//===-- PerfReader.cpp - perfscript reader ---------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PerfReader.h" #include "ProfileGenerator.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Process.h" #define DEBUG_TYPE "perf-reader" static cl::opt ShowMmapEvents("show-mmap-events", cl::ReallyHidden, cl::init(false), cl::ZeroOrMore, cl::desc("Print binary load events.")); cl::opt SkipSymbolization("skip-symbolization", cl::ReallyHidden, cl::init(false), cl::ZeroOrMore, cl::desc("Dump the unsymbolized profile to the " "output file. It will show unwinder " "output for CS profile generation.")); cl::opt UseOffset("use-offset", cl::ReallyHidden, cl::init(true), cl::ZeroOrMore, cl::desc("Work with `--skip-symbolization` to dump the " "offset instead of virtual address.")); cl::opt IgnoreStackSamples("ignore-stack-samples", cl::ReallyHidden, cl::init(false), cl::ZeroOrMore, cl::desc("Ignore call stack samples for hybrid samples " "and produce context-insensitive profile.")); extern cl::opt PerfTraceFilename; extern cl::opt ShowDisassemblyOnly; extern cl::opt ShowSourceLocations; extern cl::opt OutputFilename; namespace llvm { namespace sampleprof { void VirtualUnwinder::unwindCall(UnwindState &State) { // The 2nd frame after leaf could be missing if stack sample is // taken when IP is within prolog/epilog, as frame chain isn't // setup yet. Fill in the missing frame in that case. // TODO: Currently we just assume all the addr that can't match the // 2nd frame is in prolog/epilog. In the future, we will switch to // pro/epi tracker(Dwarf CFI) for the precise check. uint64_t Source = State.getCurrentLBRSource(); auto *ParentFrame = State.getParentFrame(); if (ParentFrame == State.getDummyRootPtr() || ParentFrame->Address != Source) { State.switchToFrame(Source); } else { State.popFrame(); } State.InstPtr.update(Source); } void VirtualUnwinder::unwindLinear(UnwindState &State, uint64_t Repeat) { InstructionPointer &IP = State.InstPtr; uint64_t Target = State.getCurrentLBRTarget(); uint64_t End = IP.Address; if (Binary->usePseudoProbes()) { // We don't need to top frame probe since it should be extracted // from the range. // The outcome of the virtual unwinding with pseudo probes is a // map from a context key to the address range being unwound. // This means basically linear unwinding is not needed for pseudo // probes. The range will be simply recorded here and will be // converted to a list of pseudo probes to report in ProfileGenerator. State.getParentFrame()->recordRangeCount(Target, End, Repeat); } else { // Unwind linear execution part. // Split and record the range by different inline context. For example: // [0x01] ... main:1 # Target // [0x02] ... main:2 // [0x03] ... main:3 @ foo:1 // [0x04] ... main:3 @ foo:2 // [0x05] ... main:3 @ foo:3 // [0x06] ... main:4 // [0x07] ... main:5 # End // It will be recorded: // [main:*] : [0x06, 0x07], [0x01, 0x02] // [main:3 @ foo:*] : [0x03, 0x05] while (IP.Address > Target) { uint64_t PrevIP = IP.Address; IP.backward(); // Break into segments for implicit call/return due to inlining bool SameInlinee = Binary->inlineContextEqual(PrevIP, IP.Address); if (!SameInlinee) { State.switchToFrame(PrevIP); State.CurrentLeafFrame->recordRangeCount(PrevIP, End, Repeat); End = IP.Address; } } assert(IP.Address == Target && "The last one must be the target address."); // Record the remaining range, [0x01, 0x02] in the example State.switchToFrame(IP.Address); State.CurrentLeafFrame->recordRangeCount(IP.Address, End, Repeat); } } void VirtualUnwinder::unwindReturn(UnwindState &State) { // Add extra frame as we unwind through the return const LBREntry &LBR = State.getCurrentLBR(); uint64_t CallAddr = Binary->getCallAddrFromFrameAddr(LBR.Target); State.switchToFrame(CallAddr); State.pushFrame(LBR.Source); State.InstPtr.update(LBR.Source); } void VirtualUnwinder::unwindBranchWithinFrame(UnwindState &State) { // TODO: Tolerate tail call for now, as we may see tail call from libraries. // This is only for intra function branches, excluding tail calls. uint64_t Source = State.getCurrentLBRSource(); State.switchToFrame(Source); State.InstPtr.update(Source); } std::shared_ptr FrameStack::getContextKey() { std::shared_ptr KeyStr = std::make_shared(); KeyStr->Context = Binary->getExpandedContext(Stack, KeyStr->WasLeafInlined); if (KeyStr->Context.empty()) return nullptr; KeyStr->genHashCode(); return KeyStr; } std::shared_ptr ProbeStack::getContextKey() { std::shared_ptr ProbeBasedKey = std::make_shared(); for (auto CallProbe : Stack) { ProbeBasedKey->Probes.emplace_back(CallProbe); } CSProfileGenerator::compressRecursionContext( ProbeBasedKey->Probes); CSProfileGenerator::trimContext( ProbeBasedKey->Probes); ProbeBasedKey->genHashCode(); return ProbeBasedKey; } template void VirtualUnwinder::collectSamplesFromFrame(UnwindState::ProfiledFrame *Cur, T &Stack) { if (Cur->RangeSamples.empty() && Cur->BranchSamples.empty()) return; std::shared_ptr Key = Stack.getContextKey(); if (Key == nullptr) return; auto Ret = CtxCounterMap->emplace(Hashable(Key), SampleCounter()); SampleCounter &SCounter = Ret.first->second; for (auto &Item : Cur->RangeSamples) { uint64_t StartOffset = Binary->virtualAddrToOffset(std::get<0>(Item)); uint64_t EndOffset = Binary->virtualAddrToOffset(std::get<1>(Item)); SCounter.recordRangeCount(StartOffset, EndOffset, std::get<2>(Item)); } for (auto &Item : Cur->BranchSamples) { uint64_t SourceOffset = Binary->virtualAddrToOffset(std::get<0>(Item)); uint64_t TargetOffset = Binary->virtualAddrToOffset(std::get<1>(Item)); SCounter.recordBranchCount(SourceOffset, TargetOffset, std::get<2>(Item)); } } template void VirtualUnwinder::collectSamplesFromFrameTrie( UnwindState::ProfiledFrame *Cur, T &Stack) { if (!Cur->isDummyRoot()) { if (!Stack.pushFrame(Cur)) { // Process truncated context // Start a new traversal ignoring its bottom context T EmptyStack(Binary); collectSamplesFromFrame(Cur, EmptyStack); for (const auto &Item : Cur->Children) { collectSamplesFromFrameTrie(Item.second.get(), EmptyStack); } // Keep note of untracked call site and deduplicate them // for warning later. if (!Cur->isLeafFrame()) UntrackedCallsites.insert(Cur->Address); return; } } collectSamplesFromFrame(Cur, Stack); // Process children frame for (const auto &Item : Cur->Children) { collectSamplesFromFrameTrie(Item.second.get(), Stack); } // Recover the call stack Stack.popFrame(); } void VirtualUnwinder::collectSamplesFromFrameTrie( UnwindState::ProfiledFrame *Cur) { if (Binary->usePseudoProbes()) { ProbeStack Stack(Binary); collectSamplesFromFrameTrie(Cur, Stack); } else { FrameStack Stack(Binary); collectSamplesFromFrameTrie(Cur, Stack); } } void VirtualUnwinder::recordBranchCount(const LBREntry &Branch, UnwindState &State, uint64_t Repeat) { if (Branch.IsArtificial) return; if (Binary->usePseudoProbes()) { // Same as recordRangeCount, We don't need to top frame probe since we will // extract it from branch's source address State.getParentFrame()->recordBranchCount(Branch.Source, Branch.Target, Repeat); } else { State.CurrentLeafFrame->recordBranchCount(Branch.Source, Branch.Target, Repeat); } } bool VirtualUnwinder::unwind(const PerfSample *Sample, uint64_t Repeat) { // Capture initial state as starting point for unwinding. UnwindState State(Sample, Binary); // Sanity check - making sure leaf of LBR aligns with leaf of stack sample // Stack sample sometimes can be