFn PreferenceFn = PreferSmallest, BinaryCheckFn CheckFn = CheckAll) { EnumerateTwoInterestingConstantRanges( [&](const ConstantRange &CR1, const ConstantRange &CR2) { SmallBitVector Elems(1 << CR1.getBitWidth()); ForeachNumInConstantRange(CR1, [&](const APInt &N1) { ForeachNumInConstantRange(CR2, [&](const APInt &N2) { if (std::optional ResultN = IntFn(N1, N2)) Elems.set(ResultN->getZExtValue()); }); }); TestRange(RangeFn(CR1, CR2), Elems, PreferenceFn, {CR1, CR2}, CheckFn(CR1, CR2)); }); } ConstantRange ConstantRangeTest::Full(16, true); ConstantRange ConstantRangeTest::Empty(16, false); ConstantRange ConstantRangeTest::One(APInt(16, 0xa)); ConstantRange ConstantRangeTest::Some(APInt(16, 0xa), APInt(16, 0xaaa)); ConstantRange ConstantRangeTest::Wrap(APInt(16, 0xaaa), APInt(16, 0xa)); TEST_F(ConstantRangeTest, Basics) { EXPECT_TRUE(Full.isFullSet()); EXPECT_FALSE(Full.isEmptySet()); EXPECT_TRUE(Full.inverse().isEmptySet()); EXPECT_FALSE(Full.isWrappedSet()); EXPECT_TRUE(Full.contains(APInt(16, 0x0))); EXPECT_TRUE(Full.contains(APInt(16, 0x9))); EXPECT_TRUE(Full.contains(APInt(16, 0xa))); EXPECT_TRUE(Full.contains(APInt(16, 0xaa9))); EXPECT_TRUE(Full.contains(APInt(16, 0xaaa))); EXPECT_FALSE(Empty.isFullSet()); EXPECT_TRUE(Empty.isEmptySet()); EXPECT_TRUE(Empty.inverse().isFullSet()); EXPECT_FALSE(Empty.isWrappedSet()); EXPECT_FALSE(Empty.contains(APInt(16, 0x0))); EXPECT_FALSE(Empty.contains(APInt(16, 0x9))); EXPECT_FALSE(Empty.contains(APInt(16, 0xa))); EXPECT_FALSE(Empty.contains(APInt(16, 0xaa9))); EXPECT_FALSE(Empty.contains(APInt(16, 0xaaa))); EXPECT_FALSE(One.isFullSet()); EXPECT_FALSE(One.isEmptySet()); EXPECT_FALSE(One.isWrappedSet()); EXPECT_FALSE(One.contains(APInt(16, 0x0))); EXPECT_FALSE(One.contains(APInt(16, 0x9))); EXPECT_TRUE(One.contains(APInt(16, 0xa))); EXPECT_FALSE(One.contains(APInt(16, 0xaa9))); EXPECT_FALSE(One.contains(APInt(16, 0xaaa))); EXPECT_FALSE(One.inverse().contains(APInt(16, 0xa))); EXPECT_FALSE(Some.isFullSet()); EXPECT_FALSE(Some.isEmptySet()); EXPECT_FALSE(Some.isWrappedSet()); EXPECT_FALSE(Some.contains(APInt(16, 0x0))); EXPECT_FALSE(Some.contains(APInt(16, 0x9))); EXPECT_TRUE(Some.contains(APInt(16, 0xa))); EXPECT_TRUE(Some.contains(APInt(16, 0xaa9))); EXPECT_FALSE(Some.contains(APInt(16, 0xaaa))); EXPECT_FALSE(Wrap.isFullSet()); EXPECT_FALSE(Wrap.isEmptySet()); EXPECT_TRUE(Wrap.isWrappedSet()); EXPECT_TRUE(Wrap.contains(APInt(16, 0x0))); EXPECT_TRUE(Wrap.contains(APInt(16, 0x9))); EXPECT_FALSE(Wrap.contains(APInt(16, 0xa))); EXPECT_FALSE(Wrap.contains(APInt(16, 0xaa9))); EXPECT_TRUE(Wrap.contains(APInt(16, 0xaaa))); } TEST_F(ConstantRangeTest, Equality) { EXPECT_EQ(Full, Full); EXPECT_EQ(Empty, Empty); EXPECT_EQ(One, One); EXPECT_EQ(Some, Some); EXPECT_EQ(Wrap, Wrap); EXPECT_NE(Full, Empty); EXPECT_NE(Full, One); EXPECT_NE(Full, Some); EXPECT_NE(Full, Wrap); EXPECT_NE(Empty, One); EXPECT_NE(Empty, Some); EXPECT_NE(Empty, Wrap); EXPECT_NE(One, Some); EXPECT_NE(One, Wrap); EXPECT_NE(Some, Wrap); } TEST_F(ConstantRangeTest, SingleElement) { EXPECT_EQ(Full.getSingleElement(), static_cast(nullptr)); EXPECT_EQ(Empty.getSingleElement(), static_cast(nullptr)); EXPECT_EQ(Full.getSingleMissingElement(), static_cast(nullptr)); EXPECT_EQ(Empty.getSingleMissingElement(), static_cast(nullptr)); EXPECT_EQ(*One.getSingleElement(), APInt(16, 0xa)); EXPECT_EQ(Some.getSingleElement(), static_cast(nullptr)); EXPECT_EQ(Wrap.getSingleElement(), static_cast(nullptr)); EXPECT_EQ(One.getSingleMissingElement(), static_cast(nullptr)); EXPECT_EQ(Some.getSingleMissingElement(), static_cast(nullptr)); ConstantRange OneInverse = One.inverse(); EXPECT_EQ(*OneInverse.getSingleMissingElement(), *One.getSingleElement()); EXPECT_FALSE(Full.isSingleElement()); EXPECT_FALSE(Empty.isSingleElement()); EXPECT_TRUE(One.isSingleElement()); EXPECT_FALSE(Some.isSingleElement()); EXPECT_FALSE(Wrap.isSingleElement()); } TEST_F(ConstantRangeTest, GetMinsAndMaxes) { EXPECT_EQ(Full.getUnsignedMax(), APInt(16, UINT16_MAX)); EXPECT_EQ(One.getUnsignedMax(), APInt(16, 0xa)); EXPECT_EQ(Some.getUnsignedMax(), APInt(16, 0xaa9)); EXPECT_EQ(Wrap.getUnsignedMax(), APInt(16, UINT16_MAX)); EXPECT_EQ(Full.getUnsignedMin(), APInt(16, 0)); EXPECT_EQ(One.getUnsignedMin(), APInt(16, 0xa)); EXPECT_EQ(Some.getUnsignedMin(), APInt(16, 0xa)); EXPECT_EQ(Wrap.getUnsignedMin(), APInt(16, 0)); EXPECT_EQ(Full.getSignedMax(), APInt(16, INT16_MAX)); EXPECT_EQ(One.getSignedMax(), APInt(16, 0xa)); EXPECT_EQ(Some.getSignedMax(), APInt(16, 0xaa9)); EXPECT_EQ(Wrap.getSignedMax(), APInt(16, INT16_MAX)); EXPECT_EQ(Full.getSignedMin(), APInt(16, (uint64_t)INT16_MIN)); EXPECT_EQ(One.getSignedMin(), APInt(16, 0xa)); EXPECT_EQ(Some.getSignedMin(), APInt(16, 0xa)); EXPECT_EQ(Wrap.getSignedMin(), APInt(16, (uint64_t)INT16_MIN)); // Found by Klee EXPECT_EQ(ConstantRange(APInt(4, 7), APInt(4, 0)).getSignedMax(), APInt(4, 7)); } TEST_F(ConstantRangeTest, SignWrapped) { EXPECT_FALSE(Full.isSignWrappedSet()); EXPECT_FALSE(Empty.isSignWrappedSet()); EXPECT_FALSE(One.isSignWrappedSet()); EXPECT_FALSE(Some.isSignWrappedSet()); EXPECT_TRUE(Wrap.isSignWrappedSet()); EXPECT_FALSE(ConstantRange(APInt(8, 127), APInt(8, 128)).isSignWrappedSet()); EXPECT_TRUE(ConstantRange(APInt(8, 127), APInt(8, 129)).isSignWrappedSet()); EXPECT_FALSE(ConstantRange(APInt(8, 128), APInt(8, 129)).isSignWrappedSet()); EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 9)).isSignWrappedSet()); EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 250)).isSignWrappedSet()); EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 10)).isSignWrappedSet()); EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 251)).isSignWrappedSet()); } TEST_F(ConstantRangeTest, UpperWrapped) { // The behavior here is the same as for isWrappedSet() / isSignWrappedSet(). EXPECT_FALSE(Full.isUpperWrapped()); EXPECT_FALSE(Empty.isUpperWrapped()); EXPECT_FALSE(One.isUpperWrapped()); EXPECT_FALSE(Some.isUpperWrapped()); EXPECT_TRUE(Wrap.isUpperWrapped()); EXPECT_FALSE(Full.isUpperSignWrapped()); EXPECT_FALSE(Empty.isUpperSignWrapped()); EXPECT_FALSE(One.isUpperSignWrapped()); EXPECT_FALSE(Some.isUpperSignWrapped()); EXPECT_TRUE(Wrap.isUpperSignWrapped()); // The behavior differs if Upper is the Min/SignedMin value. ConstantRange CR1(APInt(8, 42), APInt::getMinValue(8)); EXPECT_FALSE(CR1.isWrappedSet()); EXPECT_TRUE(CR1.isUpperWrapped()); ConstantRange CR2(APInt(8, 42), APInt::getSignedMinValue(8)); EXPECT_FALSE(CR2.isSignWrappedSet()); EXPECT_TRUE(CR2.isUpperSignWrapped()); } TEST_F(ConstantRangeTest, Trunc) { ConstantRange TFull = Full.truncate(10); ConstantRange TEmpty = Empty.truncate(10); ConstantRange TOne = One.truncate(10); ConstantRange TSome = Some.truncate(10); ConstantRange TWrap = Wrap.truncate(10); EXPECT_TRUE(TFull.isFullSet()); EXPECT_TRUE(TEmpty.isEmptySet()); EXPECT_EQ(TOne, ConstantRange(One.getLower().trunc(10), One.getUpper().trunc(10))); EXPECT_TRUE(TSome.isFullSet()); EXPECT_TRUE(TWrap.isFullSet()); // trunc([2, 5), 3->2) = [2, 1) ConstantRange TwoFive(APInt(3, 2), APInt(3, 5)); EXPECT_EQ(TwoFive.truncate(2), ConstantRange(APInt(2, 2), APInt(2, 1))); // trunc([2, 6), 3->2) = full ConstantRange TwoSix(APInt(3, 2), APInt(3, 6)); EXPECT_TRUE(TwoSix.truncate(2).isFullSet()); // trunc([5, 7), 3->2) = [1, 3) ConstantRange FiveSeven(APInt(3, 5), APInt(3, 7)); EXPECT_EQ(FiveSeven.truncate(2), ConstantRange(APInt(2, 1), APInt(2, 3))); // trunc([7, 1), 3->2) = [3, 1) ConstantRange SevenOne(APInt(3, 7), APInt(3, 1)); EXPECT_EQ(SevenOne.truncate(2), ConstantRange(APInt(2, 3), APInt(2, 1))); } TEST_F(ConstantRangeTest, ZExt) { ConstantRange ZFull = Full.zeroExtend(20); ConstantRange ZEmpty = Empty.zeroExtend(20); ConstantRange ZOne = One.zeroExtend(20); ConstantRange ZSome = Some.zeroExtend(20); ConstantRange ZWrap = Wrap.zeroExtend(20); EXPECT_EQ(ZFull, ConstantRange(APInt(20, 0), APInt(20, 0x10000))); EXPECT_TRUE(ZEmpty.isEmptySet()); EXPECT_EQ(ZOne, ConstantRange(One.getLower().zext(20), One.getUpper().zext(20))); EXPECT_EQ(ZSome, ConstantRange(Some.getLower().zext(20), Some.getUpper().zext(20))); EXPECT_EQ(ZWrap, ConstantRange(APInt(20, 0), APInt(20, 0x10000))); // zext([5, 0), 3->7) = [5, 8) ConstantRange FiveZero(APInt(3, 5), APInt(3, 0)); EXPECT_EQ(FiveZero.zeroExtend(7), ConstantRange(APInt(7, 5), APInt(7, 8))); } TEST_F(ConstantRangeTest, SExt) { ConstantRange SFull = Full.signExtend(20); ConstantRange SEmpty = Empty.signExtend(20); ConstantRange SOne = One.signExtend(20); ConstantRange SSome = Some.signExtend(20); ConstantRange SWrap = Wrap.signExtend(20); EXPECT_EQ(SFull, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true), APInt(20, INT16_MAX + 1, true))); EXPECT_TRUE(SEmpty.isEmptySet()); EXPECT_EQ(SOne, ConstantRange(One.getLower().sext(20), One.getUpper().sext(20))); EXPECT_EQ(SSome, ConstantRange(Some.getLower().sext(20), Some.getUpper().sext(20))); EXPECT_EQ(SWrap, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true), APInt(20, INT16_MAX + 1, true))); EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, 140)).signExtend(16), ConstantRange(APInt(16, -128), APInt(16, 128))); EXPECT_EQ(ConstantRange(APInt(16, 0x0200), APInt(16, 0x8000)).signExtend(19), ConstantRange(APInt(19, 0x0200), APInt(19, 0x8000))); } TEST_F(ConstantRangeTest, IntersectWith) { EXPECT_EQ(Empty.intersectWith(Full), Empty); EXPECT_EQ(Empty.intersectWith(Empty), Empty); EXPECT_EQ(Empty.intersectWith(One), Empty); EXPECT_EQ(Empty.intersectWith(Some), Empty); EXPECT_EQ(Empty.intersectWith(Wrap), Empty); EXPECT_EQ(Full.intersectWith(Full), Full); EXPECT_EQ(Some.intersectWith(Some), Some); EXPECT_EQ(Some.intersectWith(One), One); EXPECT_EQ(Full.intersectWith(One), One); EXPECT_EQ(Full.intersectWith(Some), Some); EXPECT_EQ(Some.intersectWith(Wrap), Empty); EXPECT_EQ(One.intersectWith(Wrap), Empty); EXPECT_EQ(One.intersectWith(Wrap), Wrap.intersectWith(One)); // Klee generated testcase from PR4545. // The intersection of i16 [4, 2) and [6, 5) is disjoint, looking like // 01..4.6789ABCDEF where the dots represent values not in