//===-- Loader Implementation for NVPTX devices --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file impelements a simple loader to run images supporting the NVPTX // architecture. The file launches the '_start' kernel which should be provided // by the device application start code and call ultimately call the 'main' // function. // //===----------------------------------------------------------------------===// #include "llvm-gpu-loader.h" #include "server.h" #include "cuda.h" #include "llvm/Object/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include #include #include #include #include #include #include using namespace llvm; using namespace object; static void handle_error_impl(const char *file, int32_t line, CUresult err) { if (err == CUDA_SUCCESS) return; const char *err_str = nullptr; CUresult result = cuGetErrorString(err, &err_str); if (result != CUDA_SUCCESS) fprintf(stderr, "%s:%d:0: Unknown Error\n", file, line); else fprintf(stderr, "%s:%d:0: Error: %s\n", file, line, err_str); exit(1); } // Gets the names of all the globals that contain functions to initialize or // deinitialize. We need to do this manually because the NVPTX toolchain does // not contain the necessary binary manipulation tools. template Expected get_ctor_dtor_array(const void *image, const size_t size, Alloc allocator, CUmodule binary) { auto mem_buffer = MemoryBuffer::getMemBuffer( StringRef(reinterpret_cast(image), size), "image", /*RequiresNullTerminator=*/false); Expected elf_or_err = ELF64LEObjectFile::create(*mem_buffer); if (!elf_or_err) handle_error(toString(elf_or_err.takeError()).c_str()); std::vector> ctors; std::vector> dtors; // CUDA has no way to iterate over all the symbols so we need to inspect the // ELF directly using the LLVM libraries. for (const auto &symbol : elf_or_err->symbols()) { auto name_or_err = symbol.getName(); if (!name_or_err) handle_error(toString(name_or_err.takeError()).c_str()); // Search for all symbols that contain a constructor or destructor. if (!name_or_err->starts_with("__init_array_object_") && !name_or_err->starts_with("__fini_array_object_")) continue; uint16_t priority; if (name_or_err->rsplit('_').second.getAsInteger(10, priority)) handle_error("Invalid priority for constructor or destructor"); if (name_or_err->starts_with("__init")) ctors.emplace_back(std::make_pair(name_or_err->data(), priority)); else dtors.emplace_back(std::make_pair(name_or_err->data(), priority)); } // Lower priority constructors are run before higher ones. The reverse is true // for destructors. llvm::sort(ctors, llvm::less_second()); llvm::sort(dtors, llvm::less_second()); // Allocate host pinned memory to make these arrays visible to the GPU. CUdeviceptr *dev_memory = reinterpret_cast(allocator( ctors.size() * sizeof(CUdeviceptr) + dtors.size() * sizeof(CUdeviceptr))); uint64_t global_size = 0; // Get the address of the global and then store the address of the constructor // function to call in the constructor array. CUdeviceptr *dev_ctors_start = dev_memory; CUdeviceptr *dev_ctors_end = dev_ctors_start + ctors.size(); for (uint64_t i = 0; i < ctors.size(); ++i) { CUdeviceptr dev_ptr; if (CUresult err = cuModuleGetGlobal(&dev_ptr, &global_size, binary, ctors[i].first)) handle_error(err); if (CUresult err = cuMemcpyDtoH(&dev_ctors_start[i], dev_ptr, sizeof(uintptr_t))) handle_error(err); } // Get the address of the global and then store the address of the destructor // function to call in the destructor array. CUdeviceptr *dev_dtors_start = dev_ctors_end; CUdeviceptr *dev_dtors_end = dev_dtors_start + dtors.size(); for (uint64_t i = 0; i < dtors.size(); ++i) { CUdeviceptr dev_ptr; if (CUresult err = cuModuleGetGlobal(&dev_ptr, &global_size, binary, dtors[i].first)) handle_error(err); if (CUresult err = cuMemcpyDtoH(&dev_dtors_start[i], dev_ptr, sizeof(uintptr_t))) handle_error(err); } // Obtain the address of the pointers the startup implementation uses to // iterate the