unreliable, so filter out bogus ones. if (!State.validateInitialState()) return false; // Also do not attempt linear unwind for the leaf range as it's incomplete. bool IsLeaf = true; // Now process the LBR samples in parrallel with stack sample // Note that we do not reverse the LBR entry order so we can // unwind the sample stack as we walk through LBR entries. while (State.hasNextLBR()) { State.checkStateConsistency(); // Unwind implicit calls/returns from inlining, along the linear path, // break into smaller sub section each with its own calling context. if (!IsLeaf) { unwindLinear(State, Repeat); } IsLeaf = false; // Save the LBR branch before it gets unwound. const LBREntry &Branch = State.getCurrentLBR(); if (isCallState(State)) { // Unwind calls - we know we encountered call if LBR overlaps with // transition between leaf the 2nd frame. Note that for calls that // were not in the original stack sample, we should have added the // extra frame when processing the return paired with this call. unwindCall(State); } else if (isReturnState(State)) { // Unwind returns - check whether the IP is indeed at a return instruction unwindReturn(State); } else { // Unwind branches - for regular intra function branches, we only // need to record branch with context. unwindBranchWithinFrame(State); } State.advanceLBR(); // Record `branch` with calling context after unwinding. recordBranchCount(Branch, State, Repeat); } // As samples are aggregated on trie, record them into counter map collectSamplesFromFrameTrie(State.getDummyRootPtr()); return true; } std::unique_ptr PerfReaderBase::create(ProfiledBinary *Binary, StringRef PerfInputFile, bool IsPerfData) { // For perf data input, we need to convert them into perf script first. if (IsPerfData) { std::string ConvertedPerfScript = convertPerfDataToTrace(Binary, PerfInputFile); // Let commoand opt own the string for converted perf trace file name PerfTraceFilename = ConvertedPerfScript; PerfInputFile = PerfTraceFilename; } PerfScriptType PerfType = checkPerfScriptType(PerfInputFile); std::unique_ptr PerfReader; if (PerfType == PERF_LBR_STACK) { PerfReader.reset(new HybridPerfReader(Binary, PerfInputFile)); } else if (PerfType == PERF_LBR) { PerfReader.reset(new LBRPerfReader(Binary, PerfInputFile)); } else { exitWithError("Unsupported perfscript!"); } return PerfReader; } std::string PerfReaderBase::convertPerfDataToTrace(ProfiledBinary *Binary, StringRef PerfData) { // Run perf script to retrieve PIDs matching binary we're interested in. auto PerfExecutable = sys::Process::FindInEnvPath("PATH", "perf"); if (!PerfExecutable) { exitWithError("Perf not found."); } std::string PerfPath = *PerfExecutable; std::string PerfTraceFile = PerfData.str() + ".script.tmp"; StringRef ScriptMMapArgs[] = {PerfPath, "script", "--show-mmap-events", "-F", "comm,pid", "-i", PerfData}; Optional Redirects[] = {llvm::None, // Stdin StringRef(PerfTraceFile), // Stdout StringRef(PerfTraceFile)}; // Stderr sys::ExecuteAndWait(PerfPath, ScriptMMapArgs, llvm::None, Redirects); // Collect the PIDs TraceStream TraceIt(PerfTraceFile); std::string PIDs; std::unordered_set PIDSet; while (!TraceIt.isAtEoF()) { MMapEvent MMap; if (isMMap2Event(TraceIt.getCurrentLine()) && extractMMap2EventForBinary(Binary, TraceIt.getCurrentLine(), MMap)) { auto It = PIDSet.emplace(MMap.PID); if (It.second) { if (!PIDs.empty()) { PIDs.append(","); } PIDs.append(utostr(MMap.PID)); } } TraceIt.advance(); } if (PIDs.empty()) { exitWithError("No relevant mmap event is found in perf data."); } // Run perf script again to retrieve events for PIDs collected above StringRef