//===- UnrollAnalyzerTest.cpp - UnrollAnalyzer unit tests -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopUnrollAnalyzer.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Dominators.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; typedef SmallVector, 16> SimplifiedValuesVectorTy; /// Build loop info and scalar evolution for the function and run the analysis. static void runUnrollAnalyzer(Module &M, StringRef FuncName, SimplifiedValuesVectorTy &SimplifiedValuesVector) { auto *F = M.getFunction(FuncName); ASSERT_NE(F, nullptr) << "Could not find " << FuncName; TargetLibraryInfoImpl TLII; TargetLibraryInfo TLI(TLII); AssumptionCache AC(*F); DominatorTree DT(*F); LoopInfo LI(DT); ScalarEvolution SE(*F, TLI, AC, DT, LI); Function::iterator FI = F->begin(); FI++; // First basic block is entry - skip it. BasicBlock *Header = &*FI++; Loop *L = LI.getLoopFor(Header); BasicBlock *Exiting = L->getExitingBlock(); SimplifiedValuesVector.clear(); unsigned TripCount = SE.getSmallConstantTripCount(L, Exiting); for (unsigned Iteration = 0; Iteration < TripCount; Iteration++) { DenseMap SimplifiedValues; UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); for (auto *BB : L->getBlocks()) for (Instruction &I : *BB) Analyzer.visit(I); SimplifiedValuesVector.push_back(SimplifiedValues); } } std::unique_ptr makeLLVMModule(LLVMContext &Context, const char *ModuleStr) { SMDiagnostic Err; return parseAssemblyString(ModuleStr, Err, Context); } TEST(UnrollAnalyzerTest, BasicSimplifications) { const char *ModuleStr = "target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n" "define i64 @propagate_loop_phis() {\n" "entry:\n" " br label %loop\n" "loop:\n" " %iv = phi i64 [ 0, %entry ], [ %inc, %loop ]\n" " %x0 = phi i64 [ 0, %entry ], [ %x2, %loop ]\n" " %x1 = or i64 %x0, 1\n" " %x2 = or i64 %x1, 2\n" " %inc = add nuw nsw i64 %iv, 1\n" " %cond = icmp sge i64 %inc, 8\n" " br i1 %cond, label %loop.end, label %loop\n" "loop.end:\n" " %x.lcssa = phi i64 [ %x2, %loop ]\n" " ret i64 %x.lcssa\n" "}\n"; LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleStr); SimplifiedValuesVectorTy SimplifiedValuesVector; runUnrollAnalyzer(*M, "propagate_loop_phis", SimplifiedValuesVector); unsigned TripCount = SimplifiedValuesVector.size(); // Perform checks Module::iterator MI = M->begin(); Function *F = &*MI++; Function::iterator FI = F->begin(); FI++; // First basic block is entry - skip it. BasicBlock *Header = &*FI++; BasicBlock::iterator BBI = Header->begin(); std::advance(BBI, 4); Instruction *Y1 = &*BBI++; Instruction *Y2 = &*BBI++; // Check simplification expected on the 1st iteration. // Check that "%inc = add nuw nsw i64 %iv, 1" is simplified to 1 auto I1 = SimplifiedValuesVector[0].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[0].end()); EXPECT_EQ(cast((*I1).second)->getZExtValue(), 1U); // Check that "%cond = icmp sge i64 %inc, 10" is simplified to false auto I2 = SimplifiedValuesVector[0].find(Y2); EXPECT_TRUE(I2 != SimplifiedValuesVector[0].end()); EXPECT_FALSE(cast((*I2).second)->getZExtValue()); // Check simplification expected on the last iteration. // Check that "%inc = add nuw nsw i64 %iv, 1" is simplified to 8 I1 = SimplifiedValuesVector[TripCount - 1].