the intersection. ConstantRange LHS(APInt(16, 4), APInt(16, 2)); ConstantRange RHS(APInt(16, 6), APInt(16, 5)); EXPECT_TRUE(LHS.intersectWith(RHS) == LHS); // previous bug: intersection of [min, 3) and [2, max) should be 2 LHS = ConstantRange(APInt(32, -2147483646), APInt(32, 3)); RHS = ConstantRange(APInt(32, 2), APInt(32, 2147483646)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2))); // [2, 0) /\ [4, 3) = [2, 0) LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); RHS = ConstantRange(APInt(32, 4), APInt(32, 3)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2), APInt(32, 0))); // [2, 0) /\ [4, 2) = [4, 0) LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); RHS = ConstantRange(APInt(32, 4), APInt(32, 2)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 0))); // [4, 2) /\ [5, 1) = [5, 1) LHS = ConstantRange(APInt(32, 4), APInt(32, 2)); RHS = ConstantRange(APInt(32, 5), APInt(32, 1)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 5), APInt(32, 1))); // [2, 0) /\ [7, 4) = [7, 4) LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); RHS = ConstantRange(APInt(32, 7), APInt(32, 4)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 7), APInt(32, 4))); // [4, 2) /\ [1, 0) = [1, 0) LHS = ConstantRange(APInt(32, 4), APInt(32, 2)); RHS = ConstantRange(APInt(32, 1), APInt(32, 0)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 2))); // [15, 0) /\ [7, 6) = [15, 0) LHS = ConstantRange(APInt(32, 15), APInt(32, 0)); RHS = ConstantRange(APInt(32, 7), APInt(32, 6)); EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 15), APInt(32, 0))); } template void testBinarySetOperationExhaustive(Fn1 OpFn, Fn2 ExactOpFn, Fn3 InResultFn) { EnumerateTwoInterestingConstantRanges( [=](const ConstantRange &CR1, const ConstantRange &CR2) { unsigned Bits = CR1.getBitWidth(); SmallBitVector Elems(1 << Bits); APInt Num(Bits, 0); for (unsigned I = 0, Limit = 1 << Bits; I < Limit; ++I, ++Num) if (InResultFn(CR1, CR2, Num)) Elems.set(Num.getZExtValue()); ConstantRange SmallestCR = OpFn(CR1, CR2, ConstantRange::Smallest); TestRange(SmallestCR, Elems, PreferSmallest, {CR1, CR2}); ConstantRange UnsignedCR = OpFn(CR1, CR2, ConstantRange::Unsigned); TestRange(UnsignedCR, Elems, PreferSmallestNonFullUnsigned, {CR1, CR2}); ConstantRange SignedCR = OpFn(CR1, CR2, ConstantRange::Signed); TestRange(SignedCR, Elems, PreferSmallestNonFullSigned, {CR1, CR2}); std::optional ExactCR = ExactOpFn(CR1, CR2); if (SmallestCR.isSizeLargerThan(Elems.count())) { EXPECT_TRUE(!ExactCR); } else { EXPECT_EQ(SmallestCR, *ExactCR); } }); } TEST_F(ConstantRangeTest, IntersectWithExhaustive) { testBinarySetOperationExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2, ConstantRange::PreferredRangeType Type) { return CR1.intersectWith(CR2, Type); }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.exactIntersectWith(CR2); }, [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) { return CR1.contains(N) && CR2.contains(N); }); } TEST_F(ConstantRangeTest, UnionWithExhaustive) { testBinarySetOperationExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2, ConstantRange::PreferredRangeType Type) { return CR1.unionWith(CR2, Type); }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.exactUnionWith(CR2); }, [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) { return CR1.contains(N) || CR2.contains(N); }); } TEST_F(ConstantRangeTest, UnionWith) { EXPECT_EQ(Wrap.unionWith(One), ConstantRange(APInt(16, 0xaaa), APInt(16, 0xb))); EXPECT_EQ(One.unionWith(Wrap), Wrap.unionWith(One)); EXPECT_EQ(Empty.unionWith(Empty), Empty); EXPECT_EQ(Full.unionWith(Full), Full); EXPECT_EQ(Some.unionWith(Wrap), Full); // PR4545 EXPECT_EQ(ConstantRange(APInt(16, 14), APInt(16, 1)).unionWith( ConstantRange(APInt(16, 0), APInt(16, 8))), ConstantRange(APInt(16, 14), APInt(16, 8))); EXPECT_EQ(ConstantRange(APInt(16, 6), APInt(16, 4)).unionWith( ConstantRange(APInt(16, 4), APInt(16, 0))), ConstantRange::getFull(16)); EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 0)).unionWith( ConstantRange(APInt(16, 2), APInt(16, 1))), ConstantRange::getFull(16)); } TEST_F(ConstantRangeTest, SetDifference) { EXPECT_EQ(Full.difference(Empty), Full); EXPECT_EQ(Full.difference(Full), Empty); EXPECT_EQ(Empty.difference(Empty), Empty); EXPECT_EQ(Empty.difference(Full), Empty); ConstantRange A(APInt(16, 3), APInt(16, 7)); ConstantRange B(APInt(16, 5), APInt(16, 9)); ConstantRange C(APInt(16, 3), APInt(16, 5)); ConstantRange D(APInt(16, 7), APInt(16, 9)); ConstantRange E(APInt(16, 5), APInt(16, 4)); ConstantRange F(APInt(16, 7), APInt(16, 3)); EXPECT_EQ(A.difference(B), C); EXPECT_EQ(B.difference(A), D); EXPECT_EQ(E.difference(A), F); } TEST_F(ConstantRangeTest, getActiveBits) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { unsigned Exact = 0; ForeachNumInConstantRange(CR, [&](const APInt &N) { Exact = std::max(Exact, N.getActiveBits()); }); unsigned ResultCR = CR.getActiveBits(); EXPECT_EQ(Exact, ResultCR); }); } TEST_F(ConstantRangeTest, losslessUnsignedTruncationZeroext) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { unsigned Bits = CR.getBitWidth(); unsigned MinBitWidth = CR.getActiveBits(); if (MinBitWidth == 0) { EXPECT_TRUE(CR.isEmptySet() || (CR.isSingleElement() && CR.getSingleElement()->isZero())); return; } if (MinBitWidth == Bits) return; EXPECT_EQ(CR, CR.truncate(MinBitWidth).zeroExtend(Bits)); }); } TEST_F(ConstantRangeTest, getMinSignedBits) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { unsigned Exact = 0; ForeachNumInConstantRange(CR, [&](const APInt &N) { Exact = std::max(Exact, N.getSignificantBits()); }); unsigned ResultCR = CR.getMinSignedBits(); EXPECT_EQ(Exact, ResultCR); }); } TEST_F(ConstantRangeTest, losslessSignedTruncationSignext) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { unsigned Bits = CR.getBitWidth(); unsigned MinBitWidth = CR.getMinSignedBits(); if (MinBitWidth == 0) { EXPECT_TRUE(CR.isEmptySet()); return; } if (MinBitWidth == Bits) return; EXPECT_EQ(CR, CR.truncate(MinBitWidth).signExtend(Bits)); }); } TEST_F(ConstantRangeTest, SubtractAPInt) { EXPECT_EQ(Full.subtract(APInt(16, 4)), Full); EXPECT_EQ(Empty.subtract(APInt(16, 4)), Empty); EXPECT_EQ(Some.subtract(APInt(16, 4)), ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6))); EXPECT_EQ(Wrap.subtract(APInt(16, 4)), ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6))); EXPECT_EQ(One.subtract(APInt(16, 4)), ConstantRange(APInt(16, 0x6))); } TEST_F(ConstantRangeTest, Add) { EXPECT_EQ(Full.add(APInt(16, 4)), Full); EXPECT_EQ(Full.add(Full), Full); EXPECT_EQ(Full.add(Empty), Empty); EXPECT_EQ(Full.add(One), Full); EXPECT_EQ(Full.add(Some), Full); EXPECT_EQ(Full.add(Wrap), Full); EXPECT_EQ(Empty.add(Empty), Empty); EXPECT_EQ(Empty.add(One), Empty); EXPECT_EQ(Empty.add(Some), Empty); EXPECT_EQ(Empty.add(Wrap), Empty); EXPECT_EQ(Empty.add(APInt(16, 4)), Empty); EXPECT_EQ(Some.add(APInt(16, 4)), ConstantRange(APInt(16, 0xe), APInt(16, 0xaae))); EXPECT_EQ(Wrap.add(APInt(16, 4)), ConstantRange(APInt(16, 0xaae), APInt(16, 0xe))); EXPECT_EQ(One.add(APInt(16, 4)), ConstantRange(APInt(16, 0xe))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.add(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 + N2; }); } TEST_F(ConstantRangeTest, AddWithNoWrap) { typedef OverflowingBinaryOperator OBO; EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoSignedWrap), Empty); EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoSignedWrap), Empty); EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoSignedWrap), Full); EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoSignedWrap), Full); EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoSignedWrap), Full); EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)), OBO::NoSignedWrap), ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN))); EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2)) .addWithNoWrap(Full, OBO::NoSignedWrap), ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN))); EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, -1), APInt(16, 0)), OBO::NoSignedWrap), ConstantRange(APInt(16, INT16_MIN), APInt(16, INT16_MAX))); EXPECT_EQ(ConstantRange(APInt(8, 100), APInt(8, 120)) .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, 123)), OBO::NoSignedWrap), ConstantRange(8, false)); EXPECT_EQ(ConstantRange(APInt(8, -120), APInt(8, -100)) .addWithNoWrap(ConstantRange(APInt(8, -110), APInt(8, -100)), OBO::NoSignedWrap), ConstantRange(8, false)); EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) .addWithNoWrap(ConstantRange(APInt(8, -128), APInt(8, 28)), OBO::NoSignedWrap), ConstantRange(8, true)); EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) .addWithNoWrap(ConstantRange(APInt(8, -120), APInt(8, 29)), OBO::NoSignedWrap), ConstantRange(APInt(8, -120), APInt(8, -128))); EXPECT_EQ(ConstantRange(APInt(8, -50), APInt(8, 50)) .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 20)), OBO::NoSignedWrap), ConstantRange(APInt(8, -40), APInt(8, 69))); EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20)) .addWithNoWrap(ConstantRange(APInt(8, -50), APInt(8, 50)), OBO::NoSignedWrap), ConstantRange(APInt(8, -40), APInt(8, 69))); EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, -10)) .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)), OBO::NoSignedWrap), ConstantRange(APInt(8, 125), APInt(8, 9))); EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20)) .