ScriptSampleArgs[] = {PerfPath, "script", "--show-mmap-events", "-F", "ip,brstack", "--pid", PIDs, "-i", PerfData}; sys::ExecuteAndWait(PerfPath, ScriptSampleArgs, llvm::None, Redirects); return PerfTraceFile; } void PerfReaderBase::updateBinaryAddress(const MMapEvent &Event) { // Drop the event which doesn't belong to user-provided binary StringRef BinaryName = llvm::sys::path::filename(Event.BinaryPath); if (Binary->getName() != BinaryName) return; // Drop the event if its image is loaded at the same address if (Event.Address == Binary->getBaseAddress()) { Binary->setIsLoadedByMMap(true); return; } if (Event.Offset == Binary->getTextSegmentOffset()) { // A binary image could be unloaded and then reloaded at different // place, so update binary load address. // Only update for the first executable segment and assume all other // segments are loaded at consecutive memory addresses, which is the case on // X64. Binary->setBaseAddress(Event.Address); Binary->setIsLoadedByMMap(true); } else { // Verify segments are loaded consecutively. const auto &Offsets = Binary->getTextSegmentOffsets(); auto It = std::lower_bound(Offsets.begin(), Offsets.end(), Event.Offset); if (It != Offsets.end() && *It == Event.Offset) { // The event is for loading a separate executable segment. auto I = std::distance(Offsets.begin(), It); const auto &PreferredAddrs = Binary->getPreferredTextSegmentAddresses(); if (PreferredAddrs[I] - Binary->getPreferredBaseAddress() != Event.Address - Binary->getBaseAddress()) exitWithError("Executable segments not loaded consecutively"); } else { if (It == Offsets.begin()) exitWithError("File offset not found"); else { // Find the segment the event falls in. A large segment could be loaded // via multiple mmap calls with consecutive memory addresses. --It; assert(*It < Event.Offset); if (Event.Offset - *It != Event.Address - Binary->getBaseAddress()) exitWithError("Segment not loaded by consecutive mmaps"); } } } } static std::string getContextKeyStr(ContextKey *K, const ProfiledBinary *Binary) { if (const auto *CtxKey = dyn_cast(K)) { return SampleContext::getContextString(CtxKey->Context); } else if (const auto *CtxKey = dyn_cast(K)) { SampleContextFrameVector ContextStack; for (const auto *Probe : CtxKey->Probes) { Binary->getInlineContextForProbe(Probe, ContextStack, true); } // Probe context key at this point does not have leaf probe, so do not // include the leaf inline location. return SampleContext::getContextString(ContextStack, true); } else { llvm_unreachable("unexpected key type"); } } void HybridPerfReader::unwindSamples() { std::set AllUntrackedCallsites; for (const auto &Item : AggregatedSamples) { const PerfSample *Sample = Item.first.getPtr(); VirtualUnwinder Unwinder(&SampleCounters, Binary); Unwinder.unwind(Sample, Item.second); auto &CurrUntrackedCallsites = Unwinder.getUntrackedCallsites(); AllUntrackedCallsites.insert(CurrUntrackedCallsites.begin(), CurrUntrackedCallsites.end()); } // Warn about untracked frames due to missing probes. for (auto Address : AllUntrackedCallsites) WithColor::warning() << "Profile context truncated due to missing probe " << "for call instruction at " << format("0x%" PRIx64, Address) << "\n"; } bool PerfReaderBase::extractLBRStack(TraceStream &TraceIt, SmallVectorImpl &LBRStack) { // The raw format of LBR stack is like: // 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ... // ... 