//===- OperationsTest.cpp - Tests for fuzzer operations -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/FuzzMutate/Operations.h" #include "llvm/AsmParser/Parser.h" #include "llvm/FuzzMutate/OpDescriptor.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/SourceMgr.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include // Define some pretty printers to help with debugging failures. namespace llvm { void PrintTo(Type *T, ::std::ostream *OS) { raw_os_ostream ROS(*OS); T->print(ROS); } void PrintTo(BasicBlock *BB, ::std::ostream *OS) { raw_os_ostream ROS(*OS); ROS << BB << " (" << BB->getName() << ")"; } void PrintTo(Value *V, ::std::ostream *OS) { raw_os_ostream ROS(*OS); ROS << V << " ("; V->print(ROS); ROS << ")"; } void PrintTo(Constant *C, ::std::ostream *OS) { PrintTo(cast(C), OS); } } // namespace llvm using namespace llvm; using testing::AllOf; using testing::AnyOf; using testing::Each; using testing::ElementsAre; using testing::Eq; using testing::Ge; using testing::PrintToString; using testing::SizeIs; using testing::Truly; namespace { std::unique_ptr parseAssembly(const char *Assembly, LLVMContext &Context) { SMDiagnostic Error; std::unique_ptr M = parseAssemblyString(Assembly, Error, Context); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); assert(M && !verifyModule(*M, &errs())); return M; } MATCHER_P(TypesMatch, V, "has type " + PrintToString(V->getType())) { return arg->getType() == V->getType(); } MATCHER_P(HasType, T, "") { return arg->getType() == T; } TEST(OperationsTest, SourcePreds) { using namespace llvm::fuzzerop; LLVMContext Ctx; Constant *i1 = ConstantInt::getFalse(Ctx); Constant *i8 = ConstantInt::get(Type::getInt8Ty(Ctx), 3); Constant *i16 = ConstantInt::get(Type::getInt16Ty(Ctx), 1 << 15); Constant *i32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0); Constant *i64 = ConstantInt::get(Type::getInt64Ty(Ctx), std::numeric_limits::max()); Constant *f16 = ConstantFP::getInfinity(Type::getHalfTy(Ctx)); Constant *f32 = ConstantFP::get(Type::getFloatTy(Ctx), 0.0); Constant *f64 = ConstantFP::get(Type::getDoubleTy(Ctx), 123.45); Constant *s = ConstantStruct::get(StructType::create(Ctx, "OpaqueStruct")); Constant *a = ConstantArray::get(ArrayType::get(i32->getType(), 2), {i32, i32}); Constant *v8i1 = ConstantVector::getSplat(ElementCount::getFixed(8), i1); Constant *v8i8 = ConstantVector::getSplat(ElementCount::getFixed(8), i8); Constant *v4f16 = ConstantVector::getSplat(ElementCount::getFixed(4), f16); Constant *p0i32 = ConstantPointerNull::get(PointerType::get(i32->getType(), 0)); Constant *v8p0i32 = ConstantVector::getSplat(ElementCount::getFixed(8), p0i32); Constant *vni32 = ConstantVector::getSplat(ElementCount::getScalable(8), i32); Constant *vnf64 = ConstantVector::getSplat(ElementCount::getScalable(8), f64); Constant *vnp0i32 = ConstantVector::getSplat(ElementCount::getScalable(8), p0i32); auto OnlyI32 = onlyType(i32->getType()); EXPECT_TRUE(OnlyI32.matches({}, i32)); EXPECT_FALSE(OnlyI32.matches({}, i64)); EXPECT_FALSE(OnlyI32.matches({}, p0i32)); EXPECT_FALSE(OnlyI32.matches({}, a)); EXPECT_THAT(OnlyI32.generate({}, {}), AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32)))); auto AnyType = anyType(); EXPECT_TRUE(AnyType.matches({}, i1)); EXPECT_TRUE(AnyType.matches({}, f64)); EXPECT_TRUE(AnyType.matches({}, s)); EXPECT_TRUE(AnyType.matches({}, v8i8)); EXPECT_TRUE(AnyType.matches({}, p0i32)); EXPECT_THAT( AnyType.