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, -10)), OBO::NoSignedWrap), ConstantRange(APInt(8, 125), APInt(8, 9))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.addWithNoWrap(CR2, OBO::NoSignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow; APInt Res = N1.sadd_ov(N2, IsOverflow); if (IsOverflow) return std::nullopt; return Res; }, PreferSmallest, CheckNonSignWrappedOnly); EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoUnsignedWrap), Empty); EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoUnsignedWrap), Empty); EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full); EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoUnsignedWrap), Full); EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full); EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)), OBO::NoUnsignedWrap), ConstantRange(APInt(16, 1), APInt(16, 0))); EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2)) .addWithNoWrap(Full, OBO::NoUnsignedWrap), ConstantRange(APInt(16, 1), APInt(16, 0))); EXPECT_EQ(ConstantRange(APInt(8, 200), APInt(8, 220)) .addWithNoWrap(ConstantRange(APInt(8, 100), APInt(8, 123)), OBO::NoUnsignedWrap), ConstantRange(8, false)); EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) .addWithNoWrap(ConstantRange(APInt(8, 0), APInt(8, 156)), OBO::NoUnsignedWrap), ConstantRange(8, true)); EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 29)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 10), APInt(8, 129))); EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, 10)) .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 50), APInt(8, 0))); EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20)) .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 60), APInt(8, -37))); EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, -30)) .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 25), APInt(8, -11))); EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, -30)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 25), APInt(8, -11))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow; APInt Res = N1.uadd_ov(N2, IsOverflow); if (IsOverflow) return std::nullopt; return Res; }, PreferSmallest, CheckNonWrappedOnly); EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), OBO::NoSignedWrap), ConstantRange(APInt(8, 70), APInt(8, -128))); EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 70), APInt(8, 169))); EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), OBO::NoUnsignedWrap | OBO::NoSignedWrap), ConstantRange(APInt(8, 70), APInt(8, -128))); EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), OBO::NoSignedWrap), ConstantRange(APInt(8, -80), APInt(8, -21))); EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), OBO::NoUnsignedWrap), ConstantRange(APInt(8, 176), APInt(8, 235))); EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), OBO::NoUnsignedWrap | OBO::NoSignedWrap), ConstantRange(APInt(8, 176), APInt(8, 235))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow1, IsOverflow2; APInt Res1 = N1.uadd_ov(N2, IsOverflow1); APInt Res2 = N1.sadd_ov(N2, IsOverflow2); if (IsOverflow1 || IsOverflow2) return std::nullopt; assert(Res1 == Res2 && "Addition results differ?"); return Res1; }, PreferSmallest, CheckNonWrappedOrSignWrappedOnly); } TEST_F(ConstantRangeTest, Sub) { EXPECT_EQ(Full.sub(APInt(16, 4)), Full); EXPECT_EQ(Full.sub(Full), Full); EXPECT_EQ(Full.sub(Empty), Empty); EXPECT_EQ(Full.sub(One), Full); EXPECT_EQ(Full.sub(Some), Full); EXPECT_EQ(Full.sub(Wrap), Full); EXPECT_EQ(Empty.sub(Empty), Empty); EXPECT_EQ(Empty.sub(One), Empty); EXPECT_EQ(Empty.sub(Some), Empty); EXPECT_EQ(Empty.sub(Wrap), Empty); EXPECT_EQ(Empty.sub(APInt(16, 4)), Empty); EXPECT_EQ(Some.sub(APInt(16, 4)), ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6))); EXPECT_EQ(Some.sub(Some), ConstantRange(APInt(16, 0xf561), APInt(16, 0xaa0))); EXPECT_EQ(Wrap.sub(APInt(16, 4)), ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6))); EXPECT_EQ(One.sub(APInt(16, 4)), ConstantRange(APInt(16, 0x6))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.sub(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 - N2; }); } TEST_F(ConstantRangeTest, SubWithNoWrap) { typedef OverflowingBinaryOperator OBO; TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.subWithNoWrap(CR2, OBO::NoSignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow; APInt Res = N1.ssub_ov(N2, IsOverflow); if (IsOverflow) return std::nullopt; return Res; }, PreferSmallest, CheckNonSignWrappedOnly); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow; APInt Res = N1.usub_ov(N2, IsOverflow); if (IsOverflow) return std::nullopt; return Res; }, PreferSmallest, CheckNonWrappedOnly); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap); }, [](const APInt &N1, const APInt &N2) -> std::optional { bool IsOverflow1, IsOverflow2; APInt Res1 = N1.usub_ov(N2, IsOverflow1); APInt Res2 = N1.ssub_ov(N2, IsOverflow2); if (IsOverflow1 || IsOverflow2) return std::nullopt; assert(Res1 == Res2 && "Subtraction results differ?"); return Res1; }, PreferSmallest, CheckNonWrappedOrSignWrappedOnly); } TEST_F(ConstantRangeTest, Multiply) { EXPECT_EQ(Full.multiply(Full), Full); EXPECT_EQ(Full.multiply(Empty), Empty); EXPECT_EQ(Full.multiply(One), Full); EXPECT_EQ(Full.multiply(Some), Full); EXPECT_EQ(Full.multiply(Wrap), Full); EXPECT_EQ(Empty.multiply(Empty), Empty); EXPECT_EQ(Empty.multiply(One), Empty); EXPECT_EQ(Empty.multiply(Some), Empty); EXPECT_EQ(Empty.multiply(Wrap), Empty); EXPECT_EQ(One.multiply(One), ConstantRange(APInt(16, 0xa*0xa), APInt(16, 0xa*0xa + 1))); EXPECT_EQ(One.multiply(Some), ConstantRange(APInt(16, 0xa*0xa), APInt(16, 0xa*0xaa9 + 1))); EXPECT_EQ(One.multiply(Wrap), Full); EXPECT_EQ(Some.multiply(Some), Full); EXPECT_EQ(Some.multiply(Wrap), Full); EXPECT_EQ(Wrap.multiply(Wrap), Full); ConstantRange Zero(APInt(16, 0)); EXPECT_EQ(Zero.multiply(Full), Zero); EXPECT_EQ(Zero.multiply(Some), Zero); EXPECT_EQ(Zero.multiply(Wrap), Zero); EXPECT_EQ(Full.multiply(Zero), Zero); EXPECT_EQ(Some.multiply(Zero), Zero); EXPECT_EQ(Wrap.multiply(Zero), Zero); // http://llvm.org/PR4545 EXPECT_EQ(ConstantRange(APInt(4, 1), APInt(4, 6)).multiply( ConstantRange(APInt(4, 6), APInt(4, 2))), ConstantRange(4, /*isFullSet=*/true)); EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 0)).multiply( ConstantRange(APInt(8, 252), APInt(8, 4))), ConstantRange(APInt(8, 250), APInt(8, 9))); EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)).multiply( ConstantRange(APInt(8, 2), APInt(8, 4))), ConstantRange(APInt(8, 250), APInt(8, 253))); // TODO: This should be return [-2, 0] EXPECT_EQ(ConstantRange(APInt(8, -2)).multiply( ConstantRange(APInt(8, 0), APInt(8, 2))), ConstantRange(APInt(8, -2), APInt(8, 1))); // Multiplication by -1 should give precise results. EXPECT_EQ(ConstantRange(APInt(8, 3), APInt(8, -11)) .multiply(ConstantRange(APInt(8, -1))), ConstantRange(APInt(8, 12), APInt(8, -2))); EXPECT_EQ(ConstantRange(APInt(8, -1)) .multiply(ConstantRange(APInt(8, 3), APInt(8, -11))), ConstantRange(APInt(8, 12), APInt(8, -2))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.multiply(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 * N2; }, PreferSmallest, [](const ConstantRange &, const ConstantRange &) { return false; // Check correctness only. }); } TEST_F(ConstantRangeTest, smul_fast) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.smul_fast(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 * N2; }, PreferSmallest, [](const ConstantRange &, const ConstantRange &) { return false; // Check correctness only. }); } TEST_F(ConstantRangeTest, UMax) { EXPECT_EQ(Full.umax(Full), Full); EXPECT_EQ(Full.umax(Empty), Empty); EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0))); EXPECT_EQ(Full.umax(Wrap), Full); EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0))); EXPECT_EQ(Empty.umax(Empty), Empty); EXPECT_EQ(Empty.umax(Some), Empty); EXPECT_EQ(Empty.umax(Wrap), Empty); EXPECT_EQ(Empty.umax(One), Empty); EXPECT_EQ(Some.umax(Some), Some); EXPECT_EQ(Some.umax(Wrap), ConstantRange(APInt(16, 0xa), APInt(16, 0))); EXPECT_EQ(Some.umax(One), Some); EXPECT_EQ(Wrap.umax(Wrap), Wrap); EXPECT_EQ(Wrap.umax(One), ConstantRange(APInt(16, 0xa), APInt(16, 0))); EXPECT_EQ(One.umax(One), One); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.umax(CR2); }, [](const APInt &N1, const APInt &N2) { return APIntOps::umax(N1, N2); }, PreferSmallestNonFullUnsigned); } TEST_F(ConstantRangeTest, SMax) { EXPECT_EQ(Full.smax(Full), Full); EXPECT_EQ(Full.smax(Empty), Empty); EXPECT_EQ(Full.smax(Some), ConstantRange(APInt(16, 0xa), APInt::getSignedMinValue(16))); EXPECT_EQ(Full.smax(Wrap), Full); EXPECT_EQ(Full.smax(One), ConstantRange(APInt(16, 0xa), APInt::getSignedMinValue(16))); EXPECT_EQ(Empty.smax(Empty), Empty); EXPECT_EQ(Empty.smax(Some), Empty); EXPECT_EQ(Empty.smax(Wrap), Empty); EXPECT_EQ(Empty.smax(One), Empty); EXPECT_EQ(Some.smax(Some), Some); EXPECT_EQ(Some.smax(Wrap), ConstantRange(APInt(16, 0xa), APInt(16, (uint64_t)INT16_MIN))); EXPECT_EQ(Some.smax(One), Some); EXPECT_EQ(Wrap.smax(One), ConstantRange(APInt(16, 0xa), APInt(16, (uint64_t)INT16_MIN))); EXPECT_EQ(One.smax(One), One); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.smax(CR2); }, [](const APInt &N1, const APInt &N2) { return APIntOps::smax(N1, N2); }, PreferSmallestNonFullSigned); } TEST_F(ConstantRangeTest, UMin) { EXPECT_EQ(Full.umin(Full), Full); EXPECT_EQ(Full.umin(Empty), Empty); EXPECT_EQ(Full.umin(Some), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); EXPECT_EQ(Full.umin(Wrap), Full); EXPECT_EQ(Empty.umin(Empty), Empty); EXPECT_EQ(Empty.umin(Some), Empty); EXPECT_EQ(Empty.umin(Wrap), Empty); EXPECT_EQ(Empty.umin(One), Empty); EXPECT_EQ(Some.umin(Some), Some); EXPECT_EQ(Some.umin(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); EXPECT_EQ(Some.umin(One), One); EXPECT_EQ(Wrap.umin(Wrap), Wrap); EXPECT_EQ(Wrap.umin(One), ConstantRange(APInt(16, 0), APInt(16, 0xb))); EXPECT_EQ(One.umin(One), One); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.umin(CR2); }, [](const APInt &N1, const APInt &N2) { return APIntOps::umin(N1, N2); }, PreferSmallestNonFullUnsigned); } TEST_F(ConstantRangeTest, SMin) { EXPECT_EQ(Full.smin(Full), Full); EXPECT_EQ(Full.smin(Empty), Empty); EXPECT_EQ(Full.smin(Some), ConstantRange(APInt(16, (uint64_t)INT16_MIN), APInt(16, 0xaaa))); EXPECT_EQ(Full.smin(Wrap), Full); EXPECT_EQ(Empty.smin(Empty), Empty); EXPECT_EQ(Empty.smin(Some), Empty); EXPECT_EQ(Empty.smin(Wrap), Empty); EXPECT_EQ(Empty.smin(One), Empty); EXPECT_EQ(Some.smin(Some), Some); EXPECT_EQ(Some.smin(Wrap), ConstantRange(APInt(16, (uint64_t)INT16_MIN), APInt(16, 0xaaa))); EXPECT_EQ(Some.smin(One), One); EXPECT_EQ(Wrap.smin(Wrap), Wrap); EXPECT_EQ(Wrap.smin(One), ConstantRange(APInt(16, (uint64_t)INT16_MIN), APInt(16, 0xb))); EXPECT_EQ(One.smin(One), One); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.smin(CR2); }, [](const APInt &N1, const APInt &N2) { return APIntOps::smin(N1, N2); }, PreferSmallestNonFullSigned); } TEST_F(ConstantRangeTest, UDiv) { EXPECT_EQ(Full.udiv(Full), Full); EXPECT_EQ(Full.udiv(Empty), Empty); EXPECT_EQ(Full.udiv(One), ConstantRange(APInt(16, 0), APInt(16, 0xffff / 0xa + 1))); EXPECT_EQ(Full.