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[TripCount - 1].end()); EXPECT_EQ(cast((*I1).second)->getZExtValue(), TripCount); // Check that "%cond = icmp sge i64 %inc, 10" is simplified to false I2 = SimplifiedValuesVector[TripCount - 1].find(Y2); EXPECT_TRUE(I2 != SimplifiedValuesVector[TripCount - 1].end()); EXPECT_TRUE(cast((*I2).second)->getZExtValue()); } TEST(UnrollAnalyzerTest, OuterLoopSimplification) { const char *ModuleStr = "target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n" "define void @foo() {\n" "entry:\n" " br label %outer.loop\n" "outer.loop:\n" " %iv.outer = phi i64 [ 0, %entry ], [ %iv.outer.next, %outer.loop.latch ]\n" " %iv.outer.next = add nuw nsw i64 %iv.outer, 1\n" " br label %inner.loop\n" "inner.loop:\n" " %iv.inner = phi i64 [ 0, %outer.loop ], [ %iv.inner.next, %inner.loop ]\n" " %iv.inner.next = add nuw nsw i64 %iv.inner, 1\n" " %exitcond.inner = icmp eq i64 %iv.inner.next, 1000\n" " br i1 %exitcond.inner, label %outer.loop.latch, label %inner.loop\n" "outer.loop.latch:\n" " %exitcond.outer = icmp eq i64 %iv.outer.next, 40\n" " br i1 %exitcond.outer, label %exit, label %outer.loop\n" "exit:\n" " ret void\n" "}\n"; LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleStr); SimplifiedValuesVectorTy SimplifiedValuesVector; runUnrollAnalyzer(*M, "foo", SimplifiedValuesVector); Module::iterator MI = M->begin(); Function *F = &*MI++; Function::iterator FI = F->begin(); FI++; BasicBlock *Header = &*FI++; BasicBlock *InnerBody = &*FI++; BasicBlock::iterator BBI = Header->begin(); BBI++; Instruction *Y1 = &*BBI; BBI = InnerBody->begin(); BBI++; Instruction *Y2 = &*BBI; // Check that we can simplify IV of the outer loop, but can't simplify the IV // of the inner loop if we only know the iteration number of the outer loop. // // Y1 is %iv.outer.next, Y2 is %iv.inner.next auto I1 = SimplifiedValuesVector[0].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[0].end()); auto I2 = SimplifiedValuesVector[0].find(Y2); EXPECT_TRUE(I2 == SimplifiedValuesVector[0].end()); } TEST(UnrollAnalyzerTest, CmpSimplifications) { const char *ModuleStr = "target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n" "define void @branch_iv_trunc() {\n" "entry:\n" " br label %for.body\n" "for.body:\n" " %indvars.iv = phi i64 [ 0, %entry ], [ %tmp3, %for.body ]\n" " %tmp2 = trunc i64 %indvars.iv to i32\n" " %cmp3 = icmp eq i32 %tmp2, 5\n" " %tmp3 = add nuw nsw i64 %indvars.iv, 1\n" " %exitcond = icmp eq i64 %tmp3, 10\n" " br i1 %exitcond, label %for.end, label %for.body\n" "for.end:\n" " ret void\n" "}\n"; LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleStr); SimplifiedValuesVectorTy SimplifiedValuesVector; runUnrollAnalyzer(*M, "branch_iv_trunc", SimplifiedValuesVector); // Perform checks Module::iterator MI = M->begin(); Function *F = &*MI++; Function::iterator FI = F->begin(); FI++; // First basic block is entry - skip it. BasicBlock *Header = &*FI++; BasicBlock::iterator BBI = Header->begin(); BBI++; Instruction *Y1 = &*BBI++; Instruction *Y2 = &*BBI++; // Check simplification expected on the 5th iteration. // Check that "%tmp2 = trunc i64 %indvars.iv to i32" is simplified to 5 // and "%cmp3 = icmp eq i32 %tmp2, 5" is simplified to 1 (i.e. true). auto I1 = SimplifiedValuesVector[5].