0x4005c8/0x4005dc/P/-/-/0 // It's in FIFO order and seperated by whitespace. SmallVector Records; TraceIt.getCurrentLine().split(Records, " ", -1, false); auto WarnInvalidLBR = [](TraceStream &TraceIt) { WithColor::warning() << "Invalid address in LBR record at line " << TraceIt.getLineNumber() << ": " << TraceIt.getCurrentLine() << "\n"; }; // Skip the leading instruction pointer. size_t Index = 0; uint64_t LeadingAddr; if (!Records.empty() && Records[0].find('/') == StringRef::npos) { if (Records[0].getAsInteger(16, LeadingAddr)) { WarnInvalidLBR(TraceIt); TraceIt.advance(); return false; } Index = 1; } // Now extract LBR samples - note that we do not reverse the // LBR entry order so we can unwind the sample stack as we walk // through LBR entries. uint64_t PrevTrDst = 0; while (Index < Records.size()) { auto &Token = Records[Index++]; if (Token.size() == 0) continue; SmallVector Addresses; Token.split(Addresses, "/"); uint64_t Src; uint64_t Dst; // Stop at broken LBR records. if (Addresses.size() < 2 || Addresses[0].substr(2).getAsInteger(16, Src) || Addresses[1].substr(2).getAsInteger(16, Dst)) { WarnInvalidLBR(TraceIt); break; } bool SrcIsInternal = Binary->addressIsCode(Src); bool DstIsInternal = Binary->addressIsCode(Dst); bool IsExternal = !SrcIsInternal && !DstIsInternal; bool IsIncoming = !SrcIsInternal && DstIsInternal; bool IsOutgoing = SrcIsInternal && !DstIsInternal; bool IsArtificial = false; // Ignore branches outside the current binary. Ignore all remaining branches // if there's no incoming branch before the external branch in reverse // order. if (IsExternal) { if (PrevTrDst) continue; else if (!LBRStack.empty()) { WithColor::warning() << "Invalid transfer to external code in LBR record at line " << TraceIt.getLineNumber() << ": " << TraceIt.getCurrentLine() << "\n"; break; } } if (IsOutgoing) { if (!PrevTrDst) { // This is unpaired outgoing jump which is likely due to interrupt or // incomplete LBR trace. Ignore current and subsequent entries since // they are likely in different contexts. break; } if (Binary->addressIsReturn(Src)) { // In a callback case, a return from internal code, say A, to external // runtime can happen. The external runtime can then call back to // another internal routine, say B. Making an artificial branch that // looks like a return from A to B can confuse the unwinder to treat // the instruction before B as the call instruction. break; } // For transition to external code, group the Source with the next // availabe transition target. Dst = PrevTrDst; PrevTrDst = 0; IsArtificial = true; } else { if (PrevTrDst) { // If we have seen an incoming transition from external code to internal // code, but not a following outgoing transition, the incoming // transition is likely due to interrupt which is usually unpaired. // Ignore current and subsequent entries since they are likely in // different contexts. break; } if (IsIncoming) { // For transition from external code (such as dynamic libraries) to // the current binary, keep track of the branch target which will be // grouped with the Source of the last transition from the current // binary. PrevTrDst = Dst; continue; } } // TODO: filter out buggy duplicate branches on Skylake LBRStack.emplace_back(LBREntry(Src, Dst, IsArtificial)); } TraceIt.advance(); return !LBRStack.empty(); } bool PerfReaderBase::extractCallstack(TraceStream &TraceIt, SmallVectorImpl &CallStack) { // The raw format of call stack is like: // 4005dc # leaf frame // 400634 // 400684 # root frame // It's in bottom-up order with each frame in one line. // Extract stack frames from sample while (!TraceIt.isAtEoF() && !TraceIt.getCurrentLine().startswith(" 0x")) { StringRef FrameStr = TraceIt.getCurrentLine().ltrim(); uint64_t FrameAddr = 0; if (FrameStr.getAsInteger(16, FrameAddr)) { // We might parse a non-perf sample line like empty line and comments, // skip it TraceIt.advance(); return false; } TraceIt.advance(); // Currently intermixed frame from different binaries is not supported. // Ignore caller frames not from binary of interest. if (!Binary->addressIsCode(FrameAddr)) break; // We