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}), Each(AnyOf(TypesMatch(i32), TypesMatch(f16), TypesMatch(v8i8)))); auto AnyInt = anyIntType(); EXPECT_TRUE(AnyInt.matches({}, i1)); EXPECT_TRUE(AnyInt.matches({}, i64)); EXPECT_FALSE(AnyInt.matches({}, f32)); EXPECT_FALSE(AnyInt.matches({}, v4f16)); EXPECT_THAT( AnyInt.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}), AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32)))); auto AnyIntOrVecInt = anyIntOrVecIntType(); EXPECT_TRUE(AnyIntOrVecInt.matches({}, i1)); EXPECT_TRUE(AnyIntOrVecInt.matches({}, i64)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, f32)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, v4f16)); EXPECT_TRUE(AnyIntOrVecInt.matches({}, v8i8)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, v4f16)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, v8p0i32)); EXPECT_TRUE(AnyIntOrVecInt.matches({}, vni32)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, vnf64)); EXPECT_FALSE(AnyIntOrVecInt.matches({}, vnp0i32)); EXPECT_THAT(AnyIntOrVecInt.generate({}, {v8i8->getType()}), AllOf(Each(TypesMatch(v8i8)))); auto BoolOrVecBool = boolOrVecBoolType(); EXPECT_TRUE(BoolOrVecBool.matches({}, i1)); EXPECT_FALSE(BoolOrVecBool.matches({}, i64)); EXPECT_FALSE(BoolOrVecBool.matches({}, f32)); EXPECT_FALSE(BoolOrVecBool.matches({}, v4f16)); EXPECT_TRUE(BoolOrVecBool.matches({}, v8i1)); EXPECT_FALSE(BoolOrVecBool.matches({}, v4f16)); EXPECT_FALSE(BoolOrVecBool.matches({}, v8p0i32)); EXPECT_FALSE(BoolOrVecBool.matches({}, vni32)); EXPECT_FALSE(BoolOrVecBool.matches({}, vnf64)); EXPECT_FALSE(BoolOrVecBool.matches({}, vnp0i32)); EXPECT_THAT(BoolOrVecBool.generate({}, {v8i8->getType(), v8i1->getType()}), AllOf(Each(TypesMatch(v8i1)))); auto AnyFP = anyFloatType(); EXPECT_TRUE(AnyFP.matches({}, f16)); EXPECT_TRUE(AnyFP.matches({}, f32)); EXPECT_FALSE(AnyFP.matches({}, i16)); EXPECT_FALSE(AnyFP.matches({}, p0i32)); EXPECT_FALSE(AnyFP.matches({}, v4f16)); EXPECT_THAT( AnyFP.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}), AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16)))); auto AnyFPOrVecFP = anyFloatOrVecFloatType(); EXPECT_TRUE(AnyFPOrVecFP.matches({}, f16)); EXPECT_TRUE(AnyFPOrVecFP.matches({}, f32)); EXPECT_FALSE(AnyFPOrVecFP.matches({}, i16)); EXPECT_FALSE(AnyFPOrVecFP.matches({}, p0i32)); EXPECT_TRUE(AnyFPOrVecFP.matches({}, v4f16)); EXPECT_FALSE(AnyFPOrVecFP.matches({}, v8p0i32)); EXPECT_FALSE(AnyFPOrVecFP.matches({}, vni32)); EXPECT_TRUE(AnyFPOrVecFP.matches({}, vnf64)); EXPECT_FALSE(AnyFPOrVecFP.matches({}, vnp0i32)); EXPECT_THAT(AnyFPOrVecFP.generate( {}, {i32->getType(), f16->getType(), v8i8->getType()}), AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16)))); EXPECT_THAT(AnyFPOrVecFP.generate({}, {v4f16->getType()}), AllOf(SizeIs(Ge(1u)), Each(TypesMatch(v4f16)))); auto AnyPtr = anyPtrType(); EXPECT_TRUE(AnyPtr.matches({}, p0i32)); EXPECT_FALSE(AnyPtr.matches({}, i8)); EXPECT_FALSE(AnyPtr.matches({}, a)); EXPECT_FALSE(AnyPtr.matches({}, v8i8)); EXPECT_FALSE(AnyPtr.matches({}, v8p0i32)); EXPECT_FALSE(AnyPtr.matches({}, vni32)); auto isPointer = [](Value *V) { return V->getType()->isPointerTy(); }; EXPECT_THAT( AnyPtr.