; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 4 ; RUN: llc --mtriple aarch64-none-eabi < %s -mattr=-fp-armv8 | FileCheck %s ; See also clang/test/CodeGen/aarch64-soft-float-abi.c, which tests the clang ; parts of the soft-float ABI. ; FP types up to 64-bit are passed in a general purpose register. define half @test0(half %a, half %b) { ; CHECK-LABEL: test0: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov w0, w1 ; CHECK-NEXT: ret entry: ret half %b } define bfloat @test1(i32 %a, bfloat %b) { ; CHECK-LABEL: test1: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov w0, w1 ; CHECK-NEXT: ret entry: ret bfloat %b } define float @test2(i64 %a, float %b) { ; CHECK-LABEL: test2: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov w0, w1 ; CHECK-NEXT: ret entry: ret float %b } define double @test3(half %a, double %b) { ; CHECK-LABEL: test3: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov x0, x1 ; CHECK-NEXT: ret entry: ret double %b } ; fp128 is passed in a pair of GPRs. define fp128 @test4(fp128 %a, fp128 %b) { ; CHECK-LABEL: test4: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov x1, x3 ; CHECK-NEXT: mov x0, x2 ; CHECK-NEXT: ret entry: ret fp128 %b } ; fp128 is passed in an aligned pair of GPRs, leaving one register unused is ; necessary. define fp128 @test5(float %a, fp128 %b) { ; CHECK-LABEL: test5: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov x1, x3 ; CHECK-NEXT: mov x0, x2 ; CHECK-NEXT: ret entry: ret fp128 %b } ; If the alignment of an fp128 leaves a register unused, it remains unused even ; if a later argument could fit in it. define i64 @test6(i64 %a, fp128 %b, i64 %c) { ; CHECK-LABEL: test6: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: mov x0, x4 ; CHECK-NEXT: ret entry: ret i64 %c } ; HFAs are all bit-casted to integer types in the frontend when using the ; soft-float ABI, so they get passed in the same way as non-homeogeneous ; aggregates. The IR is identical to the equivalent integer types, so nothing ; to test here. ; The PCS for vector and HVA types is not defined by the soft-float ABI because ; these types are only defined by the ACLE when vector hardware is available, ; so nothing to test here. ; The front-end generates IR for va_arg which always reads from the integer ; register save area, and never the floating-point register save area. The ; layout of the va_list type remains the same, the floating-point related ; fields are unused. The only change needed in the backend is in va_start, to ; not attempt to save the floating-point registers or set the FP fields in the ; va_list. %struct.__va_list = type { ptr, ptr, ptr, i32, i32 } declare void @llvm.va_start(ptr) define double @test20(i32 %a, ...) { ; CHECK-LABEL: test20: ; CHECK: // %bb.0: // %entry ; CHECK-NEXT: sub sp, sp, #96 ; CHECK-NEXT: .cfi_def_cfa_offset 96 ; CHECK-NEXT: mov w8, #-56 // =0xffffffc8 ; CHECK-NEXT: add x10, sp, #8 ; CHECK-NEXT: add x9, sp, #96 ; CHECK-NEXT: str x8, [sp, #88] ; CHECK-NEXT: add x10, x10, #56 ; CHECK-NEXT: ldrsw x8, [sp, #88] ; CHECK-NEXT: stp x1, x2, [sp, #8] ; CHECK-NEXT: stp x3, x4, [sp, #24] ; CHECK-NEXT: stp x5, x6, [sp, #40] ; CHECK-NEXT: stp x7, x9, [sp, #56] ; CHECK-NEXT: str x10, [sp, #72] ; CHECK-NEXT: tbz w8, #31, .LBB7_3 ; CHECK-NEXT: // %bb.1: // %vaarg.maybe_reg ; CHECK-NEXT: add w9, w8, #8 ; CHECK-NEXT: cmn w8, #8 ; CHECK-NEXT: str w9, [sp, #88] ; CHECK-NEXT: b.gt .LBB7_3 ; CHECK-NEXT: // %bb.2: // %vaarg.in_reg ; CHECK-NEXT: ldr x9, [sp, #72] ; CHECK-NEXT: add x8, x9, x8 ; CHECK-NEXT: b .LBB7_4 ; CHECK-NEXT: .LBB7_3: // %vaarg.on_stack ; CHECK-NEXT: ldr x8, [sp, #64] ; CHECK-NEXT: add x9, x8, #8 ; CHECK-NEXT: str x9, [sp, #64] ; CHECK-NEXT: .LBB7_4: // %vaarg.end ; CHECK-NEXT: ldr x0, [x8] ; CHECK-NEXT: add sp, sp, #96 ; CHECK-NEXT: ret entry: %vl = alloca %struct.__va_list, align 8 call void @llvm.va_start(ptr nonnull %vl) %gr_offs_p = getelementptr inbounds %struct.__va_list, ptr %vl, i64 0, i32 3 %gr_offs = load i32, ptr %gr_offs_p, align 8 %0 = icmp sgt i32 %gr_offs, -1 br i1 %0, label %vaarg.on_stack, label %vaarg.maybe_reg vaarg.maybe_reg: ; preds = %entry %new_reg_offs = add nsw i32 %gr_offs, 8 store i32 %new_reg_offs, ptr %gr_offs_p, align 8 %inreg = icmp slt i32 %gr_offs, -7 br i1 %inreg, label %vaarg.in_reg, label %vaarg.on_stack vaarg.in_reg: ; preds = %vaarg.maybe_reg %reg_top_p = getelementptr inbounds %struct.__va_list, ptr %vl, i64 0, i32 1 %reg_top = load ptr, ptr %reg_top_p, align 8 %1 = sext i32 %gr_offs to i64 %2 = getelementptr inbounds i8, ptr %reg_top, i64 %1 br label %vaarg.end vaarg.on_stack: ; preds = %vaarg.maybe_reg, %entry %stack = load ptr, ptr %vl, align 8 %new_stack = getelementptr inbounds i8, ptr %stack, i64 8 store ptr %new_stack, ptr %vl, align 8 br label %vaarg.end vaarg.end: ; preds = %vaarg.on_stack, %vaarg.in_reg %vaargs.addr = phi ptr [ %2, %vaarg.in_reg ], [ %stack, %vaarg.on_stack ] %3 = load double, ptr %vaargs.addr, align 8 ret double %3 }