; RUN: opt < %s -passes=loop-interchange -cache-line-size=64 \ ; RUN: -pass-remarks-output=%t -disable-output ; RUN: FileCheck -input-file %t --check-prefix=PROFIT-CACHE %s ; RUN: opt < %s -passes=loop-interchange -cache-line-size=64 \ ; RUN: -pass-remarks-output=%t -disable-output -loop-interchange-profitabilities=vectorize,cache,instorder ; RUN: FileCheck -input-file %t --check-prefix=PROFIT-VEC %s @A = dso_local global [256 x [256 x float]] zeroinitializer @B = dso_local global [256 x [256 x float]] zeroinitializer @C = dso_local global [256 x [256 x float]] zeroinitializer @D = dso_local global [256 x [256 x float]] zeroinitializer @E = dso_local global [256 x [256 x float]] zeroinitializer @F = dso_local global [256 x [256 x float]] zeroinitializer ; Check the behavior of the LoopInterchange cost-model. In the below code, ; exchanging the loops is not profitable in terms of cache, but it is necessary ; to vectorize the innermost loop. ; ; for (int i = 0; i < 256; i++) ; for (int j = 1; j < 256; j++) ; A[j][i] = A[j-1][i] + B[j][i] + C[i][j] + D[i][j] + E[i][j] + F[i][j]; ; ; PROFIT-CACHE: --- !Missed ; PROFIT-CACHE-NEXT: Pass: loop-interchange ; PROFIT-CACHE-NEXT: Name: InterchangeNotProfitable ; PROFIT-CACHE-NEXT: Function: f ; PROFIT-CACHE-NEXT: Args: ; PROFIT-CACHE-NEXT: - String: Interchanging loops is not considered to improve cache locality nor vectorization. ; PROFIT-CACHE-NEXT: ... ; PROFIT-VEC: --- !Passed ; PROFIT-VEC-NEXT: Pass: loop-interchange ; PROFIT-VEC-NEXT: Name: Interchanged ; PROFIT-VEC-NEXT: Function: f ; PROFIT-VEC-NEXT: Args: ; PROFIT-VEC-NEXT: - String: Loop interchanged with enclosing loop. ; PROFIT-VEC-NEXT: ... define void @f() { entry: br label %for.i.header for.i.header: %i = phi i64 [ 0, %entry ], [ %i.next, %for.i.inc ] br label %for.j.body for.j.body: %j = phi i64 [ 1, %for.i.header ], [ %j.next, %for.j.body ] %j.dec = add nsw i64 %j, -1 %a.0.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @A, i64 0, i64 %j.dec, i64 %i %b.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @B, i64 0, i64 %j, i64 %i %c.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @C, i64 0, i64 %i, i64 %j %d.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @D, i64 0, i64 %i, i64 %j %e.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @E, i64 0, i64 %i, i64 %j %f.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @F, i64 0, i64 %i, i64 %j %a.0 = load float, ptr %a.0.index, align 4 %b = load float, ptr %b.index, align 4 %c = load float, ptr %c.index, align 4 %d = load float, ptr %d.index, align 4 %e = load float, ptr %e.index, align 4 %f = load float, ptr %f.index, align 4 %add.0 = fadd float %a.0, %b %add.1 = fadd float %add.0, %c %add.2 = fadd float %add.1, %d %add.3 = fadd float %add.2, %e %add.4 = fadd float %add.3, %f %a.1.index = getelementptr nuw inbounds [256 x [256 x float]], ptr @A, i64 %j, i64 %i store float %add.4, ptr %a.1.index, align 4 %j.next = add nuw nsw i64 %j, 1 %cmp.j = icmp eq i64 %j.next, 256 br i1 %cmp.j, label %for.i.inc, label %for.j.body for.i.inc: %i.next = add nuw nsw i64 %i, 1 %cmp.i = icmp eq i64 %i.next, 256 br i1 %cmp.i, label %exit, label %for.i.header exit: ret void }