; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4 ; RUN: opt -passes='default,print' -disable-output -S < %s 2>&1 | FileCheck %s target datalayout = "e-m:m-p:40:64:64:32-i32:32-i16:16-i8:8-n32" ; ; This file contains phase ordering tests for scalar evolution. ; Test that the standard passes don't obfuscate the IR so scalar evolution can't ; recognize expressions. ; The loop body contains two increments by %div. ; Make sure that 2*%div is recognizable, and not expressed as a bit mask of %d. define void @test1(i32 %d, ptr %p) nounwind uwtable ssp { ; CHECK-LABEL: 'test1' ; CHECK-NEXT: Classifying expressions for: @test1 ; CHECK-NEXT: %div1 = lshr i32 %d, 2 ; CHECK-NEXT: --> (%d /u 4) U: [0,1073741824) S: [0,1073741824) ; CHECK-NEXT: %i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,64) S: [0,64) Exits: 63 LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %p.addr.02 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.body ] ; CHECK-NEXT: --> {%p,+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((504 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %add.ptr = getelementptr inbounds nuw i32, ptr %p.addr.02, i32 %div1 ; CHECK-NEXT: --> {((4 * (%d /u 4)) + %p),+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((508 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %add.ptr1 = getelementptr inbounds nuw i32, ptr %add.ptr, i32 %div1 ; CHECK-NEXT: --> {((8 * (%d /u 4)) + %p),+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((512 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.03, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,65) S: [1,65) Exits: 64 LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test1 ; CHECK-NEXT: Loop %for.body: backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: Trip multiple is 64 ; entry: %div = udiv i32 %d, 4 br label %for.cond for.cond: ; preds = %for.inc, %entry %p.addr.0 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.inc ] %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ] %cmp = icmp ne i32 %i.0, 64 br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond store i32 0, ptr %p.addr.0, align 4 %add.ptr = getelementptr inbounds i32, ptr %p.addr.0, i32 %div store i32 1, ptr %add.ptr, align 4 %add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div br label %for.inc for.inc: ; preds = %for.body %inc = add i32 %i.0, 1 br label %for.cond for.end: ; preds = %for.cond ret void } ; Same thing as test1, but it is even more tempting to fold 2 * (%d /u 2) define void @test1a(i32 %d, ptr %p) nounwind uwtable ssp { ; CHECK-LABEL: 'test1a' ; CHECK-NEXT: Classifying expressions for: @test1a ; CHECK-NEXT: %div1 = lshr i32 %d, 1 ; CHECK-NEXT: --> (%d /u 2) U: [0,-2147483648) S: [0,-2147483648) ; CHECK-NEXT: %i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,64) S: [0,64) Exits: 63 LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %p.addr.02 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.body ] ; CHECK-NEXT: --> {%p,+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((504 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %add.ptr = getelementptr inbounds nuw i32, ptr %p.addr.02, i32 %div1 ; CHECK-NEXT: --> {((4 * (%d /u 2)) + %p),+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((508 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %add.ptr1 = getelementptr inbounds nuw i32, ptr %add.ptr, i32 %div1 ; CHECK-NEXT: --> {((8 * (%d /u 2)) + %p),+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((512 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.03, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,65) S: [1,65) Exits: 64 LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test1a ; CHECK-NEXT: Loop %for.body: backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i32 63 ; CHECK-NEXT: Loop %for.body: Trip multiple is 64 ; entry: %div = udiv i32 %d, 2 br label %for.cond for.cond: ; preds = %for.inc, %entry %p.addr.0 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.inc ] %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ] %cmp = icmp ne i32 %i.0, 64 br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond store i32 0, ptr %p.addr.0, align 4 %add.ptr = getelementptr inbounds i32, ptr %p.addr.0, i32 %div store i32 1, ptr %add.ptr, align 4 %add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div br label %for.inc for.inc: ; preds = %for.body %inc = add i32 %i.0, 1 br label %for.cond for.end: ; preds = %for.cond ret void } @array = weak global [101 x i32] zeroinitializer, align 32 ; [#uses=1] define void @test_range_ref1a(i32 %x) { ; CHECK-LABEL: 'test_range_ref1a' ; CHECK-NEXT: Classifying expressions for: @test_range_ref1a ; CHECK-NEXT: %i.01.0 = phi i32 [ 100, %entry ], [ %tmp4, %bb ] ; CHECK-NEXT: --> {100,+,-1}<%bb> U: [0,101) S: [0,101) Exits: 0 LoopDispositions: { %bb: Computable } ; CHECK-NEXT: %tmp1 = getelementptr [101 x i32], ptr @array, i32 0, i32 %i.01.0 ; CHECK-NEXT: --> {(400 + @array),+,-4}<%bb> U: [0,-3) S: [-2147483648,2147483645) Exits: @array LoopDispositions: { %bb: Computable } ; CHECK-NEXT: %tmp4 = add nsw i32 %i.01.0, -1 ; CHECK-NEXT: --> {99,+,-1}<%bb> U: [-1,100) S: [-1,100) Exits: -1 LoopDispositions: { %bb: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_range_ref1a ; CHECK-NEXT: Loop %bb: backedge-taken count is i32 100 ; CHECK-NEXT: Loop %bb: constant max backedge-taken count is i32 100 ; CHECK-NEXT: Loop %bb: symbolic max backedge-taken count is i32 100 ; CHECK-NEXT: Loop %bb: Trip multiple is 101 ; entry: br label %bb bb: ; preds = %bb, %entry %i.01.0 = phi i32 [ 100, %entry ], [ %tmp4, %bb ] ; [#uses=2] %tmp1 = getelementptr [101 x i32], ptr @array, i32 0, i32 %i.01.0 ; [#uses=1] store i32 %x, ptr %tmp1 %tmp4 = add i32 %i.01.0, -1 ; [#uses=2] %tmp7 = icmp sgt i32 %tmp4, -1 ; [#uses=1] br i1 %tmp7, label %bb, label %return return: ; preds = %bb ret void } define i32 @test_loop_idiom_recogize(i32 %x, i32 %y, ptr %lam, ptr %alp) nounwind { ; CHECK-LABEL: 'test_loop_idiom_recogize' ; CHECK-NEXT: Classifying expressions for: @test_loop_idiom_recogize ; CHECK-NEXT: %indvar = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ] ; CHECK-NEXT: --> {0,+,1}<%bb1> U: [0,256) S: [0,256) Exits: 255 LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %i.0.reg2mem.0 = sub nuw nsw i32 255, %indvar ; CHECK-NEXT: --> {255,+,-1}<%bb1> U: [0,256) S: [0,256) Exits: 0 LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %0 = getelementptr i32, ptr %alp, i32 %i.0.reg2mem.0 ; CHECK-NEXT: --> {(1020 + %alp),+,-4}<%bb1> U: full-set S: full-set Exits: %alp LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %1 = load i32, ptr %0, align 4 ; CHECK-NEXT: --> %1 U: full-set S: full-set Exits: <> LoopDispositions: { %bb1: Variant } ; CHECK-NEXT: %2 = getelementptr i32, ptr %lam, i32 %i.0.reg2mem.0 ; CHECK-NEXT: --> {(1020 + %lam),+,-4}<%bb1> U: full-set S: full-set Exits: %lam LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %indvar.next = add nuw nsw i32 %indvar, 1 ; CHECK-NEXT: --> {1,+,1}<%bb1> U: [1,257) S: [1,257) Exits: 256 LoopDispositions: { %bb1: Computable } ; CHECK-NEXT: %tmp10 = mul i32 %x, 255 ; CHECK-NEXT: --> (255 * %x) U: full-set S: full-set ; CHECK-NEXT: %z.0.reg2mem.0 = add i32 %y, %x ; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set ; CHECK-NEXT: %3 = add i32 %z.0.reg2mem.0, %tmp10 ; CHECK-NEXT: --> ((256 * %x) + %y) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @test_loop_idiom_recogize ; CHECK-NEXT: Loop %bb1: backedge-taken count is i32 255 ; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i32 255 ; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is i32 255 ; CHECK-NEXT: Loop %bb1: Trip multiple is 256 ; bb1.thread: br label %bb1 bb1: ; preds = %bb1, %bb1.thread %indvar = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ] ; [#uses=4] %i.0.reg2mem.0 = sub i32 255, %indvar ; [#uses=2] %0 = getelementptr i32, ptr %alp, i32 %i.0.reg2mem.0 ; [#uses=1] %1 = load i32, ptr %0, align 4 ; [#uses=1] %2 = getelementptr i32, ptr %lam, i32 %i.0.reg2mem.0 ; [#uses=1] store i32 %1, ptr %2, align 4 %3 = sub i32 254, %indvar ; [#uses=1] %4 = icmp slt i32 %3, 0 ; [#uses=1] %indvar.next = add i32 %indvar, 1 ; [#uses=1] br i1 %4, label %bb2, label %bb1 bb2: ; preds = %bb1 %tmp10 = mul i32 %indvar, %x ; [#uses=1] %z.0.reg2mem.0 = add i32 %tmp10, %y ; [#uses=1] %5 = add i32 %z.0.reg2mem.0, %x ; [#uses=1] ret i32 %5 } declare void @use(i1) declare void @llvm.experimental.guard(i1, ...) ; This tests getRangeRef acts as intended with different idx size. define void @test_range_ref1(i8 %t) { ; CHECK-LABEL: 'test_range_ref1' ; CHECK-NEXT: Classifying expressions for: @test_range_ref1 ; CHECK-NEXT: %0 = zext i8 %t to i40 ; CHECK-NEXT: --> (zext i8 %t to i40) U: [0,256) S: [0,256) ; CHECK-NEXT: %t.ptr = inttoptr i40 %0 to ptr ; CHECK-NEXT: --> %t.ptr U: [0,256) S: [0,256) ; CHECK-NEXT: %idx = phi ptr [ %t.ptr, %entry ], [ %snext, %loop ] ; CHECK-NEXT: --> {%t.ptr,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %snext = getelementptr inbounds nuw i8, ptr %idx, i32 1 ; CHECK-NEXT: --> {(1 + %t.ptr),+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_range_ref1 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: %t.ptr = inttoptr i8 %t to ptr %p.42 = inttoptr i8 42 to ptr %cmp1 = icmp slt ptr %t.ptr, %p.42 call void(i1, ...) @llvm.experimental.guard(i1 %cmp1) [ "deopt"() ] br label %loop loop: %idx = phi ptr [ %t.ptr, %entry ], [ %snext, %loop ] %snext = getelementptr inbounds i8, ptr %idx, i64 1 %c = icmp slt ptr %idx, %p.42 call void @use(i1 %c) %be = icmp slt ptr %snext, %p.42 br i1 %be, label %loop, label %exit exit: ret void }