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I1).second)->getZExtValue(), 5U); auto I2 = SimplifiedValuesVector[5].find(Y2); EXPECT_TRUE(I2 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I2).second)->getZExtValue(), 1U); } TEST(UnrollAnalyzerTest, PtrCmpSimplifications) { const char *ModuleStr = "target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n" "define void @ptr_cmp(i8 *%a) {\n" "entry:\n" " %limit = getelementptr i8, i8* %a, i64 40\n" " %start.iv2 = getelementptr i8, i8* %a, i64 7\n" " br label %loop.body\n" "loop.body:\n" " %iv.0 = phi i8* [ %a, %entry ], [ %iv.1, %loop.body ]\n" " %iv2.0 = phi i8* [ %start.iv2, %entry ], [ %iv2.1, %loop.body ]\n" " %cmp = icmp eq i8* %iv2.0, %iv.0\n" " %iv.1 = getelementptr inbounds i8, i8* %iv.0, i64 1\n" " %iv2.1 = getelementptr inbounds i8, i8* %iv2.0, i64 1\n" " %exitcond = icmp ne i8* %iv.1, %limit\n" " br i1 %exitcond, label %loop.body, label %loop.exit\n" "loop.exit:\n" " ret void\n" "}\n"; LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleStr); SimplifiedValuesVectorTy SimplifiedValuesVector; runUnrollAnalyzer(*M, "ptr_cmp", SimplifiedValuesVector); // Perform checks Module::iterator MI = M->begin(); Function *F = &*MI++; Function::iterator FI = F->begin(); FI++; // First basic block is entry - skip it. BasicBlock *Header = &*FI; BasicBlock::iterator BBI = Header->begin(); std::advance(BBI, 2); Instruction *Y1 = &*BBI; // Check simplification expected on the 5th iteration. // Check that "%cmp = icmp eq i8* %iv2.0, %iv.0" is simplified to 0. auto I1 = SimplifiedValuesVector[5].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I1).second)->getZExtValue(), 0U); } TEST(UnrollAnalyzerTest, CastSimplifications) { const char *ModuleStr = "target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n" "@known_constant = internal unnamed_addr constant [10 x i32] [i32 0, i32 1, i32 0, i32 1, i32 0, i32 259, i32 0, i32 1, i32 0, i32 1], align 16\n" "define void @const_load_cast() {\n" "entry:\n" " br label %loop\n" "\n" "loop:\n" " %iv = phi i64 [ 0, %entry ], [ %inc, %loop ]\n" " %array_const_idx = getelementptr inbounds [10 x i32], [10 x i32]* @known_constant, i64 0, i64 %iv\n" " %const_array_element = load i32, i32* %array_const_idx, align 4\n" " %se = sext i32 %const_array_element to i64\n" " %ze = zext i32 %const_array_element to i64\n" " %tr = trunc i32 %const_array_element to i8\n" " %inc = add nuw nsw i64 %iv, 1\n" " %exitcond86.i = icmp eq i64 %inc, 10\n" " br i1 %exitcond86.i, label %loop.end, label %loop\n" "\n" "loop.end:\n" " ret void\n" "}\n"; LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleStr); SimplifiedValuesVectorTy SimplifiedValuesVector; runUnrollAnalyzer(*M, "const_load_cast", SimplifiedValuesVector); // Perform checks Module::iterator MI = M->begin(); Function *F = &*MI++; Function::iterator FI = F->begin(); FI++; // First basic block is entry - skip it. BasicBlock *Header = &*FI++; BasicBlock::iterator BBI = Header->begin(); std::advance(BBI, 3); Instruction *Y1 = &*BBI++; Instruction *Y2 = &*BBI++; Instruction *Y3 = &*BBI++; // Check simplification expected on the 5th iteration. // "%se = sext i32 %const_array_element to i64" should be simplified to 259, // "%ze = zext i32 %const_array_element to i64" should be simplified to 259, // "%tr = trunc i32 %const_array_element to i8" should be simplified to 3. auto I1 = SimplifiedValuesVector[5].find(Y1); EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I1).second)->getZExtValue(), 259U); auto I2 = SimplifiedValuesVector[5].find(Y2); EXPECT_TRUE(I2 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I2).second)->getZExtValue(), 259U); auto I3 = SimplifiedValuesVector[5].find(Y3); EXPECT_TRUE(I3 != SimplifiedValuesVector[5].end()); EXPECT_EQ(cast((*I3).second)->getZExtValue(), 3U); }