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 0xffff / 0xa + 1))); EXPECT_EQ(Full.udiv(Wrap), Full); EXPECT_EQ(Empty.udiv(Empty), Empty); EXPECT_EQ(Empty.udiv(One), Empty); EXPECT_EQ(Empty.udiv(Some), Empty); EXPECT_EQ(Empty.udiv(Wrap), Empty); EXPECT_EQ(One.udiv(One), ConstantRange(APInt(16, 1))); EXPECT_EQ(One.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 2))); EXPECT_EQ(One.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); EXPECT_EQ(Some.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 0x111))); EXPECT_EQ(Some.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); EXPECT_EQ(Wrap.udiv(Wrap), Full); ConstantRange Zero(APInt(16, 0)); EXPECT_EQ(Zero.udiv(One), Zero); EXPECT_EQ(Zero.udiv(Full), Zero); EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 99)).udiv(Full), ConstantRange(APInt(16, 0), APInt(16, 99))); EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 99)).udiv(Full), ConstantRange(APInt(16, 0), APInt(16, 99))); } TEST_F(ConstantRangeTest, SDiv) { ConstantRange OneBit = ConstantRange::getFull(1); EXPECT_EQ(OneBit.sdiv(OneBit), ConstantRange(APInt(1, 0))); EnumerateTwoInterestingConstantRanges([&](const ConstantRange &CR1, const ConstantRange &CR2) { // Collect possible results in a bit vector. We store the signed value plus // a bias to make it unsigned. unsigned Bits = CR1.getBitWidth(); int Bias = 1 << (Bits - 1); BitVector Results(1 << Bits); ForeachNumInConstantRange(CR1, [&](const APInt &N1) { ForeachNumInConstantRange(CR2, [&](const APInt &N2) { // Division by zero is UB. if (N2 == 0) return; // SignedMin / -1 is UB. if (N1.isMinSignedValue() && N2.isAllOnes()) return; APInt N = N1.sdiv(N2); Results.set(N.getSExtValue() + Bias); }); }); ConstantRange CR = CR1.sdiv(CR2); if (Results.none()) { EXPECT_TRUE(CR.isEmptySet()); return; } // If there is a non-full signed envelope, that should be the result. APInt SMin(Bits, Results.find_first() - Bias); APInt SMax(Bits, Results.find_last() - Bias); ConstantRange Envelope = ConstantRange::getNonEmpty(SMin, SMax + 1); if (!Envelope.isFullSet()) { EXPECT_EQ(Envelope, CR); return; } // If the signed envelope is a full set, try to find a smaller sign wrapped // set that is separated in negative and positive components (or one which // can also additionally contain zero). int LastNeg = Results.find_last_in(0, Bias) - Bias; int LastPos = Results.find_next(Bias) - Bias; if (Results[Bias]) { if (LastNeg == -1) ++LastNeg; else if (LastPos == 1) --LastPos; } APInt WMax(Bits, LastNeg); APInt WMin(Bits, LastPos); ConstantRange Wrapped = ConstantRange::getNonEmpty(WMin, WMax + 1); EXPECT_EQ(Wrapped, CR); }); } TEST_F(ConstantRangeTest, URem) { EXPECT_EQ(Full.urem(Empty), Empty); EXPECT_EQ(Empty.urem(Full), Empty); // urem by zero is poison. EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0))), Empty); // urem by full range doesn't contain MaxValue. EXPECT_EQ(Full.urem(Full), ConstantRange(APInt(16, 0), APInt(16, 0xffff))); // urem is upper bounded by maximum RHS minus one. EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0), APInt(16, 123))), ConstantRange(APInt(16, 0), APInt(16, 122))); // urem is upper bounded by maximum LHS. EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 123)).urem(Full), ConstantRange(APInt(16, 0), APInt(16, 123))); // If the LHS is always lower than the RHS, the result is the LHS. EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20)) .urem(ConstantRange(APInt(16, 20), APInt(16, 30))), ConstantRange(APInt(16, 10), APInt(16, 20))); // It has to be strictly lower, otherwise the top value may wrap to zero. EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20)) .urem(ConstantRange(APInt(16, 19), APInt(16, 30))), ConstantRange(APInt(16, 0), APInt(16, 20))); // [12, 14] % 10 is [2, 4], but we conservatively compute [0, 9]. EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15)) .urem(ConstantRange(APInt(16, 10))), ConstantRange(APInt(16, 0), APInt(16, 10))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.urem(CR2); }, [](const APInt &N1, const APInt &N2) -> std::optional { if (N2.isZero()) return std::nullopt; return N1.urem(N2); }, PreferSmallest, CheckSingleElementsOnly); } TEST_F(ConstantRangeTest, SRem) { EXPECT_EQ(Full.srem(Empty), Empty); EXPECT_EQ(Empty.srem(Full), Empty); // srem by zero is UB. EXPECT_EQ(Full.srem(ConstantRange(APInt(16, 0))), Empty); // srem by full range doesn't contain SignedMinValue. EXPECT_EQ(Full.srem(Full), ConstantRange(APInt::getSignedMinValue(16) + 1, APInt::getSignedMinValue(16))); ConstantRange PosMod(APInt(16, 10), APInt(16, 21)); // [10, 20] ConstantRange NegMod(APInt(16, -20), APInt(16, -9)); // [-20, -10] ConstantRange IntMinMod(APInt::getSignedMinValue(16)); ConstantRange Expected(16, true); // srem is bounded by abs(RHS) minus one. ConstantRange PosLargeLHS(APInt(16, 0), APInt(16, 41)); Expected = ConstantRange(APInt(16, 0), APInt(16, 20)); EXPECT_EQ(PosLargeLHS.srem(PosMod), Expected); EXPECT_EQ(PosLargeLHS.srem(NegMod), Expected); ConstantRange NegLargeLHS(APInt(16, -40), APInt(16, 1)); Expected = ConstantRange(APInt(16, -19), APInt(16, 1)); EXPECT_EQ(NegLargeLHS.srem(PosMod), Expected); EXPECT_EQ(NegLargeLHS.srem(NegMod), Expected); ConstantRange PosNegLargeLHS(APInt(16, -32), APInt(16, 38)); Expected = ConstantRange(APInt(16, -19), APInt(16, 20)); EXPECT_EQ(PosNegLargeLHS.srem(PosMod), Expected); EXPECT_EQ(PosNegLargeLHS.srem(NegMod), Expected); // srem is bounded by LHS. ConstantRange PosLHS(APInt(16, 0), APInt(16, 16)); EXPECT_EQ(PosLHS.srem(PosMod), PosLHS); EXPECT_EQ(PosLHS.srem(NegMod), PosLHS); EXPECT_EQ(PosLHS.srem(IntMinMod), PosLHS); ConstantRange NegLHS(APInt(16, -15), APInt(16, 1)); EXPECT_EQ(NegLHS.srem(PosMod), NegLHS); EXPECT_EQ(NegLHS.srem(NegMod), NegLHS); EXPECT_EQ(NegLHS.srem(IntMinMod), NegLHS); ConstantRange PosNegLHS(APInt(16, -12), APInt(16, 18)); EXPECT_EQ(PosNegLHS.srem(PosMod), PosNegLHS); EXPECT_EQ(PosNegLHS.srem(NegMod), PosNegLHS); EXPECT_EQ(PosNegLHS.srem(IntMinMod), PosNegLHS); // srem is LHS if it is smaller than RHS. ConstantRange PosSmallLHS(APInt(16, 3), APInt(16, 8)); EXPECT_EQ(PosSmallLHS.srem(PosMod), PosSmallLHS); EXPECT_EQ(PosSmallLHS.srem(NegMod), PosSmallLHS); EXPECT_EQ(PosSmallLHS.srem(IntMinMod), PosSmallLHS); ConstantRange NegSmallLHS(APInt(16, -7), APInt(16, -2)); EXPECT_EQ(NegSmallLHS.srem(PosMod), NegSmallLHS); EXPECT_EQ(NegSmallLHS.srem(NegMod), NegSmallLHS); EXPECT_EQ(NegSmallLHS.srem(IntMinMod), NegSmallLHS); ConstantRange PosNegSmallLHS(APInt(16, -3), APInt(16, 8)); EXPECT_EQ(PosNegSmallLHS.srem(PosMod), PosNegSmallLHS); EXPECT_EQ(PosNegSmallLHS.srem(NegMod), PosNegSmallLHS); EXPECT_EQ(PosNegSmallLHS.srem(IntMinMod), PosNegSmallLHS); // Example of a suboptimal result: // [12, 14] srem 10 is [2, 4], but we conservatively compute [0, 9]. EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15)) .srem(ConstantRange(APInt(16, 10))), ConstantRange(APInt(16, 0), APInt(16, 10))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.srem(CR2); }, [](const APInt &N1, const APInt &N2) -> std::optional { if (N2.isZero()) return std::nullopt; return N1.srem(N2); }, PreferSmallest, CheckSingleElementsOnly); } TEST_F(ConstantRangeTest, Shl) { ConstantRange Some2(APInt(16, 0xfff), APInt(16, 0x8000)); ConstantRange WrapNullMax(APInt(16, 0x1), APInt(16, 0x0)); EXPECT_EQ(Full.shl(Full), Full); EXPECT_EQ(Full.shl(Empty), Empty); EXPECT_EQ(Full.shl(One), ConstantRange(APInt(16, 0), APInt(16, 0xfc00) + 1)); EXPECT_EQ(Full.shl(Some), Full); // TODO: [0, (-1 << 0xa) + 1) EXPECT_EQ(Full.shl(Wrap), Full); EXPECT_EQ(Empty.shl(Empty), Empty); EXPECT_EQ(Empty.shl(One), Empty); EXPECT_EQ(Empty.shl(Some), Empty); EXPECT_EQ(Empty.shl(Wrap), Empty); EXPECT_EQ(One.shl(One), ConstantRange(APInt(16, 0xa << 0xa), APInt(16, (0xa << 0xa) + 1))); EXPECT_EQ(One.shl(Some), Full); // TODO: [0xa << 0xa, 0) EXPECT_EQ(One.shl(Wrap), Full); // TODO: [0xa, 0xa << 14 + 1) EXPECT_EQ(Some.shl(Some), Full); // TODO: [0xa << 0xa, 0xfc01) EXPECT_EQ(Some.shl(Wrap), Full); // TODO: [0xa, 0x7ff << 0x5 + 1) EXPECT_EQ(Wrap.shl(Wrap), Full); EXPECT_EQ( Some2.shl(ConstantRange(APInt(16, 0x1))), ConstantRange(APInt(16, 0xfff << 0x1), APInt(16, 0x7fff << 0x1) + 1)); EXPECT_EQ(One.shl(WrapNullMax), Full); ConstantRange NegOne(APInt(16, 0xffff)); EXPECT_EQ(NegOne.shl(ConstantRange(APInt(16, 0), APInt(16, 5))), ConstantRange(APInt(16, 0xfff0), APInt(16, 0))); EXPECT_EQ(ConstantRange(APInt(16, 0xfffe), APInt(16, 0)) .shl(ConstantRange(APInt(16, 0), APInt(16, 5))), ConstantRange(APInt(16, 0xffe0), APInt(16, 0))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.shl(CR2); }, [](const APInt &N1, const APInt &N2) -> std::optional { if (N2.uge(N2.getBitWidth())) return std::nullopt; return N1.shl(N2); }, PreferSmallestUnsigned, [](const ConstantRange &, const ConstantRange &CR2) { // We currently only produce precise results for single element RHS. return CR2.isSingleElement(); }); } TEST_F(ConstantRangeTest, Lshr) { EXPECT_EQ(Full.lshr(Full), Full); EXPECT_EQ(Full.lshr(Empty), Empty); EXPECT_EQ(Full.lshr(One), ConstantRange(APInt(16, 0), APInt(16, (0xffff >> 0xa) + 1))); EXPECT_EQ(Full.lshr(Some), ConstantRange(APInt(16, 0), APInt(16, (0xffff >> 0xa) + 1))); EXPECT_EQ(Full.lshr(Wrap), Full); EXPECT_EQ(Empty.lshr(Empty), Empty); EXPECT_EQ(Empty.lshr(One), Empty); EXPECT_EQ(Empty.lshr(Some), Empty); EXPECT_EQ(Empty.lshr(Wrap), Empty); EXPECT_EQ(One.lshr(One), ConstantRange(APInt(16, 0))); EXPECT_EQ(One.lshr(Some), ConstantRange(APInt(16, 0))); EXPECT_EQ(One.