need to translate return address to call address for non-leaf frames. if (!CallStack.empty()) { auto CallAddr = Binary->getCallAddrFromFrameAddr(FrameAddr); if (!CallAddr) { // Stop at an invalid return address caused by bad unwinding. This could // happen to frame-pointer-based unwinding and the callee functions that // do not have the frame pointer chain set up. InvalidReturnAddresses.insert(FrameAddr); break; } FrameAddr = CallAddr; } CallStack.emplace_back(FrameAddr); } // Skip other unrelated line, find the next valid LBR line // Note that even for empty call stack, we should skip the address at the // bottom, otherwise the following pass may generate a truncated callstack while (!TraceIt.isAtEoF() && !TraceIt.getCurrentLine().startswith(" 0x")) { TraceIt.advance(); } // Filter out broken stack sample. We may not have complete frame info // if sample end up in prolog/epilog, the result is dangling context not // connected to entry point. This should be relatively rare thus not much // impact on overall profile quality. However we do want to filter them // out to reduce the number of different calling contexts. One instance // of such case - when sample landed in prolog/epilog, somehow stack // walking will be broken in an unexpected way that higher frames will be // missing. return !CallStack.empty() && !Binary->addressInPrologEpilog(CallStack.front()); } void PerfReaderBase::warnIfMissingMMap() { if (!Binary->getMissingMMapWarned() && !Binary->getIsLoadedByMMap()) { WithColor::warning() << "No relevant mmap event is matched for " << Binary->getName() << ", will use preferred address (" << format("0x%" PRIx64, Binary->getPreferredBaseAddress()) << ") as the base loading address!\n"; // Avoid redundant warning, only warn at the first unmatched sample. Binary->setMissingMMapWarned(true); } } void HybridPerfReader::parseSample(TraceStream &TraceIt, uint64_t Count) { // The raw hybird sample started with call stack in FILO order and followed // intermediately by LBR sample // e.g. // 4005dc # call stack leaf // 400634 // 400684 # call stack root // 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ... // ... 0x4005c8/0x4005dc/P/-/-/0 # LBR Entries // std::shared_ptr Sample = std::make_shared(); // Parsing call stack and populate into PerfSample.CallStack if (!extractCallstack(TraceIt, Sample->CallStack)) { // Skip the next LBR line matched current call stack if (!TraceIt.isAtEoF() && TraceIt.getCurrentLine().startswith(" 0x")) TraceIt.advance(); return; } warnIfMissingMMap(); if (!TraceIt.isAtEoF() && TraceIt.getCurrentLine().startswith(" 0x")) { // Parsing LBR stack and populate into PerfSample.LBRStack if (extractLBRStack(TraceIt, Sample->LBRStack)) { if (IgnoreStackSamples) { Sample->CallStack.clear(); } else { // Canonicalize stack leaf to avoid 'random' IP from leaf frame skew LBR // ranges Sample->CallStack.front() = Sample->LBRStack[0].Target; } // Record samples by aggregation AggregatedSamples[Hashable(Sample)] += Count; } } else { // LBR sample is encoded in single line after stack sample exitWithError("'Hybrid perf sample is corrupted, No LBR sample line"); } } void PerfReaderBase::writeRawProfile(StringRef Filename) { std::error_code EC; raw_fd_ostream OS(Filename, EC, llvm::sys::fs::OF_TextWithCRLF); if (EC) exitWithError(EC, Filename); writeRawProfile(OS); } // Use ordered map to make the output deterministic using OrderedCounterForPrint = std::map; void PerfReaderBase::writeRawProfile(raw_fd_ostream &OS) { /* Format: [context string] number of entries in RangeCounter from_1-to_1:count_1 from_2-to_2:count_2 ...... from_n-to_n:count_n number of entries in BranchCounter src_1->dst_1:count_1 src_2->dst_2:count_2 ...... src_n->dst_n:count_n */ OrderedCounterForPrint OrderedCounters; for (auto &CI : SampleCounters) { OrderedCounters[getContextKeyStr(CI.first.getPtr(), Binary)] = &CI.second; } auto SCounterPrinter = [&](RangeSample Counter, StringRef Separator, uint32_t Indent) { OS.indent(Indent); OS << Counter.size() << "\n"; for (auto I : Counter) { uint64_t Start = UseOffset ? I.first.first : Binary->offsetToVirtualAddr(I.first.first); uint64_t End = UseOffset ? I.first.second : Binary->offsetToVirtualAddr(I.first.second); OS.indent(Indent); OS << Twine::utohexstr(Start) << Separator << Twine::utohexstr(End) << ":" << I.second << "\n"; } }; for (auto &CI : OrderedCounters) { uint32_t Indent = 0; if (!CI.first.empty()) { // Context string key OS << "[" << CI.first << "]\n"; Indent = 2; } SampleCounter &Counter = *CI.second; SCounterPrinter(Counter.RangeCounter, "-", Indent); SCounterPrinter(Counter.BranchCounter, "->", Indent); } } void LBRPerfReader::computeCounterFromLBR(const PerfSample *Sample, uint64_t Repeat) { SampleCounter &Counter = SampleCounters.begin()->second; uint64_t EndOffeset = 0; for (const LBREntry &LBR : Sample->LBRStack) { uint64_t SourceOffset = Binary->virtualAddrToOffset(LBR.Source); uint64_t TargetOffset = Binary->virtualAddrToOffset(LBR.Target); if (!LBR.IsArtificial) { Counter.recordBranchCount(SourceOffset, TargetOffset, Repeat); } // If this not the first LBR, update the range count between TO of current // LBR and FROM of next LBR. uint64_t StartOffset = TargetOffset; if (EndOffeset != 0) Counter.recordRangeCount(StartOffset, EndOffeset, Repeat); EndOffeset = SourceOffset; } } void LBRPerfReader::parseSample(TraceStream &TraceIt, uint64_t Count) { std::shared_ptr Sample = std::make_shared(); // Parsing LBR stack and populate into PerfSample.LBRStack if (extractLBRStack(TraceIt, Sample->LBRStack)) { warnIfMissingMMap(); // Record LBR only samples by aggregation AggregatedSamples[Hashable(Sample)] += Count; } } void LBRPerfReader::generateRawProfile() { // There is no context for LBR only sample, so initialize one entry with // fake "empty" context key. assert(SampleCounters.empty() && "Sample counter map should be empty before raw profile generation"); std::shared_ptr Key = std::make_shared(); Key->genHashCode(); SampleCounters.emplace(Hashable(Key), SampleCounter()); for (const auto &Item : AggregatedSamples) { const PerfSample *Sample = Item.first.getPtr(); computeCounterFromLBR(Sample, Item.second); } } uint64_t PerfReaderBase::parseAggregatedCount(TraceStream &TraceIt) { // The aggregated count is optional, so do not skip the line and return 1 if // it's unmatched uint64_t Count = 1; if (!TraceIt.getCurrentLine().getAsInteger(10, Count)) TraceIt.advance(); return Count; } void PerfReaderBase::parseSample(TraceStream &TraceIt) { uint64_t Count = parseAggregatedCount(TraceIt); assert(Count >= 1 && "Aggregated count should be >= 1!"); parseSample(TraceIt, Count); } bool PerfReaderBase::extractMMap2EventForBinary(ProfiledBinary *Binary, StringRef Line, MMapEvent &MMap) { // Parse a line like: // PERF_RECORD_MMAP2 2113428/2113428: [0x7fd4efb57000(0x204000) @ 0 // 08:04 19532229 3585508847]: r-xp /usr/lib64/libdl-2.17.so constexpr static const char *const Pattern = "PERF_RECORD_MMAP2 ([0-9]+)/[0-9]+: " "\\[(0x[a-f0-9]+)\\((0x[a-f0-9]+)\\) @ " "(0x[a-f0-9]+|0) .*\\]: [-a-z]+ (.