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}), AllOf(SizeIs(Ge(3u)), Each(Truly(isPointer)))); auto AnyVec = anyVectorType(); EXPECT_TRUE(AnyVec.matches({}, v8i8)); EXPECT_TRUE(AnyVec.matches({}, v4f16)); EXPECT_FALSE(AnyVec.matches({}, i8)); EXPECT_FALSE(AnyVec.matches({}, a)); EXPECT_FALSE(AnyVec.matches({}, s)); EXPECT_TRUE(AnyVec.matches({}, v8p0i32)); EXPECT_TRUE(AnyVec.matches({}, vni32)); EXPECT_TRUE(AnyVec.matches({}, vnf64)); EXPECT_TRUE(AnyVec.matches({}, vnp0i32)); EXPECT_THAT(AnyVec.generate({}, {v8i8->getType()}), Each(TypesMatch(v8i8))); auto First = matchFirstType(); EXPECT_TRUE(First.matches({i8}, i8)); EXPECT_TRUE(First.matches({s, a}, s)); EXPECT_FALSE(First.matches({f16}, f32)); EXPECT_FALSE(First.matches({v4f16, f64}, f64)); EXPECT_THAT(First.generate({i8}, {}), Each(TypesMatch(i8))); EXPECT_THAT(First.generate({f16}, {i8->getType()}), Each(TypesMatch(f16))); EXPECT_THAT(First.generate({v8i8, i32}, {}), Each(TypesMatch(v8i8))); auto FirstLength = matchFirstLengthWAnyType(); EXPECT_TRUE(FirstLength.matches({v8i8}, v8i1)); EXPECT_THAT(FirstLength.generate({v8i1}, {i8->getType()}), Each(TypesMatch(v8i8))); auto Second = matchSecondType(); EXPECT_TRUE(Second.matches({i32, i8}, i8)); EXPECT_TRUE(Second.matches({i8, f16}, f16)); EXPECT_THAT(Second.generate({v8i8, i32}, {}), Each(TypesMatch(i32))); EXPECT_THAT(Second.generate({f32, f16}, {f16->getType()}), Each(TypesMatch(f16))); auto FirstScalar = matchScalarOfFirstType(); EXPECT_TRUE(FirstScalar.matches({v8i8}, i8)); EXPECT_TRUE(FirstScalar.matches({i8}, i8)); EXPECT_TRUE(FirstScalar.matches({v4f16}, f16)); EXPECT_THAT(FirstScalar.generate({v8i8}, {i8->getType()}), Each(TypesMatch(i8))); } TEST(OperationsTest, SplitBlock) { LLVMContext Ctx; Module M("M", Ctx); Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {}, /*isVarArg=*/false), GlobalValue::ExternalLinkage, "f", &M); auto SBOp = fuzzerop::splitBlockDescriptor(1); // Create a block with only a return and split it on the return. auto *BB = BasicBlock::Create(Ctx, "BB", F); auto *RI = ReturnInst::Create(Ctx, BB); SBOp.BuilderFunc({UndefValue::get(Type::getInt1Ty(Ctx))}, RI); // We should end up with an unconditional branch from BB to BB1, and the // return ends up in BB1. auto *UncondBr = cast(BB->getTerminator()); ASSERT_TRUE(UncondBr->isUnconditional()); auto *BB1 = UncondBr->getSuccessor(0); ASSERT_THAT(RI->getParent(), Eq(BB1)); // Now add an instruction to BB1 and split on that. auto *AI = new AllocaInst(Type::getInt8Ty(Ctx), 0, "a", RI); Value *Cond = ConstantInt::getFalse(Ctx); SBOp.BuilderFunc({Cond}, AI); // We should end up with a loop back on BB1 and the instruction we split on // moves to BB2. auto *CondBr = cast(BB1->getTerminator()); EXPECT_THAT(CondBr->getCondition(), Eq(Cond)); ASSERT_THAT(CondBr->getNumSuccessors(), Eq(2u)); ASSERT_THAT(CondBr->getSuccessor(0), Eq(BB1)); auto *BB2 = CondBr->getSuccessor(1); EXPECT_THAT(AI->getParent(), Eq(BB2)); EXPECT_THAT(RI->getParent(), Eq(BB2)); EXPECT_FALSE(verifyModule(M, &errs())); } TEST(OperationsTest, SplitEHBlock) { // Check that we will not try to branch back to the landingpad block using // regular branch instruction LLVMContext Ctx; const char *SourceCode = "declare ptr @f()" "declare i32 @personality_function()" "define ptr @test() personality ptr @personality_function {\n" "entry:\n" " %val = invoke ptr @f()\n" " to label %normal unwind label %exceptional\n" "normal:\n" " ret ptr %val\n" "exceptional:\n" " %landing_pad4 = landingpad token cleanup\n" " ret ptr undef\n" "}"; auto M = parseAssembly(SourceCode, Ctx); // Get the landingpad block BasicBlock &BB = *std::next(M->getFunction("test")->begin(), 2); fuzzerop::OpDescriptor Descr = fuzzerop::splitBlockDescriptor(1); Descr.BuilderFunc({ConstantInt::getTrue(Ctx)}, &*BB.getFirstInsertionPt()); ASSERT_TRUE(!verifyModule(*M, &errs())); } TEST(OperationsTest, SplitBlockWithPhis) { LLVMContext Ctx; Type *Int8Ty = Type::getInt8Ty(Ctx); Module M("M", Ctx); Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {}, /*isVarArg=*/false), GlobalValue::ExternalLinkage, "f", &M); auto SBOp = fuzzerop::splitBlockDescriptor(1); // Create 3 blocks with an if-then branch. auto *BB1 = BasicBlock::Create(Ctx, "BB1", F); auto *BB2 = BasicBlock::Create(Ctx, "BB2", F); auto *BB3 = BasicBlock::Create(Ctx, "BB3", F); BranchInst::Create(BB2, BB3, ConstantInt::getFalse(Ctx), BB1); BranchInst::Create(BB3, BB2); // Set up phi nodes selecting values for the incoming edges. auto *PHI1 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p1", BB3); PHI1->addIncoming(ConstantInt::get(Int8Ty, 0), BB1); PHI1->addIncoming(ConstantInt::get(Int8Ty, 1), BB2); auto *PHI2 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p2", BB3); PHI2->addIncoming(ConstantInt::get(Int8Ty, 1), BB1); PHI2->addIncoming(ConstantInt::get(Int8Ty, 0), BB2); auto *RI = ReturnInst::Create(Ctx, BB3); // Now we split the block with PHI nodes, making sure they're all updated. Value *Cond = ConstantInt::getFalse(Ctx); SBOp.BuilderFunc({Cond}, RI); // Make sure the PHIs are updated with a value for the third incoming edge. EXPECT_THAT(PHI1->getNumIncomingValues(), Eq(3u)); EXPECT_THAT(PHI2->getNumIncomingValues(), Eq(3u)); EXPECT_FALSE(verifyModule(M, &errs())); } TEST(OperationsTest, GEP) { LLVMContext Ctx; Type *Int8PtrTy = PointerType::getUnqual(Ctx); Type *Int32Ty = Type::getInt32Ty(Ctx); Module M("M", Ctx); Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {}, /*isVarArg=*/false), GlobalValue::ExternalLinkage, "f", &M); auto *BB = BasicBlock::Create(Ctx, "BB", F); auto *RI = ReturnInst::Create(Ctx, BB); auto GEPOp = fuzzerop::gepDescriptor(1); EXPECT_TRUE(GEPOp.SourcePreds[0].matches({}, UndefValue::get(Int8PtrTy))); EXPECT_TRUE(GEPOp.SourcePreds[1].matches({UndefValue::get(Int8PtrTy)}, ConstantInt::get(Int32Ty, 0))); GEPOp.BuilderFunc({UndefValue::get(Int8PtrTy), ConstantInt::get(Int32Ty, 0)}, RI); EXPECT_FALSE(verifyModule(M, &errs())); } TEST(OperationsTest, GEPPointerOperand) { // Check that we only pick sized pointers for the GEP instructions LLVMContext Ctx; const char *SourceCode = "%opaque = type opaque\n" "declare void @f()\n" "define void @test(%opaque %o) {\n" " %a = alloca i64, i32 10\n" " ret void\n" "}"; auto M = parseAssembly(SourceCode, Ctx); fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1); // Get first basic block of the test function Function &F = *M->getFunction("test"); BasicBlock &BB = *F.begin(); // Don't match %o ASSERT_FALSE(Descr.SourcePreds[0].matches({}, &*F.arg_begin())); // Match %a ASSERT_TRUE(Descr.SourcePreds[0].matches({}, &*BB.begin())); } TEST(OperationsTest, ExtractAndInsertValue) { LLVMContext Ctx; Type *Int8PtrTy = PointerType::getUnqual(Ctx); Type *Int32Ty = Type::getInt32Ty(Ctx); Type *Int64Ty = Type::getInt64Ty(Ctx); Type *StructTy = StructType::create(Ctx, {Int8PtrTy, Int32Ty}); Type *OpaqueTy = StructType::create(Ctx, "OpaqueStruct"); Type *ZeroSizedArrayTy = ArrayType::get(Int64Ty, 0); Type *ArrayTy = ArrayType::get(Int64Ty, 4); Type *VectorTy = FixedVectorType::get(Int32Ty, 2); auto EVOp = fuzzerop::extractValueDescriptor(1); auto IVOp = fuzzerop::insertValueDescriptor(1); // Sanity check the source preds. Constant *SVal = UndefValue::get(StructTy); Constant *OVal = UndefValue::get(OpaqueTy); Constant *AVal = UndefValue::get(ArrayTy); Constant *ZAVal = UndefValue::get(ZeroSizedArrayTy); Constant *VVal = UndefValue::get(VectorTy); EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, SVal)); EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, OVal)); EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, AVal)); EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, VVal)); EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, SVal)); EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, OVal)); EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, AVal)); EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, VVal)); // Don't consider zero sized arrays as viable sources EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, ZAVal)); EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, ZAVal)); // Make sure we're range checking appropriately. EXPECT_TRUE( EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 0))); EXPECT_TRUE( EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 1))); EXPECT_FALSE( EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 2))); EXPECT_FALSE( EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 0))); EXPECT_FALSE( EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 65536))); EXPECT_TRUE( EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 0))); EXPECT_TRUE( EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 3))); EXPECT_FALSE( EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 4))); EXPECT_THAT( EVOp.SourcePreds[1].generate({SVal}, {}), ElementsAre(ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1))); // InsertValue should accept any type in the struct, but only in positions // where it makes sense. EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int8PtrTy))); EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int32Ty))); EXPECT_FALSE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int64Ty))); EXPECT_FALSE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)}, ConstantInt::get(Int32Ty, 0))); EXPECT_TRUE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)}, ConstantInt::get(Int32Ty, 1))); EXPECT_THAT(IVOp.SourcePreds[1].generate({SVal}, {}), Each(AnyOf(HasType(Int32Ty), HasType(Int8PtrTy)))); EXPECT_THAT( IVOp.SourcePreds[2].generate({SVal, ConstantInt::get(Int32Ty, 0)}, {}), ElementsAre(ConstantInt::get(Int32Ty, 1))); } } // namespace