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); EXPECT_EQ(Some.lshr(Some), ConstantRange(APInt(16, 0), APInt(16, (0xaaa >> 0xa) + 1))); EXPECT_EQ(Some.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); EXPECT_EQ(Wrap.lshr(Wrap), Full); } TEST_F(ConstantRangeTest, Ashr) { EXPECT_EQ(Full.ashr(Full), Full); EXPECT_EQ(Full.ashr(Empty), Empty); EXPECT_EQ(Full.ashr(One), ConstantRange(APInt(16, 0xffe0), APInt(16, (0x7fff >> 0xa) + 1 ))); ConstantRange Small(APInt(16, 0xa), APInt(16, 0xb)); EXPECT_EQ(Full.ashr(Small), ConstantRange(APInt(16, 0xffe0), APInt(16, (0x7fff >> 0xa) + 1 ))); EXPECT_EQ(Full.ashr(Some), ConstantRange(APInt(16, 0xffe0), APInt(16, (0x7fff >> 0xa) + 1 ))); EXPECT_EQ(Full.ashr(Wrap), Full); EXPECT_EQ(Empty.ashr(Empty), Empty); EXPECT_EQ(Empty.ashr(One), Empty); EXPECT_EQ(Empty.ashr(Some), Empty); EXPECT_EQ(Empty.ashr(Wrap), Empty); EXPECT_EQ(One.ashr(One), ConstantRange(APInt(16, 0))); EXPECT_EQ(One.ashr(Some), ConstantRange(APInt(16, 0))); EXPECT_EQ(One.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); EXPECT_EQ(Some.ashr(Some), ConstantRange(APInt(16, 0), APInt(16, (0xaaa >> 0xa) + 1))); EXPECT_EQ(Some.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); EXPECT_EQ(Wrap.ashr(Wrap), Full); ConstantRange Neg(APInt(16, 0xf3f0, true), APInt(16, 0xf7f8, true)); EXPECT_EQ(Neg.ashr(Small), ConstantRange(APInt(16, 0xfffc, true), APInt(16, 0xfffe, true))); } TEST(ConstantRange, MakeAllowedICmpRegion) { // PR8250 ConstantRange SMax = ConstantRange(APInt::getSignedMaxValue(32)); EXPECT_TRUE(ConstantRange::makeAllowedICmpRegion(ICmpInst::ICMP_SGT, SMax) .isEmptySet()); } TEST(ConstantRange, MakeSatisfyingICmpRegion) { ConstantRange LowHalf(APInt(8, 0), APInt(8, 128)); ConstantRange HighHalf(APInt(8, 128), APInt(8, 0)); ConstantRange EmptySet(8, /* isFullSet = */ false); EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, LowHalf), HighHalf); EXPECT_EQ( ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, HighHalf), LowHalf); EXPECT_TRUE(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_EQ, HighHalf).isEmptySet()); ConstantRange UnsignedSample(APInt(8, 5), APInt(8, 200)); EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULT, UnsignedSample), ConstantRange(APInt(8, 0), APInt(8, 5))); EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULE, UnsignedSample), ConstantRange(APInt(8, 0), APInt(8, 6))); EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGT, UnsignedSample), ConstantRange(APInt(8, 200), APInt(8, 0))); EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGE, UnsignedSample), ConstantRange(APInt(8, 199), APInt(8, 0))); ConstantRange SignedSample(APInt(8, -5), APInt(8, 5)); EXPECT_EQ( ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLT, SignedSample), ConstantRange(APInt(8, -128), APInt(8, -5))); EXPECT_EQ( ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLE, SignedSample), ConstantRange(APInt(8, -128), APInt(8, -4))); EXPECT_EQ( ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGT, SignedSample), ConstantRange(APInt(8, 5), APInt(8, -128))); EXPECT_EQ( ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGE, SignedSample), ConstantRange(APInt(8, 4), APInt(8, -128))); } void ICmpTestImpl(CmpInst::Predicate Pred) { EnumerateTwoInterestingConstantRanges( [&](const ConstantRange &CR1, const ConstantRange &CR2) { bool Exhaustive = true; ForeachNumInConstantRange(CR1, [&](const APInt &N1) { ForeachNumInConstantRange(CR2, [&](const APInt &N2) { Exhaustive &= ICmpInst::compare(N1, N2, Pred); }); }); EXPECT_EQ(CR1.icmp(Pred, CR2), Exhaustive); }); } TEST(ConstantRange, ICmp) { for (auto Pred : ICmpInst::predicates()) ICmpTestImpl(Pred); } TEST(ConstantRange, MakeGuaranteedNoWrapRegion) { const int IntMin4Bits = 8; const int IntMax4Bits = 7; typedef OverflowingBinaryOperator OBO; for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) { APInt C(4, Const, true /* = isSigned */); auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, C, OBO::NoUnsignedWrap); EXPECT_FALSE(NUWRegion.isEmptySet()); auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, C, OBO::NoSignedWrap); EXPECT_FALSE(NSWRegion.isEmptySet()); for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E; ++I) { bool Overflow = false; (void)I.uadd_ov(C, Overflow); EXPECT_FALSE(Overflow); } for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E; ++I) { bool Overflow = false; (void)I.sadd_ov(C, Overflow); EXPECT_FALSE(Overflow); } } for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) { APInt C(4, Const, true /* = isSigned */); auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, C, OBO::NoUnsignedWrap); EXPECT_FALSE(NUWRegion.isEmptySet()); auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, C, OBO::NoSignedWrap); EXPECT_FALSE(NSWRegion.isEmptySet()); for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E; ++I) { bool Overflow = false; (void)I.usub_ov(C, Overflow); EXPECT_FALSE(Overflow); } for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E; ++I) { bool Overflow = false; (void)I.ssub_ov(C, Overflow); EXPECT_FALSE(Overflow); } } auto NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, ConstantRange(32, /* isFullSet = */ true), OBO::NoSignedWrap); EXPECT_TRUE(NSWForAllValues.isSingleElement() && NSWForAllValues.getSingleElement()->isMinValue()); NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, ConstantRange(32, /* isFullSet = */ true), OBO::NoSignedWrap); EXPECT_TRUE(NSWForAllValues.isSingleElement() && NSWForAllValues.getSingleElement()->isMaxValue()); auto NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, ConstantRange(32, /* isFullSet = */ true), OBO::NoUnsignedWrap); EXPECT_TRUE(NUWForAllValues.isSingleElement() && NUWForAllValues.getSingleElement()->isMinValue()); NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, ConstantRange(32, /* isFullSet = */ true), OBO::NoUnsignedWrap); EXPECT_TRUE(NUWForAllValues.isSingleElement() && NUWForAllValues.getSingleElement()->isMaxValue()); EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet()); EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, APInt(32, 0), OBO::NoSignedWrap).isFullSet()); EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet()); EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, APInt(32, 0), OBO::NoSignedWrap).isFullSet()); ConstantRange OneToFive(APInt(32, 1), APInt(32, 6)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, OneToFive, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32), APInt::getSignedMaxValue(32) - 4)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, OneToFive, OBO::NoUnsignedWrap), ConstantRange(APInt::getMinValue(32), APInt::getMinValue(32) - 5)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, OneToFive, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32) + 5, APInt::getSignedMinValue(32))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, OneToFive, OBO::NoUnsignedWrap), ConstantRange(APInt::getMinValue(32) + 5, APInt::getMinValue(32))); ConstantRange MinusFiveToMinusTwo(APInt(32, -5), APInt(32, -1)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, MinusFiveToMinusTwo, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32) + 5, APInt::getSignedMinValue(32))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, MinusFiveToMinusTwo, OBO::NoUnsignedWrap), ConstantRange(APInt(32, 0), APInt(32, 2))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, MinusFiveToMinusTwo, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32), APInt::getSignedMaxValue(32) - 4)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, MinusFiveToMinusTwo, OBO::NoUnsignedWrap), ConstantRange(APInt::getMaxValue(32) - 1, APInt::getMinValue(32))); ConstantRange MinusOneToOne(APInt(32, -1), APInt(32, 2)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, MinusOneToOne, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32) + 1, APInt::getSignedMinValue(32) - 1)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, MinusOneToOne, OBO::NoUnsignedWrap), ConstantRange(APInt(32, 0), APInt(32, 1))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, MinusOneToOne, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32) + 1, APInt::getSignedMinValue(32) - 1)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, MinusOneToOne, OBO::NoUnsignedWrap), ConstantRange(APInt::getMaxValue(32), APInt::getMinValue(32))); ConstantRange One(APInt(32, 1), APInt(32, 2)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, One, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32), APInt::getSignedMaxValue(32))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, One, OBO::NoUnsignedWrap), ConstantRange(APInt::getMinValue(32), APInt::getMaxValue(32))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, One, OBO::NoSignedWrap), ConstantRange(APInt::getSignedMinValue(32) + 1, APInt::getSignedMinValue(32))); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Sub, One, OBO::NoUnsignedWrap), ConstantRange(APInt::getMinValue(32) + 1, APInt::getMinValue(32))); ConstantRange OneLessThanBitWidth(APInt(32, 0), APInt(32, 31) + 1); ConstantRange UpToBitWidth(APInt(32, 0), APInt(32, 32) + 1); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap), ConstantRange(APInt(32, 0), APInt(32, 1) + 1)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap), ConstantRange(APInt(32, -1), APInt(32, 0) + 1)); EXPECT_EQ( ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange::getFull(32), OBO::NoUnsignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap)); EXPECT_EQ( ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange::getFull(32), OBO::NoSignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap)); ConstantRange IllegalShAmt(APInt(32, 32), APInt(32, 0) + 1); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, IllegalShAmt, OBO::NoUnsignedWrap), ConstantRange::getFull(32)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, IllegalShAmt, OBO::NoSignedWrap), ConstantRange::getFull(32)); EXPECT_EQ( ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), OBO::NoUnsignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1), OBO::NoUnsignedWrap)); EXPECT_EQ( ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), OBO::NoSignedWrap), ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1), OBO::NoSignedWrap)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), OBO::NoUnsignedWrap), ConstantRange(APInt(32, 0), APInt(32, 65535) + 1)); EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), OBO::NoSignedWrap), ConstantRange(APInt(32, -32768), APInt(32, 32767) + 1)); } template void TestNoWrapRegionExhaustive(Instruction::BinaryOps BinOp, unsigned NoWrapKind, Fn OverflowFn) { for (unsigned Bits : {1, 5}) { EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) { if (CR.isEmptySet()) return; if (Instruction::isShift(BinOp) && CR.getUnsignedMax().uge(Bits)) return; ConstantRange NoWrap = ConstantRange::makeGuaranteedNoWrapRegion(BinOp, CR, NoWrapKind); EnumerateAPInts(Bits, [&](const APInt &N1) { bool NoOverflow = true; bool Overflow = true; ForeachNumInConstantRange(CR, [&](const APInt &N2) { if (OverflowFn(N1, N2)) NoOverflow = false; else Overflow = false; }); EXPECT_EQ(NoOverflow, NoWrap.contains(N1)); // The no-wrap range is exact for single-element ranges. if (CR.isSingleElement()) { EXPECT_EQ(Overflow, !NoWrap.contains(N1)); } }); }); } } // Show that makeGuaranteedNoWrapRegion() is maximal, and for single-element // ranges also exact. TEST(ConstantRange, NoWrapRegionExhaustive) { TestNoWrapRegionExhaustive( Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.uadd_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive( Instruction::Add, OverflowingBinaryOperator::NoSignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.sadd_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive( Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.usub_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive( Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.ssub_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive( Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.umul_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive( Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.smul_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive(Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void)N1.ushl_ov(N2, Overflow); return Overflow; }); TestNoWrapRegionExhaustive(Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap, [](const APInt &N1, const APInt &N2) { bool Overflow; (void)N1.sshl_ov(N2, Overflow); return Overflow; }); } TEST(ConstantRange, GetEquivalentICmp) { APInt RHS; CmpInst::Predicate Pred; EXPECT_TRUE(ConstantRange(APInt::getMinValue(32), APInt(32, 100)) .getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_ULT); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE(ConstantRange(APInt::getSignedMinValue(32), APInt(32, 100)) .getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_SLT); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getMinValue(32)) .getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_UGE); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getSignedMinValue(32)) .getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_SGE); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE( ConstantRange(32, /*isFullSet=*/true).getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_UGE); EXPECT_EQ(RHS, APInt(32, 0)); EXPECT_TRUE( ConstantRange(32, /*isFullSet=*/false).getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_ULT); EXPECT_EQ(RHS, APInt(32, 0)); EXPECT_FALSE(ConstantRange(APInt(32, 100), APInt(32, 200)) .getEquivalentICmp(Pred, RHS)); EXPECT_FALSE(ConstantRange(APInt::getSignedMinValue(32) - APInt(32, 100), APInt::getSignedMinValue(32) + APInt(32, 100)) .getEquivalentICmp(Pred, RHS)); EXPECT_FALSE(ConstantRange(APInt::getMinValue(32) - APInt(32, 100), APInt::getMinValue(32) + APInt(32, 100)) .getEquivalentICmp(Pred, RHS)); EXPECT_TRUE(ConstantRange(APInt(32, 100)).getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_EQ); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE( ConstantRange(APInt(32, 100)).inverse().getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_NE); EXPECT_EQ(RHS, APInt(32, 100)); EXPECT_TRUE( ConstantRange(APInt(512, 100)).inverse().getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_NE); EXPECT_EQ(RHS, APInt(512, 100)); // NB! It would be correct for the following four calls to getEquivalentICmp // to return ordered predicates like CmpInst::ICMP_ULT or CmpInst::ICMP_UGT. // However, that's not the case today. EXPECT_TRUE(ConstantRange(APInt(32, 0)).getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_EQ); EXPECT_EQ(RHS, APInt(32, 0)); EXPECT_TRUE( ConstantRange(APInt(32, 0)).inverse().getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_NE); EXPECT_EQ(RHS, APInt(32, 0)); EXPECT_TRUE(ConstantRange(APInt(32, -1)).getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_EQ); EXPECT_EQ(RHS, APInt(32, -1)); EXPECT_TRUE( ConstantRange(APInt(32, -1)).inverse().getEquivalentICmp(Pred, RHS)); EXPECT_EQ(Pred, CmpInst::ICMP_NE); EXPECT_EQ(RHS, APInt(32, -1)); EnumerateInterestingConstantRanges([](const ConstantRange &CR) { unsigned Bits = CR.getBitWidth(); CmpInst::Predicate Pred; APInt RHS, Offset; CR.getEquivalentICmp(Pred, RHS, Offset); EnumerateAPInts(Bits, [&](const APInt &N) { bool Result = ICmpInst::compare(N + Offset, RHS, Pred); EXPECT_EQ(CR.contains(N), Result); }); if (CR.getEquivalentICmp(Pred, RHS)) { EnumerateAPInts(Bits, [&](const APInt &N) { bool Result = ICmpInst::compare(N, RHS, Pred); EXPECT_EQ(CR.contains(N), Result); }); } }); } #define EXPECT_MAY_OVERFLOW(op) \ EXPECT_EQ(ConstantRange::OverflowResult::MayOverflow, (op)) #define EXPECT_ALWAYS_OVERFLOWS_LOW(op) \ EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsLow, (op)) #define EXPECT_ALWAYS_OVERFLOWS_HIGH(op) \ EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsHigh, (op)) #define EXPECT_NEVER_OVERFLOWS(op) \ EXPECT_EQ(ConstantRange::OverflowResult::NeverOverflows, (op)) TEST_F(ConstantRangeTest, UnsignedAddOverflow) { // Ill-defined - may overflow is a conservative result. EXPECT_MAY_OVERFLOW(Some.unsignedAddMayOverflow(Empty)); EXPECT_MAY_OVERFLOW(Empty.unsignedAddMayOverflow(Some)); // Never overflow despite one full/wrap set. ConstantRange Zero(APInt::getZero(16)); EXPECT_NEVER_OVERFLOWS(Full.unsignedAddMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Wrap.unsignedAddMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Full)); EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Wrap)); // But usually full/wrap always may overflow. EXPECT_MAY_OVERFLOW(Full.unsignedAddMayOverflow(One)); EXPECT_MAY_OVERFLOW(Wrap.unsignedAddMayOverflow(One)); EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Full)); EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Wrap)); ConstantRange A(APInt(16, 0xfd00), APInt(16, 0xfe00)); ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); EXPECT_NEVER_OVERFLOWS(A.unsignedAddMayOverflow(B1)); EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(B2)); EXPECT_NEVER_OVERFLOWS(B1.unsignedAddMayOverflow(A)); EXPECT_MAY_OVERFLOW(B2.unsignedAddMayOverflow(A)); ConstantRange C1(APInt(16, 0x0299), APInt(16, 0x0400)); ConstantRange C2(APInt(16, 0x0300), APInt(16, 0x0400)); EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(C1)); EXPECT_ALWAYS_OVERFLOWS_HIGH(A.unsignedAddMayOverflow(C2)); EXPECT_MAY_OVERFLOW(C1.unsignedAddMayOverflow(A)); EXPECT_ALWAYS_OVERFLOWS_HIGH(C2.unsignedAddMayOverflow(A)); } TEST_F(ConstantRangeTest, UnsignedSubOverflow) { // Ill-defined - may overflow is a conservative result. EXPECT_MAY_OVERFLOW(Some.unsignedSubMayOverflow(Empty)); EXPECT_MAY_OVERFLOW(Empty.unsignedSubMayOverflow(Some)); // Never overflow despite one full/wrap set. ConstantRange Zero(APInt::getZero(16)); ConstantRange Max(APInt::getAllOnes(16)); EXPECT_NEVER_OVERFLOWS(Full.unsignedSubMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Wrap.unsignedSubMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Full)); EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Wrap)); // But usually full/wrap always may overflow. EXPECT_MAY_OVERFLOW(Full.unsignedSubMayOverflow(One)); EXPECT_MAY_OVERFLOW(Wrap.unsignedSubMayOverflow(One)); EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Full)); EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Wrap)); ConstantRange A(APInt(16, 0x0000), APInt(16, 0x0100)); ConstantRange B(APInt(16, 0x0100), APInt(16, 0x0200)); EXPECT_NEVER_OVERFLOWS(B.unsignedSubMayOverflow(A)); EXPECT_ALWAYS_OVERFLOWS_LOW(A.unsignedSubMayOverflow(B)); ConstantRange A1(APInt(16, 0x0000), APInt(16, 0x0101)); ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); EXPECT_NEVER_OVERFLOWS(B1.unsignedSubMayOverflow(A1)); EXPECT_MAY_OVERFLOW(A1.unsignedSubMayOverflow(B1)); ConstantRange A2(APInt(16, 0x0000), APInt(16, 0x0102)); ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); EXPECT_MAY_OVERFLOW(B2.unsignedSubMayOverflow(A2)); EXPECT_MAY_OVERFLOW(A2.unsignedSubMayOverflow(B2)); } TEST_F(ConstantRangeTest, SignedAddOverflow) { // Ill-defined - may overflow is a conservative result. EXPECT_MAY_OVERFLOW(Some.signedAddMayOverflow(Empty)); EXPECT_MAY_OVERFLOW(Empty.signedAddMayOverflow(Some)); // Never overflow despite one full/wrap set. ConstantRange Zero(APInt::getZero(16)); EXPECT_NEVER_OVERFLOWS(Full.signedAddMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Wrap.signedAddMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Full)); EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Wrap)); // But usually full/wrap always may overflow. EXPECT_MAY_OVERFLOW(Full.signedAddMayOverflow(One)); EXPECT_MAY_OVERFLOW(Wrap.signedAddMayOverflow(One)); EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Full)); EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Wrap)); ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00)); ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B1)); EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B2)); ConstantRange