*)"; // Field 0 - whole line // Field 1 - PID // Field 2 - base address // Field 3 - mmapped size // Field 4 - page offset // Field 5 - binary path enum EventIndex { WHOLE_LINE = 0, PID = 1, MMAPPED_ADDRESS = 2, MMAPPED_SIZE = 3, PAGE_OFFSET = 4, BINARY_PATH = 5 }; Regex RegMmap2(Pattern); SmallVector Fields; bool R = RegMmap2.match(Line, &Fields); if (!R) { std::string ErrorMsg = "Cannot parse mmap event: " + Line.str() + " \n"; exitWithError(ErrorMsg); } Fields[PID].getAsInteger(10, MMap.PID); Fields[MMAPPED_ADDRESS].getAsInteger(0, MMap.Address); Fields[MMAPPED_SIZE].getAsInteger(0, MMap.Size); Fields[PAGE_OFFSET].getAsInteger(0, MMap.Offset); MMap.BinaryPath = Fields[BINARY_PATH]; if (ShowMmapEvents) { outs() << "Mmap: Binary " << MMap.BinaryPath << " loaded at " << format("0x%" PRIx64 ":", MMap.Address) << " \n"; } StringRef BinaryName = llvm::sys::path::filename(MMap.BinaryPath); return Binary->getName() == BinaryName; } void PerfReaderBase::parseMMap2Event(TraceStream &TraceIt) { MMapEvent MMap; if (extractMMap2EventForBinary(Binary, TraceIt.getCurrentLine(), MMap)) updateBinaryAddress(MMap); TraceIt.advance(); } void PerfReaderBase::parseEventOrSample(TraceStream &TraceIt) { if (isMMap2Event(TraceIt.getCurrentLine())) parseMMap2Event(TraceIt); else parseSample(TraceIt); } void PerfReaderBase::parseAndAggregateTrace() { // Trace line iterator TraceStream TraceIt(PerfTraceFile); while (!TraceIt.isAtEoF()) parseEventOrSample(TraceIt); } // A LBR sample is like: // 40062f 0x5c6313f/0x5c63170/P/-/-/0 0x5c630e7/0x5c63130/P/-/-/0 ... // A heuristic for fast detection by checking whether a // leading " 0x" and the '/' exist. bool PerfReaderBase::isLBRSample(StringRef Line) { // Skip the leading instruction pointer SmallVector Records; Line.trim().split(Records, " ", 2, false); if (Records.size() < 2) return false; if (Records[1].startswith("0x") && Records[1].find('/') != StringRef::npos) return true; return false; } bool PerfReaderBase::isMMap2Event(StringRef Line) { // Short cut to avoid string find is possible. if (Line.empty() || Line.size() < 50) return false; if (std::isdigit(Line[0])) return false; // PERF_RECORD_MMAP2 does not appear at the beginning of the line // for ` perf script --show-mmap-events -i ...` return Line.find("PERF_RECORD_MMAP2") != StringRef::npos; } // The raw hybird sample is like // e.g. // 4005dc # call stack leaf // 400634 // 400684 # call stack root // 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ... // ... 0x4005c8/0x4005dc/P/-/-/0 # LBR Entries // Determine the perfscript contains hybrid samples(call stack + LBRs) by // checking whether there is a non-empty call stack immediately followed by // a LBR sample PerfScriptType PerfReaderBase::checkPerfScriptType(StringRef FileName) { TraceStream TraceIt(FileName); uint64_t FrameAddr = 0; while (!TraceIt.isAtEoF()) { // Skip the aggregated count if (!TraceIt.getCurrentLine().getAsInteger(10, FrameAddr)) TraceIt.advance(); // Detect sample with call stack int32_t Count = 0; while (!TraceIt.isAtEoF() && !TraceIt.getCurrentLine().ltrim().getAsInteger(16, FrameAddr)) { Count++; TraceIt.advance(); } if (!TraceIt.isAtEoF()) { if (isLBRSample(TraceIt.getCurrentLine())) { if (Count > 0) return PERF_LBR_STACK; else return PERF_LBR; } TraceIt.advance(); } } exitWithError("Invalid perf script input!"); return PERF_INVALID; } void HybridPerfReader::generateRawProfile() { ProfileIsCS = !IgnoreStackSamples; if (ProfileIsCS) unwindSamples(); else LBRPerfReader::generateRawProfile(); } void PerfReaderBase::warnTruncatedStack() { for (auto Address : InvalidReturnAddresses) { WithColor::warning() << "Truncated stack sample due to invalid return address at " << format("0x%" PRIx64, Address) << ", likely caused by frame pointer omission\n"; } } void PerfReaderBase::parsePerfTraces() { // Parse perf traces and do aggregation. parseAndAggregateTrace(); // Generate unsymbolized profile. warnTruncatedStack(); generateRawProfile(); if (SkipSymbolization) writeRawProfile(OutputFilename); } } // end namespace sampleprof } // end namespace llvm