constructors and destructors. CUdeviceptr init_start; if (CUresult err = cuModuleGetGlobal(&init_start, &global_size, binary, "__init_array_start")) handle_error(err); CUdeviceptr init_end; if (CUresult err = cuModuleGetGlobal(&init_end, &global_size, binary, "__init_array_end")) handle_error(err); CUdeviceptr fini_start; if (CUresult err = cuModuleGetGlobal(&fini_start, &global_size, binary, "__fini_array_start")) handle_error(err); CUdeviceptr fini_end; if (CUresult err = cuModuleGetGlobal(&fini_end, &global_size, binary, "__fini_array_end")) handle_error(err); // Copy the pointers to the newly written array to the symbols so the startup // implementation can iterate them. if (CUresult err = cuMemcpyHtoD(init_start, &dev_ctors_start, sizeof(uintptr_t))) handle_error(err); if (CUresult err = cuMemcpyHtoD(init_end, &dev_ctors_end, sizeof(uintptr_t))) handle_error(err); if (CUresult err = cuMemcpyHtoD(fini_start, &dev_dtors_start, sizeof(uintptr_t))) handle_error(err); if (CUresult err = cuMemcpyHtoD(fini_end, &dev_dtors_end, sizeof(uintptr_t))) handle_error(err); return dev_memory; } void print_kernel_resources(CUmodule binary, const char *kernel_name) { CUfunction function; if (CUresult err = cuModuleGetFunction(&function, binary, kernel_name)) handle_error(err); int num_regs; if (CUresult err = cuFuncGetAttribute(&num_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, function)) handle_error(err); printf("Executing kernel %s:\n", kernel_name); printf("%6s registers: %d\n", kernel_name, num_regs); } template CUresult launch_kernel(CUmodule binary, CUstream stream, rpc::Server &server, const LaunchParameters ¶ms, const char *kernel_name, args_t kernel_args, bool print_resource_usage) { // look up the '_start' kernel in the loaded module. CUfunction function; if (CUresult err = cuModuleGetFunction(&function, binary, kernel_name)) handle_error(err); // Set up the arguments to the '_start' kernel on the GPU. uint64_t args_size = sizeof(args_t); void *args_config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, &kernel_args, CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size, CU_LAUNCH_PARAM_END}; if (print_resource_usage) print_kernel_resources(binary, kernel_name); // Initialize a non-blocking CUDA stream to allocate memory if needed. // This needs to be done on a separate stream or else it will deadlock // with the executing kernel. CUstream memory_stream; if (CUresult err = cuStreamCreate(&memory_stream, CU_STREAM_NON_BLOCKING)) handle_error(err); std::atomic finished = false; std::thread server_thread( [](std::atomic *finished, rpc::Server *server, CUstream memory_stream) { auto malloc_handler = [&](size_t size) -> void * { CUdeviceptr dev_ptr; if (CUresult err = cuMemAllocAsync(&dev_ptr, size, memory_stream)) dev_ptr = 0UL; // Wait until the memory allocation is complete. while (cuStreamQuery(memory_stream) == CUDA_ERROR_NOT_READY) ; return reinterpret_cast(dev_ptr); }; auto free_handler = [&](void *ptr) -> void { if (CUresult err = cuMemFreeAsync(reinterpret_cast(ptr), memory_stream)) handle_error(err); }; uint32_t index = 0; while (!*finished) { index = handle_server<32>(*server, index, malloc_handler, free_handler); } }, &finished, &server, memory_stream); // Call the kernel with the given arguments. if (CUresult err = cuLaunchKernel( function, params.num_blocks_x, params.num_blocks_y, params.num_blocks_z, params.num_threads_x, params.num_threads_y, params.num_threads_z, 0, stream, nullptr, args_config)) handle_error(err); if (CUresult err = cuStreamSynchronize(stream)) handle_error(err); finished = true; if (server_thread.joinable()) server_thread.join(); return CUDA_SUCCESS; } int load_nvptx(int argc, const char **argv, const char **envp, void *image, size_t size, const LaunchParameters ¶ms, bool print_resource_usage) { if (CUresult err = cuInit(0)) handle_error(err); // Obtain the first device found on the system. uint32_t device_id = 0; CUdevice device; if (CUresult err = cuDeviceGet(&device, device_id)) handle_error(err); // Initialize the CUDA context and claim it for this execution. CUcontext context; if (CUresult err = cuDevicePrimaryCtxRetain(&context, device)) handle_error(err); if (CUresult err = cuCtxSetCurrent(context)) handle_error(err); // Increase the stack size per thread. // TODO: We should allow this to be passed in so only the tests that require a // larger stack can specify it to save on memory usage. if (CUresult err = cuCtxSetLimit(CU_LIMIT_STACK_SIZE, 3 * 1024)) handle_error(err); // Initialize a non-blocking CUDA stream to execute the kernel. CUstream stream; if (CUresult err = cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING)) handle_error(err); // Load the image into a CUDA module. CUmodule binary; if (CUresult err = cuModuleLoadDataEx(&binary, image, 0, nullptr, nullptr)) handle_error(err); // Allocate pinned memory on the host to hold the pointer array for the // copied argv and allow the GPU device to access it. auto allocator = [&](uint64_t size) -> void * { void *dev_ptr; if (CUresult err = cuMemAllocHost(&dev_ptr, size)) handle_error(err); return dev_ptr; }; auto memory_or_err = get_ctor_dtor_array(image, size, allocator, binary); if (!memory_or_err) handle_error(toString(memory_or_err.takeError()).c_str()); void *dev_argv = copy_argument_vector(argc, argv, allocator); if (!dev_argv) handle_error("Failed to allocate device argv"); // Allocate pinned memory on the host to hold the pointer array for the // copied environment array and allow the GPU device to access it. void *dev_envp = copy_environment(envp, allocator); if (!dev_envp) handle_error("Failed to allocate device environment"); // Allocate space for the return pointer and initialize it to zero. CUdeviceptr dev_ret; if (CUresult err = cuMemAlloc(&dev_ret, sizeof(int))) handle_error(err); if (CUresult err = cuMemsetD32(dev_ret, 0, 1)) handle_error(err); uint32_t warp_size = 32; void *rpc_buffer = nullptr; if (CUresult err = cuMemAllocHost( &rpc_buffer, rpc::Server::allocation_size(warp_size, rpc::MAX_PORT_COUNT))) handle_error(err); rpc::Server server(rpc::MAX_PORT_COUNT, rpc_buffer); rpc::Client client(rpc::MAX_PORT_COUNT, rpc_buffer); // Initialize the RPC client on the device by copying the local data to the // device's internal pointer. CUdeviceptr rpc_client_dev = 0; uint64_t client_ptr_size = sizeof(void *); if (CUresult err = cuModuleGetGlobal(&rpc_client_dev, &client_ptr_size, binary, "__llvm_rpc_client")) handle_error(err); if (CUresult err = cuMemcpyHtoD(rpc_client_dev, &client, sizeof(rpc::Client))) handle_error(err); LaunchParameters single_threaded_params = {1, 1, 1, 1, 1, 1}; begin_args_t init_args = {argc, dev_argv, dev_envp}; if (CUresult err = launch_kernel(binary, stream, server, single_threaded_params, "_begin", init_args, print_resource_usage)) handle_error(err); start_args_t args = {argc, dev_argv, dev_envp, reinterpret_cast(dev_ret)}; if (CUresult err = launch_kernel(binary, stream, server, params, "_start", args, print_resource_usage)) handle_error(err); // Copy the return value back from the kernel and wait. int host_ret = 0; if (CUresult err = cuMemcpyDtoH(&host_ret, dev_ret, sizeof(int))) handle_error(err); if (CUresult err = cuStreamSynchronize(stream)) handle_error(err); end_args_t fini_args = {host_ret}; if (CUresult err = launch_kernel(binary, stream, server, single_threaded_params, "_end", fini_args, print_resource_usage)) handle_error(err); // Free the memory allocated for the device. if (CUresult err = cuMemFreeHost(*memory_or_err)) handle_error(err); if (CUresult err = cuMemFree(dev_ret)) handle_error(err); if (CUresult err = cuMemFreeHost(dev_argv)) handle_error(err); if (CUresult err = cuMemFreeHost(rpc_buffer)) handle_error(err); // Destroy the context and the loaded binary. if (CUresult err = cuModuleUnload(binary)) handle_error(err); if (CUresult err = cuDevicePrimaryCtxRelease(device)) handle_error(err); return host_ret; }