B3(APInt(16, 0x8000), APInt(16, 0x0201)); ConstantRange B4(APInt(16, 0x8000), APInt(16, 0x0202)); EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B3)); EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B4)); ConstantRange B5(APInt(16, 0x0299), APInt(16, 0x0400)); ConstantRange B6(APInt(16, 0x0300), APInt(16, 0x0400)); EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B5)); EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedAddMayOverflow(B6)); ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300)); ConstantRange D1(APInt(16, 0xfe00), APInt(16, 0xff00)); ConstantRange D2(APInt(16, 0xfd99), APInt(16, 0xff00)); EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D1)); EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D2)); ConstantRange D3(APInt(16, 0xfe00), APInt(16, 0x8000)); ConstantRange D4(APInt(16, 0xfd99), APInt(16, 0x8000)); EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D3)); EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D4)); ConstantRange D5(APInt(16, 0xfc00), APInt(16, 0xfd02)); ConstantRange D6(APInt(16, 0xfc00), APInt(16, 0xfd01)); EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D5)); EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedAddMayOverflow(D6)); ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100)); EXPECT_NEVER_OVERFLOWS(E.signedAddMayOverflow(E)); ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7000)); EXPECT_MAY_OVERFLOW(F.signedAddMayOverflow(F)); } TEST_F(ConstantRangeTest, SignedSubOverflow) { // Ill-defined - may overflow is a conservative result. EXPECT_MAY_OVERFLOW(Some.signedSubMayOverflow(Empty)); EXPECT_MAY_OVERFLOW(Empty.signedSubMayOverflow(Some)); // Never overflow despite one full/wrap set. ConstantRange Zero(APInt::getZero(16)); EXPECT_NEVER_OVERFLOWS(Full.signedSubMayOverflow(Zero)); EXPECT_NEVER_OVERFLOWS(Wrap.signedSubMayOverflow(Zero)); // But usually full/wrap always may overflow. EXPECT_MAY_OVERFLOW(Full.signedSubMayOverflow(One)); EXPECT_MAY_OVERFLOW(Wrap.signedSubMayOverflow(One)); EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Full)); EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Wrap)); ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00)); ConstantRange B1(APInt(16, 0xfe00), APInt(16, 0xff00)); ConstantRange B2(APInt(16, 0xfd99), APInt(16, 0xff00)); EXPECT_NEVER_OVERFLOWS(A.signedSubMayOverflow(B1)); EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B2)); ConstantRange B3(APInt(16, 0xfc00), APInt(16, 0xfd02)); ConstantRange B4(APInt(16, 0xfc00), APInt(16, 0xfd01)); EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B3)); EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedSubMayOverflow(B4)); ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300)); ConstantRange D1(APInt(16, 0x0100), APInt(16, 0x0201)); ConstantRange D2(APInt(16, 0x0100), APInt(16, 0x0202)); EXPECT_NEVER_OVERFLOWS(C.signedSubMayOverflow(D1)); EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D2)); ConstantRange D3(APInt(16, 0x0299), APInt(16, 0x0400)); ConstantRange D4(APInt(16, 0x0300), APInt(16, 0x0400)); EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D3)); EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedSubMayOverflow(D4)); ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100)); EXPECT_NEVER_OVERFLOWS(E.signedSubMayOverflow(E)); ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7001)); EXPECT_MAY_OVERFLOW(F.signedSubMayOverflow(F)); } template static void TestOverflowExhaustive(Fn1 OverflowFn, Fn2 MayOverflowFn) { // Constant range overflow checks are tested exhaustively on 4-bit numbers. EnumerateTwoInterestingConstantRanges([=](const ConstantRange &CR1, const ConstantRange &CR2) { // Loop over all N1 in CR1 and N2 in CR2 and check whether any of the // operations have overflow / have no overflow. bool RangeHasOverflowLow = false; bool RangeHasOverflowHigh = false; bool RangeHasNoOverflow = false; ForeachNumInConstantRange(CR1, [&](const APInt &N1) { ForeachNumInConstantRange(CR2, [&](const APInt &N2) { bool IsOverflowHigh; if (!OverflowFn(IsOverflowHigh, N1, N2)) { RangeHasNoOverflow = true; return; } if (IsOverflowHigh) RangeHasOverflowHigh = true; else RangeHasOverflowLow = true; }); }); ConstantRange::OverflowResult OR = MayOverflowFn(CR1, CR2); switch (OR) { case ConstantRange::OverflowResult::AlwaysOverflowsLow: EXPECT_TRUE(RangeHasOverflowLow); EXPECT_FALSE(RangeHasOverflowHigh); EXPECT_FALSE(RangeHasNoOverflow); break; case ConstantRange::OverflowResult::AlwaysOverflowsHigh: EXPECT_TRUE(RangeHasOverflowHigh); EXPECT_FALSE(RangeHasOverflowLow); EXPECT_FALSE(RangeHasNoOverflow); break; case ConstantRange::OverflowResult::NeverOverflows: EXPECT_FALSE(RangeHasOverflowLow); EXPECT_FALSE(RangeHasOverflowHigh); EXPECT_TRUE(RangeHasNoOverflow); break; case ConstantRange::OverflowResult::MayOverflow: // We return MayOverflow for empty sets as a conservative result, // but of course neither the RangeHasOverflow nor the // RangeHasNoOverflow flags will be set. if (CR1.isEmptySet() || CR2.isEmptySet()) break; EXPECT_TRUE(RangeHasOverflowLow || RangeHasOverflowHigh); EXPECT_TRUE(RangeHasNoOverflow); break; } }); } TEST_F(ConstantRangeTest, UnsignedAddOverflowExhaustive) { TestOverflowExhaustive( [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.uadd_ov(N2, Overflow); IsOverflowHigh = true; return Overflow; }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.unsignedAddMayOverflow(CR2); }); } TEST_F(ConstantRangeTest, UnsignedSubOverflowExhaustive) { TestOverflowExhaustive( [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.usub_ov(N2, Overflow); IsOverflowHigh = false; return Overflow; }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.unsignedSubMayOverflow(CR2); }); } TEST_F(ConstantRangeTest, UnsignedMulOverflowExhaustive) { TestOverflowExhaustive( [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.umul_ov(N2, Overflow); IsOverflowHigh = true; return Overflow; }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.unsignedMulMayOverflow(CR2); }); } TEST_F(ConstantRangeTest, SignedAddOverflowExhaustive) { TestOverflowExhaustive( [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.sadd_ov(N2, Overflow); IsOverflowHigh = N1.isNonNegative(); return Overflow; }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.signedAddMayOverflow(CR2); }); } TEST_F(ConstantRangeTest, SignedSubOverflowExhaustive) { TestOverflowExhaustive( [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { bool Overflow; (void) N1.ssub_ov(N2, Overflow); IsOverflowHigh = N1.isNonNegative(); return Overflow; }, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.signedSubMayOverflow(CR2); }); } TEST_F(ConstantRangeTest, FromKnownBits) { KnownBits Unknown(16); EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/false)); EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/true)); // .10..01. -> unsigned 01000010 (66) to 11011011 (219) // -> signed 11000010 (194) to 01011011 (91) KnownBits Known(8); Known.Zero = 36; Known.One = 66; ConstantRange Unsigned(APInt(8, 66), APInt(8, 219 + 1)); ConstantRange Signed(APInt(8, 194), APInt(8, 91 + 1)); EXPECT_EQ(Unsigned, ConstantRange::fromKnownBits(Known, /*signed*/false)); EXPECT_EQ(Signed, ConstantRange::fromKnownBits(Known, /*signed*/true)); // 1.10.10. -> 10100100 (164) to 11101101 (237) Known.Zero = 18; Known.One = 164; ConstantRange CR1(APInt(8, 164), APInt(8, 237 + 1)); EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/false)); EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/true)); // 01.0.1.0 -> 01000100 (68) to 01101110 (110) Known.Zero = 145; Known.One = 68; ConstantRange CR2(APInt(8, 68), APInt(8, 110 + 1)); EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/false)); EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/true)); } TEST_F(ConstantRangeTest, FromKnownBitsExhaustive) { unsigned Bits = 4; unsigned Max = 1 << Bits; KnownBits Known(Bits); for (unsigned Zero = 0; Zero < Max; ++Zero) { for (unsigned One = 0; One < Max; ++One) { Known.Zero = Zero; Known.One = One; if (Known.hasConflict() || Known.isUnknown()) continue; SmallBitVector Elems(1 << Bits); for (unsigned N = 0; N < Max; ++N) { APInt Num(Bits, N); if ((Num & Known.Zero) != 0 || (~Num & Known.One) != 0) continue; Elems.set(Num.getZExtValue()); } TestRange(ConstantRange::fromKnownBits(Known, false), Elems, PreferSmallestUnsigned, {}); TestRange(ConstantRange::fromKnownBits(Known, true), Elems, PreferSmallestSigned, {}); } } } TEST_F(ConstantRangeTest, ToKnownBits) { EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { KnownBits Known = CR.toKnownBits(); KnownBits ExpectedKnown(CR.getBitWidth()); ExpectedKnown.Zero.setAllBits(); ExpectedKnown.One.setAllBits(); ForeachNumInConstantRange(CR, [&](const APInt &N) { ExpectedKnown.One &= N; ExpectedKnown.Zero &= ~N; }); // For an empty CR any result would be legal. if (!CR.isEmptySet()) { EXPECT_EQ(ExpectedKnown, Known); } }); } TEST_F(ConstantRangeTest, Negative) { // All elements in an empty set (of which there are none) are both negative // and non-negative. Empty & full sets checked explicitly for clarity, but // they are also covered by the exhaustive test below. EXPECT_TRUE(Empty.isAllNegative()); EXPECT_TRUE(Empty.isAllNonNegative()); EXPECT_FALSE(Full.isAllNegative()); EXPECT_FALSE(Full.isAllNonNegative()); EnumerateInterestingConstantRanges([](const ConstantRange &CR) { bool AllNegative = true; bool AllNonNegative = true; ForeachNumInConstantRange(CR, [&](const APInt &N) { if (!N.isNegative()) AllNegative = false; if (!N.isNonNegative()) AllNonNegative = false; }); assert((CR.isEmptySet() || !AllNegative || !AllNonNegative) && "Only empty set can be both all negative and all non-negative"); EXPECT_EQ(AllNegative, CR.isAllNegative()); EXPECT_EQ(AllNonNegative, CR.isAllNonNegative()); }); } TEST_F(ConstantRangeTest, UAddSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.uadd_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.uadd_sat(N2); }, PreferSmallestUnsigned); } TEST_F(ConstantRangeTest, USubSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.usub_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.usub_sat(N2); }, PreferSmallestUnsigned); } TEST_F(ConstantRangeTest, UMulSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.umul_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.umul_sat(N2); }, PreferSmallestUnsigned); } TEST_F(ConstantRangeTest, UShlSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.ushl_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.ushl_sat(N2); }, PreferSmallestUnsigned); } TEST_F(ConstantRangeTest, SAddSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.sadd_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.sadd_sat(N2); }, PreferSmallestSigned); } TEST_F(ConstantRangeTest, SSubSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.ssub_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.ssub_sat(N2); }, PreferSmallestSigned); } TEST_F(ConstantRangeTest, SMulSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.smul_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.smul_sat(N2); }, PreferSmallestSigned); } TEST_F(ConstantRangeTest, SShlSat) { TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.sshl_sat(CR2); }, [](const APInt &N1, const APInt &N2) { return N1.sshl_sat(N2); }, PreferSmallestSigned); } TEST_F(ConstantRangeTest, Abs) { TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.abs(); }, [](const APInt &N) { return N.abs(); }); TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.abs(/*IntMinIsPoison=*/true); }, [](const APInt &N) -> std::optional { if (N.isMinSignedValue()) return std::nullopt; return N.abs(); }); } TEST_F(ConstantRangeTest, Ctlz) { TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.ctlz(); }, [](const APInt &N) { return APInt(N.getBitWidth(), N.countl_zero()); }); TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.ctlz(/*ZeroIsPoison=*/true); }, [](const APInt &N) -> std::optional { if (N.isZero()) return std::nullopt; return APInt(N.getBitWidth(), N.countl_zero()); }); } TEST_F(ConstantRangeTest, Cttz) { TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.cttz(); }, [](const APInt &N) { return APInt(N.getBitWidth(), N.countr_zero()); }); TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.cttz(/*ZeroIsPoison=*/true); }, [](const APInt &N) -> std::optional { if (N.isZero()) return std::nullopt; return APInt(N.getBitWidth(), N.countr_zero()); }); } TEST_F(ConstantRangeTest, Ctpop) { TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.ctpop(); }, [](const APInt &N) { return APInt(N.getBitWidth(), N.popcount()); }); } TEST_F(ConstantRangeTest, castOps) { ConstantRange A(APInt(16, 66), APInt(16, 128)); ConstantRange FpToI8 = A.castOp(Instruction::FPToSI, 8); EXPECT_EQ(8u, FpToI8.getBitWidth()); EXPECT_TRUE(FpToI8.isFullSet()); ConstantRange FpToI16 = A.castOp(Instruction::FPToSI, 16); EXPECT_EQ(16u, FpToI16.getBitWidth()); EXPECT_EQ(A, FpToI16); ConstantRange FPExtToDouble = A.castOp(Instruction::FPExt, 64); EXPECT_EQ(64u, FPExtToDouble.getBitWidth()); EXPECT_TRUE(FPExtToDouble.isFullSet()); ConstantRange PtrToInt = A.castOp(Instruction::PtrToInt, 64); EXPECT_EQ(64u, PtrToInt.getBitWidth()); EXPECT_TRUE(PtrToInt.isFullSet()); ConstantRange IntToPtr = A.castOp(Instruction::IntToPtr, 64); EXPECT_EQ(64u, IntToPtr.getBitWidth()); EXPECT_TRUE(IntToPtr.isFullSet()); } TEST_F(ConstantRangeTest, binaryAnd) { // Single element ranges. ConstantRange R16(APInt(8, 16)); ConstantRange R20(APInt(8, 20)); EXPECT_EQ(*R16.binaryAnd(R16).getSingleElement(), APInt(8, 16)); EXPECT_EQ(*R16.binaryAnd(R20).getSingleElement(), APInt(8, 16 & 20)); ConstantRange R16_32(APInt(8, 16), APInt(8, 32)); // 'And' with a high bits mask. ConstantRange R32(APInt(8, 32)); EXPECT_TRUE(R16_32.binaryAnd(R32).getSingleElement()->isZero()); EXPECT_TRUE(R32.binaryAnd(R16_32).getSingleElement()->isZero()); // 'And' with a low bits mask. Handled conservatively for now. ConstantRange R4(APInt(8, 4)); ConstantRange R0_5(APInt(8, 0), APInt(8, 5)); EXPECT_EQ(R16_32.binaryAnd(R4), R0_5); EXPECT_EQ(R4.binaryAnd(R16_32), R0_5); // Ranges with more than one element. Handled conservatively for now. ConstantRange R0_99(APInt(8, 0), APInt(8, 99)); ConstantRange R0_32(APInt(8, 0), APInt(8, 32)); EXPECT_EQ(R16_32.binaryAnd(R0_99), R0_32); EXPECT_EQ(R0_99.binaryAnd(R16_32), R0_32); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.binaryAnd(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 & N2; }, PreferSmallest, CheckSingleElementsOnly); } TEST_F(ConstantRangeTest, binaryOr) { // Single element ranges. ConstantRange R16(APInt(8, 16)); ConstantRange R20(APInt(8, 20)); EXPECT_EQ(*R16.binaryOr(R16).getSingleElement(), APInt(8, 16)); EXPECT_EQ(*R16.binaryOr(R20).getSingleElement(), APInt(8, 16 | 20)); ConstantRange R16_32(APInt(8, 16), APInt(8, 32)); // 'Or' with a high bits mask. // KnownBits estimate is important, otherwise the maximum included element // would be 2^8 - 1. ConstantRange R32(APInt(8, 32)); ConstantRange R48_64(APInt(8, 48), APInt(8, 64)); EXPECT_EQ(R16_32.binaryOr(R32), R48_64); EXPECT_EQ(R32.binaryOr(R16_32), R48_64); // 'Or' with a low bits mask. ConstantRange R4(APInt(8, 4)); ConstantRange R0_16(APInt(8, 0), APInt(8, 16)); ConstantRange R4_16(APInt(8, 4), APInt(8, 16)); EXPECT_EQ(R0_16.binaryOr(R4), R4_16); EXPECT_EQ(R4.binaryOr(R0_16), R4_16); // Ranges with more than one element. Handled conservatively for now. // UMaxUMin estimate is important, otherwise the lower bound would be zero. ConstantRange R0_64(APInt(8, 0), APInt(8, 64)); ConstantRange R5_32(APInt(8, 5), APInt(8, 32)); ConstantRange R5_64(APInt(8, 5), APInt(8, 64)); EXPECT_EQ(R0_64.binaryOr(R5_32), R5_64); EXPECT_EQ(R5_32.binaryOr(R0_64), R5_64); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.binaryOr(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 | N2; }, PreferSmallest, CheckSingleElementsOnly); } TEST_F(ConstantRangeTest, binaryXor) { // Single element ranges. ConstantRange R16(APInt(8, 16)); ConstantRange R20(APInt(8, 20)); EXPECT_EQ(*R16.binaryXor(R16).getSingleElement(), APInt(8, 0)); EXPECT_EQ(*R16.binaryXor(R20).getSingleElement(), APInt(8, 16 ^ 20)); // Ranges with more than a single element. ConstantRange R16_35(APInt(8, 16), APInt(8, 35)); ConstantRange R0_99(APInt(8, 0), APInt(8, 99)); EXPECT_EQ(R16_35.binaryXor(R16_35), ConstantRange(APInt(8, 0), APInt(8, 64))); EXPECT_EQ(R16_35.binaryXor(R0_99), ConstantRange(APInt(8, 0), APInt(8, 128))); EXPECT_EQ(R0_99.binaryXor(R16_35), ConstantRange(APInt(8, 0), APInt(8, 128))); // Treat xor A, B as sub nsw nuw A, B ConstantRange R0_51(APInt(8, 0), APInt(8, 51)); ConstantRange R63(APInt(8, 63)); EXPECT_EQ(R0_51.binaryXor(R63), ConstantRange(APInt(8, 13), APInt(8, 64))); EXPECT_EQ(R63.binaryXor(R0_51), ConstantRange(APInt(8, 13), APInt(8, 64))); TestBinaryOpExhaustive( [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.binaryXor(CR2); }, [](const APInt &N1, const APInt &N2) { return N1 ^ N2; }, PreferSmallest, CheckSingleElementsOnly); } TEST_F(ConstantRangeTest, binaryNot) { TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.binaryNot(); }, [](const APInt &N) { return ~N; }, PreferSmallest); TestUnaryOpExhaustive( [](const ConstantRange &CR) { return CR.binaryXor(ConstantRange(APInt::getAllOnes(CR.getBitWidth()))); }, [](const APInt &N) { return ~N; }, PreferSmallest); TestUnaryOpExhaustive( [](const ConstantRange &CR) { return ConstantRange(APInt::getAllOnes(CR.getBitWidth())).binaryXor(CR); }, [](const APInt &N) { return ~N; }, PreferSmallest); } template void testConstantRangeICmpPredEquivalence(ICmpInst::Predicate SrcPred, T Func) { EnumerateTwoInterestingConstantRanges( [&](const ConstantRange &CR1, const ConstantRange &CR2) { ICmpInst::Predicate TgtPred; bool ExpectedEquivalent; std::tie(TgtPred, ExpectedEquivalent) = Func(CR1, CR2); if (TgtPred == CmpInst::Predicate::BAD_ICMP_PREDICATE) return; bool TrulyEquivalent = true; ForeachNumInConstantRange(CR1, [&](const APInt &N1) { if (!TrulyEquivalent) return; ForeachNumInConstantRange(CR2, [&](const APInt &N2) { if (!TrulyEquivalent) return; TrulyEquivalent &= ICmpInst::compare(N1, N2, SrcPred) == ICmpInst::compare(N1, N2, TgtPred); }); }); ASSERT_EQ(TrulyEquivalent, ExpectedEquivalent); }); } TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfICmpPredicate) { for (auto Pred : ICmpInst::predicates()) { if (ICmpInst::isEquality(Pred)) continue; ICmpInst::Predicate FlippedSignednessPred = ICmpInst::getFlippedSignednessPredicate(Pred); testConstantRangeICmpPredEquivalence(Pred, [FlippedSignednessPred]( const ConstantRange &CR1, const ConstantRange &CR2) { return std::make_pair( FlippedSignednessPred, ConstantRange::areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)); }); } } TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfInvertedICmpPredicate) { for (auto Pred : ICmpInst::predicates()) { if (ICmpInst::isEquality(Pred)) continue; ICmpInst::Predicate InvertedFlippedSignednessPred = ICmpInst::getInversePredicate( ICmpInst::getFlippedSignednessPredicate(Pred)); testConstantRangeICmpPredEquivalence( Pred, [InvertedFlippedSignednessPred](const ConstantRange &CR1, const ConstantRange &CR2) { return std::make_pair( InvertedFlippedSignednessPred, ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( CR1, CR2)); }); } } TEST_F(ConstantRangeTest, getEquivalentPredWithFlippedSignedness) { for (auto Pred : ICmpInst::predicates()) { if (ICmpInst::isEquality(Pred)) continue; testConstantRangeICmpPredEquivalence( Pred, [Pred](const ConstantRange &CR1, const ConstantRange &CR2) { return std::make_pair( ConstantRange::getEquivalentPredWithFlippedSignedness(Pred, CR1, CR2), /*ExpectedEquivalent=*/true); }); } } TEST_F(ConstantRangeTest, isSizeLargerThan) { EXPECT_FALSE(Empty.isSizeLargerThan(0)); EXPECT_TRUE(Full.isSizeLargerThan(0)); EXPECT_TRUE(Full.isSizeLargerThan(65535)); EXPECT_FALSE(Full.isSizeLargerThan(65536)); EXPECT_TRUE(One.isSizeLargerThan(0)); EXPECT_FALSE(One.isSizeLargerThan(1)); } } // anonymous namespace